copula based spectral analysis - sfb649.wiwi.hu-berlin.de

80
Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions Copula based spectral analysis Holger Dette, Ruhr-Universit¨ at Bochum Marc Hallin, Universit´ e Libre de Bruxelles Tobias Kley, Ruhr-Universit¨ at Bochum Stefan Skowronek, Ruhr-Universit¨ at Bochum Stanislav Volgushev, Ruhr-Universit¨ at Bochum July , 2015

Upload: others

Post on 17-Jan-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Copula based spectral analysis

Holger Dette, Ruhr-Universitat BochumMarc Hallin, Universite Libre de Bruxelles

Tobias Kley, Ruhr-Universitat BochumStefan Skowronek, Ruhr-Universitat Bochum

Stanislav Volgushev, Ruhr-Universitat Bochum

July , 2015

Page 2: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Outline

1 Serial DependenceThe Traditional ApproachA Quantile-based Approach

2 Spectral Analysis of Time SeriesA Least Squares Interpretation of the PeriodogramA Quantile-based Approach

3 Asymptotic Properties

4 Data Example

5 Conclusions

6 ExtensionsDistributional properties of smoothed periodogramsLocal stationarity

Page 3: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

The Traditional Approach

Traditional Time Series Models

Most traditional time series models are of the conditionallocation/scale type:

Xt = ψ(Xt−1,Xt−2, . . .) + σ(Xt−1,Xt−2, . . .)εt

where

the innovations (εt)t∈Z are white noise,

εt is independent of Xt−1,Xt−2, . . .,

Holger Dette Copula based spectral analysis 1 / 58

Page 4: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

The Traditional Approach

Implications

The distribution of Xt conditional on Xt−1,Xt−2, . . . is thedistribution of εt rescaled and shifted (by conditionalparameters). Therefore

Xt is a linear function of εt

All standardized conditional distributions of Xt |Xt−1,Xt−2, . . .coincide with the distribution of εt ⇒all conditional quantiles (hence values at risk) follow fromthose of ε by a linear transformation

Interpretation of ψ and σ depends on the identificationconstraints on ε.

Interpretation as conditional mean and variance correspondsto (Gaussian) L2-legacy, which is widely used in time seriesanalysis.

Holger Dette Copula based spectral analysis 2 / 58

Page 5: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

The Traditional Approach

Example: spectral density for 3 time series

Yt = Xt/(Var(Xt))1/2,where

Xt is i.i.d.Xt is ARCH(1)Xt = 0.1Φ−1(Ut) + 1.9(Ut − 0.5)Xt−1 is QAR (1)(Ut i.i.d. uniform, Φ cdf of the standard normal distribution

0.0 0.1 0.2 0.3 0.4 0.5

0.10

0.14

0.18

0.22

i.i.d.

0.0 0.1 0.2 0.3 0.4 0.5

0.10

0.14

0.18

0.22

QAR(1)

0.0 0.1 0.2 0.3 0.4 0.5

0.10

0.14

0.18

0.22

ARCH(1)

Holger Dette Copula based spectral analysis 3 / 58

Page 6: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

The Traditional Approach

Preceding analysis based on L2 methods and auto-covariances.

works well for Gaussian time series, not so for heavy tails

is good at capturing linear dynamics

is concerned with mean/variance (specific location-scale)effects

In this talk: robustness, richer view of dynamics, tails?

replace covariances joint distributions/copulas.

replace L2-loss by L1-based loss functions, quantile regression.

ranks.

Holger Dette Copula based spectral analysis 4 / 58

Page 7: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

The Traditional Approach

The final result:

A family of copula spectral densities : ARCH(1)

0.0 0.1 0.2 0.3 0.4 0.5

0.01

00.

020

0.03

0

0.0 0.1 0.2 0.3 0.4 0.5

0.00

40.

008

0.01

2

0.0 0.1 0.2 0.3 0.4 0.5

−0.0

15−0

.005

0.00

5

0.0 0.1 0.2 0.3 0.4 0.5

−0.0

03−0

.001

0.00

10.

003

0.0 0.1 0.2 0.3 0.4 0.5

0.03

00.

040

0.05

0

0.0 0.1 0.2 0.3 0.4 0.5

0.00

40.

008

0.01

2

0.0 0.1 0.2 0.3 0.4 0.5

−0.0

020.

000

0.00

2

0.0 0.1 0.2 0.3 0.4 0.5

−0.0

030.

000

0.00

20.

004

0.0 0.1 0.2 0.3 0.4 0.50.

010

0.02

00.

030

τ 1=0

.1τ 1

=0.5

τ 1=0

.9

τ2=0.1 τ2=0.5 τ2=0.9

ω 2π

Holger Dette Copula based spectral analysis 5 / 58

Page 8: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

The Traditional Approach

The final result:

A family of copula spectral densities : QAR

0.0 0.1 0.2 0.3 0.4 0.5

0.00

80.

012

0.01

6

0.0 0.1 0.2 0.3 0.4 0.5

−0.0

050.

005

0.01

5

0.0 0.1 0.2 0.3 0.4 0.5

−0.0

020.

000

0.00

20.

004

0.0 0.1 0.2 0.3 0.4 0.5

−0.0

08−0

.004

0.00

0

0.0 0.1 0.2 0.3 0.4 0.5

0.03

00.

040

0.05

0

0.0 0.1 0.2 0.3 0.4 0.5

0.00

00.

010

0.02

0

0.0 0.1 0.2 0.3 0.4 0.5

−0.0

06−0

.003

0.00

0

0.0 0.1 0.2 0.3 0.4 0.5

−0.0

10−0

.006

−0.0

020.0 0.1 0.2 0.3 0.4 0.5

0.00

50.

015

0.02

5

τ 1=0

.1τ 1

=0.5

τ 1=0

.9

τ2=0.1 τ2=0.5 τ2=0.9

ω 2π

Holger Dette Copula based spectral analysis 6 / 58

Page 9: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

The Traditional Approach

Being less restrictive

Modeling the entire distribution of the strictly stationary process(Xt)t∈Z?

Allow the conditional distribution of Xt |Xt−1,Xt−2, . . . to bearbitrary, but

make structural assumptions.

Example: (Xt)t∈Z a stationary, Markovian process of order one.

Then the distribution of (Xt)t∈Z is fully characterized by either

the joint distribution F1 of (Xt−1,Xt), or

the marginal distribution F of Xt andthe pair copula C1 of lag one, i. e. the joint distribution of(F (Xt−1),F (Xt)).

Holger Dette Copula based spectral analysis 7 / 58

Page 10: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

The Traditional Approach

Being less restrictive

Modeling the entire distribution of the strictly stationary process(Xt)t∈Z?

Allow the conditional distribution of Xt |Xt−1,Xt−2, . . . to bearbitrary, but

make structural assumptions.

Example: (Xt)t∈Z a stationary, Markovian process of order one.

Then the distribution of (Xt)t∈Z is fully characterized by either

the joint distribution F1 of (Xt−1,Xt), or

the marginal distribution F of Xt andthe pair copula C1 of lag one, i. e. the joint distribution of(F (Xt−1),F (Xt)).

Holger Dette Copula based spectral analysis 7 / 58

Page 11: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Quantile-based Approach

Pair Copulae as a Measure for serial dependence

Notation:F denotes the distribution function of Xt

qτ = F−1(τ) is the τ -quantile of FFk denotes the joint distribution function of (Xt−k ,Xt)Ck denotes the copula of Fk , i.e the distribution of

(F (Xt−k),F (Xt))

(pair copula of lag k)

Note:In the previous example all the pair copulae Ck of lag k aredetermined by C1 (by Markov assumption).For other processes this is not necessarily the case; the paircopulae (Ck) vary freely.The copulae (Ck) are well suited to quantify serial dependence.Offer much richer information than the autocorrelations only.

Holger Dette Copula based spectral analysis 8 / 58

Page 12: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Quantile-based Approach

Pair Copulae as a Measure for serial dependence

Notation:F denotes the distribution function of Xt

qτ = F−1(τ) is the τ -quantile of FFk denotes the joint distribution function of (Xt−k ,Xt)Ck denotes the copula of Fk , i.e the distribution of

(F (Xt−k),F (Xt))

(pair copula of lag k)

Note:In the previous example all the pair copulae Ck of lag k aredetermined by C1 (by Markov assumption).For other processes this is not necessarily the case; the paircopulae (Ck) vary freely.The copulae (Ck) are well suited to quantify serial dependence.Offer much richer information than the autocorrelations only.

Holger Dette Copula based spectral analysis 8 / 58

Page 13: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Quantile-based Approach

Clipped Processes(1Xt ≤ 0.5)t∈N

t

Xt

-1

1

2

Holger Dette Copula based spectral analysis 9 / 58

Page 14: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Quantile-based Approach

Clipped Processes(1Xt ≤ 0.5)t∈N and (1Xt ≤ −1)t∈N

t

Xt

-1

1

2

t

Xt

-1

1

2

Holger Dette Copula based spectral analysis 10 / 58

Page 15: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Quantile-based Approach

Copula and Laplace Cross-covariance Kernels

Let (Xt)t∈Z be a real-valued, strictly stationary process (where Xt

has a positive density).

Definition

Laplace cross-covariance kernel of lag k ∈ Z

γk(q1, q2) = Cov(1Xt ≤ q1,1Xt+k ≤ q2)= Fk(q1, q2)− F (q1)F (q2)

= Ck(F (q1),F (q2))− F (q1)F (q2), q1, q2 ∈ R

Copula cross-covariance kernel of lag k ∈ Z

γk(τ1, τ2) = Cov(1Xt ≤ F−1(τ1),1Xt+k ≤ F−1(τ2))= γk(qτ1 , qτ2)

= Ck(τ1, τ2)− τ1τ2, τ1, τ2 ∈ (0, 1)

Holger Dette Copula based spectral analysis 11 / 58

Page 16: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Quantile-based Approach

Covariance and Cross-covariance

We use terminology of classical time series

But only covariances of indicators are considered

γk and γk always exist (no assumptions about moments)

Note:γk(q1, q2)| q1, q2 ∈ R

entirely characterizes the joint distribution of (Xt ,Xt+k)

γk(τ1, τ2)| τ1, τ2 ∈ (0, 1)

and F entirely characterize the joint distributionof (Xt ,Xt+k)

Holger Dette Copula based spectral analysis 12 / 58

Page 17: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Quantile-based Approach

Example: AR(1) Process with independent Innovations

AR(1) process

Xt = ϑXt−1 + εt , t ∈ Z.

ϑ = −0.3

independent innovations with

(i) t1-distribution

(ii) standard normal distribution

Holger Dette Copula based spectral analysis 13 / 58

Page 18: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Quantile-based Approach

Sample path: AR(1) Process, ϑ = −0.3; t1-distributed(left) and normal distributed innovations (right)

0 50 100 150 200

−80

−60

−40

−20

020

4060

t

Xt=

−0.

3Xt−

1+

ε t

0 50 100 150 200−

2−

10

12

34

t

Xt=

−0.

3Xt−

1+

ε t

Holger Dette Copula based spectral analysis 14 / 58

Page 19: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Quantile-based Approach

γ1(τ1, τ2) = C1(τ1, τ2)− τ1τ2 = F1(qτ1, qτ2

)− τ1τ2

Holger Dette Copula based spectral analysis 15 / 58

γ1(τ

1,τ

2)

τ1

τ2

τ1

τ2

Page 20: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Quantile-based Approach

γ2(τ1, τ2) = C2(τ1, τ2)− τ1τ2 = F2(qτ1, qτ2

)− τ1τ2

Holger Dette Copula based spectral analysis 15 / 58

γ2(τ

1,τ

2)

τ1

τ2

τ1

τ2

Page 21: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Quantile-based Approach

Properties

Laplace and Copula cross-covariance kernel

If EX 2t <∞, then (γk) and F determine the autocovariance

function of (Xt)t∈Z.

“Symmetry”

γk(q1, q2) = γ−k(q2, q1)

γk(τ1, τ2) = γ−k(τ2, τ1)

Invariance of γk under continuous monotone transformation

Holger Dette Copula based spectral analysis 16 / 58

Page 22: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Quantile-based Approach

The Laplace Spectral Density Kernel

Assume that the Laplace cross-covariance kernels γk , k ∈ Z satisfy

∞∑k=−∞

|γk(q1, q2)| <∞ for all q1, q2 ∈ R

Laplace spectral density kernel

fq1,q2(ω) :=1

∞∑k=−∞

γk(q1, q2)e−ikω

Holger Dette Copula based spectral analysis 17 / 58

Page 23: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Quantile-based Approach

Properties

fq1,q2(−ω) = fq2,q1(ω) = fq1,q2(ω)

If =fq1,q2 ≡ 0, then γk(q1, q2) = γ−k(q1, q2), ∀k

“Time reversibility”:

If =fq1,q2 ≡ 0, ∀q1, q2, then (Xt ,Xt+k)d= (Xt ,Xt−k).

Copula spectral density kernel

fqτ1 ,qτ2(ω) :=

1

∞∑k=−∞

γk(τ1, τ2)e−ikω

:=1

∞∑k=−∞

Ck(τ1, τ2)− τ1τ2e−ikω

Holger Dette Copula based spectral analysis 18 / 58

Page 24: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Quantile-based Approach

Properties

fq1,q2(−ω) = fq2,q1(ω) = fq1,q2(ω)

If =fq1,q2 ≡ 0, then γk(q1, q2) = γ−k(q1, q2), ∀k

“Time reversibility”:

If =fq1,q2 ≡ 0, ∀q1, q2, then (Xt ,Xt+k)d= (Xt ,Xt−k).

Copula spectral density kernel

fqτ1 ,qτ2(ω) :=

1

∞∑k=−∞

γk(τ1, τ2)e−ikω

:=1

∞∑k=−∞

Ck(τ1, τ2)− τ1τ2e−ikω

Holger Dette Copula based spectral analysis 18 / 58

Page 25: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Quantile-based Approach

Properties

fq1,q2(−ω) = fq2,q1(ω) = fq1,q2(ω)

If =fq1,q2 ≡ 0, then γk(q1, q2) = γ−k(q1, q2), ∀k

“Time reversibility”:

If =fq1,q2 ≡ 0, ∀q1, q2, then (Xt ,Xt+k)d= (Xt ,Xt−k).

Copula spectral density kernel

fqτ1 ,qτ2(ω) :=

1

∞∑k=−∞

γk(τ1, τ2)e−ikω

:=1

∞∑k=−∞

Ck(τ1, τ2)− τ1τ2e−ikω

Holger Dette Copula based spectral analysis 18 / 58

Page 26: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Least Squares Interpretation of the Periodogram

Traditional Spectral Analysis

For the analysis of serial dependencies the autocovariance functionand its spectral representation are often considered.

Autocovariances measure linear serial dependencies.

The same is true for the corresponding spectral density.

Estimation of the spectral density is (often) based on theperiodogram

In(ωj) :=1

n

∣∣∣∣∣n∑

t=1

Xteitωj

∣∣∣∣∣2

where ωj := 2πjn ∈ (−π, π], j ∈ Z are the Fourier

frequencies.

Holger Dette Copula based spectral analysis 19 / 58

Page 27: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Least Squares Interpretation of the Periodogram

A Least Squares Interpretation of the Periodogram

Note (representation as a quadratic form, i =√−1):

In(ωj) =n

4bn(ωj)

′(

1 −ii 1

)bn(ωj)

where bn(ωj) = (b1n(ωj), b2n(ωj))′,

(an(ωj), b1n(ωj), b2n(ωj)) = arg minb∈R3

n∑t=1

(Xt − ct(ωj)

′b)2

and ct(ωj) = (1, cos(tωj), sin(tωj))′.

Holger Dette Copula based spectral analysis 20 / 58

Page 28: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Quantile-based Approach

The Laplace Periodogram Kernel

Use weighted L1 instead of L2 projections:

(aτn(ω), bτ1n(ω), bτ2n(ω)) = arg minb∈R3

n∑t=1

ρτ(Xt − ct(ω)′b

)where ρτ (u) := u(τ − 1(−∞,0](u)) is the check function:

Use an inner product for two quantiles τ1, τ2

Holger Dette Copula based spectral analysis 21 / 58

Page 29: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Quantile-based Approach

The Laplace Periodogram Kernel

Main idea: Use weighted L1 projections for two differentvalues τ1, τ2

This gives two vectors:

bτn(ω) = (bτ1n(ω), bτ2n(ω))′ , τ = τ1, τ2.

Definition

The Laplace periodogram kernel is defined as

Lτ1,τ2n (ω) =

n

4bτ1n (ω)′

(1 −ii 1

)bτ2n (ω), τ1, τ2 ∈ (0, 1)

Holger Dette Copula based spectral analysis 22 / 58

Page 30: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Quantile-based Approach

The Laplace Periodogram Kernel

Main idea: Use weighted L1 projections for two differentvalues τ1, τ2

This gives two vectors:

bτn(ω) = (bτ1n(ω), bτ2n(ω))′ , τ = τ1, τ2.

Definition

The Laplace periodogram kernel is defined as

Lτ1,τ2n (ω) =

n

4bτ1n (ω)′

(1 −ii 1

)bτ2n (ω), τ1, τ2 ∈ (0, 1)

Holger Dette Copula based spectral analysis 22 / 58

Page 31: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

A Quantile-based Approach

Remarks and questions:

Computation of Lτ1,τ2n (ω): Simplex algorithm

A special case (τ1 = τ2 = 12 ) of this L1 approach to spectral

analysis was suggested previously by Li (JASA 2008).

What object is this statistic “estimating”?

Consistency?

Holger Dette Copula based spectral analysis 23 / 58

Page 32: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Asymptotics of the Laplace Periodogram Kernels

Technical assumptions

Assume that (Xt)t=1,...,n, n ∈ N is

strictly stationary

mn-decomposable (which includes linear processes) orβ-mixing or dependence concept of Wu and Shao (2004)

Let F be the absolutely continuous cdf of Xt ,

admitting the non-vanishing density f and

qτ := F−1(τ) is the quantile of F .

Assume that the Laplace cross-covariance kernels (γk) areabsolutely summable, such that the Laplace spectral densitykernel fq1,q2(ω) : q1, q2 ∈ R exists.

Holger Dette Copula based spectral analysis 24 / 58

Page 33: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Asymptotics of the Laplace Periodogram Kernels

Theorem 1 (part 1/2)

For any ω1, . . . , ων ∈ (0, π) and any τ1, τ2 ∈ (0, 1) we have

(Lτ1,τ2n (ω1), . . . , Lτ1,τ2

n (ων)) (Lτ1,τ2(ω1), . . . , Lτ1,τ2(ων))

where Lτ1,τ2(ωj) are independent random variables such that

Lτ1,τ2(ωj) ∼1

2f τ1,τ2(ωj)χ

22 if τ1 = τ2,

and

f τ1,τ2(ω) := 2πfqτ1 ,qτ2

(ω)

f (qτ1)f (qτ2),

Holger Dette Copula based spectral analysis 25 / 58

Page 34: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Asymptotics of the Laplace Periodogram Kernels

Theorem 1 (part 2/2)

and

Lτ1,τ2(ωj)d=

1

4

(Z11

Z12

)′(1 −ii 1

)(Z21

Z22

)if τ1 6= τ2

where (Z11,Z12,Z21,Z22) ∼ N4(0,Σ4(ωj)), with

Σ4(ωj) =1

2

f τ1,τ1(ωj) 0 <f τ1,τ2(ωj) −=f τ1,τ2(ωj)

0 f τ1,τ1(ωj) =f τ1,τ2(ωj) <f τ1,τ2(ωj)<f τ1,τ2(ωj) =f τ1,τ2(ωj) f τ2,τ2(ωj) 0−=f τ1,τ2(ωj) <f τ1,τ2(ωj) 0 f τ2,τ2(ωj)

..

Holger Dette Copula based spectral analysis 26 / 58

Page 35: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Asymptotics of the Laplace Periodogram Kernels

The bias?

Corollary

For all τ1, τ2 ∈ (0, 1) and ω ∈ (0, π) we have

limn→∞

ELτ1,τ2n (ω) = f τ1,τ2(ω) = 2π

fqτ1 ,qτ2(ω)

f (qτ1)f (qτ2)

Note: The Laplace periodogram Lτ1,τ2(ωj) is not an asymptot-ically unbiased estimator of the copula spectral density fqτ1 ,qτ2

(ω),but of the quantity

2πfqτ1 ,qτ2

(ω)

f (qτ1)f (qτ2)

Holger Dette Copula based spectral analysis 27 / 58

Page 36: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Asymptotics of the Laplace Periodogram Kernels

Finite Sample Properties

data from, AR(1) time series (ϑ = −0.3, n = 500)

t1- and N (0, 1) distributed innovations

Get an idea on the remaining bias of the estimate

ELτ1,τ2n (ω)

Corollary toTheorem 1−−−−−−−→

n→∞ELτ1,τ2(ω) = 2π

fqτ1 ,qτ2(ω)

f (qτ1)f (qτ2)

Holger Dette Copula based spectral analysis 28 / 58

Page 37: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Laplace Periodogram for AR(1) data (n = 500, εt ∼ t1)

0.0 0.1 0.2 0.3 0.4 0.5

010

0030

0050

00

τ 1=

0.05

0.0 0.1 0.2 0.3 0.4 0.5

−50

050

100

150

200

τ 1=

0.5

0.0 0.1 0.2 0.3 0.4 0.5

−20

000

2000

4000

τ2=0.05

τ 1=

0.95

0.0 0.1 0.2 0.3 0.4 0.5

−10

0−

500

5010

0

0.0 0.1 0.2 0.3 0.4 0.5

05

1015

2025

0.0 0.1 0.2 0.3 0.4 0.5

−50

050

100

150

200

τ2=0.5

0.0 0.1 0.2 0.3 0.4 0.5

−15

00−

500

050

015

00

0.0 0.1 0.2 0.3 0.4 0.5

−10

0−

500

5010

0

0.0 0.1 0.2 0.3 0.4 0.5

010

0030

0050

00τ2=0.95

ω

L n, Nτ 1, τ

2 (ω)

Page 38: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Laplace Periodogram for AR(1) data (n = 500,εt ∼ N (0, 1))

0.0 0.1 0.2 0.3 0.4 0.5

0.02

0.06

0.10

τ 1=

0.05

0.0 0.1 0.2 0.3 0.4 0.5

−0.

050.

050.

15

τ 1=

0.5

0.0 0.1 0.2 0.3 0.4 0.5

−0.

040.

000.

04

τ2=0.05

τ 1=

0.95

0.0 0.1 0.2 0.3 0.4 0.5

−0.

100.

000.

050.

10

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

0.0 0.1 0.2 0.3 0.4 0.5

−0.

050.

050.

15

τ2=0.5

0.0 0.1 0.2 0.3 0.4 0.5

−0.

040.

000.

020.

04

0.0 0.1 0.2 0.3 0.4 0.5

−0.

100.

000.

050.

10

0.0 0.1 0.2 0.3 0.4 0.5

0.02

0.06

0.10

τ2=0.95

ω

L n, Nτ 1, τ

2 (ω)

Page 39: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Asymptotics of the Laplace Periodogram Kernels

Estimating the marginal distributions

Recall:

The Laplace periodogram Lτ1,τ2(ω) is not an asymptoticallyunbiased estimator for fqτ1 ,qτ2

(ω), but for

2πfqτ1 ,qτ2

(ω)

f (qτ1)f (qτ2)

If F ∼ U([0, 1]), then the Laplace periodogram Lτ1,τ2(ω) is anasymptotically unbiased estimator for 2πfqτ1 ,qτ2

(ω)

Idea: Use probability integral transformation Xt → F (Xt)!

Replace F (Xt) by Fn(Xt), where Fn is the empiricaldistribution function of X1, . . .Xn.

Note: nFn(Xt) gives the rank Rt(n) of Xt among X1, . . . ,Xn

Holger Dette Copula based spectral analysis 31 / 58

Page 40: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Asymptotics of the Laplace Periodogram Kernels

Estimating the marginal distributions

Recall:

The Laplace periodogram Lτ1,τ2(ω) is not an asymptoticallyunbiased estimator for fqτ1 ,qτ2

(ω), but for

2πfqτ1 ,qτ2

(ω)

f (qτ1)f (qτ2)

If F ∼ U([0, 1]), then the Laplace periodogram Lτ1,τ2(ω) is anasymptotically unbiased estimator for 2πfqτ1 ,qτ2

(ω)

Idea: Use probability integral transformation Xt → F (Xt)!

Replace F (Xt) by Fn(Xt), where Fn is the empiricaldistribution function of X1, . . .Xn.

Note: nFn(Xt) gives the rank Rt(n) of Xt among X1, . . . ,Xn

Holger Dette Copula based spectral analysis 31 / 58

Page 41: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Asymptotics of the Laplace Periodogram Kernels

Rank based Periodogram

The rank-based periodogram kernel

Lτ1,τ2

n,R (ω)

is the Laplace periodogram kernel calculated from

1

n + 1R1(n), . . . ,

1

n + 1Rn(n)

(instead of from X1, . . . ,Xn), where Rt(n) denotes the rank of Xt

among X1, . . . ,Xn.

(aτn(ω), bτ1n(ω), bτ2n(ω)) = arg minb∈R3

n∑t=1

ρτ

(1

n+1 Rt(n) − ct(ω)′b)

Holger Dette Copula based spectral analysis 32 / 58

Page 42: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Asymptotics of the Laplace Periodogram Kernels

Theorem 2

For any ω1, . . . , ων ∈ (0, π) and any τ1, τ2 ∈ (0, 1) we have

(Lτ1,τ2

n,R (ω1), . . . , Lτ1,τ2

n,R (ων)) (Lτ1,τ2

R (ω1), . . . , Lτ1,τ2

R (ων))

where Lτ1,τ2

R (ωj) denote independent random variables distributedas Lτ1,τ2(ωj) , where

f τ1,τ2(ω) = 2πfqτ1 ,qτ2

(ω)

f (qτ1)f (qτ2)

has to be replaced by 2πfqτ1 ,qτ2(ω)

In particular the rank-based periodogram Lτ1,τ2

n,R (ω) is anasymptotically unbiased estimator for 2πfqτ1 ,qτ2

(ω).

Holger Dette Copula based spectral analysis 33 / 58

Page 43: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Asymptotics of the Laplace Periodogram Kernels

Investigation of Finite Sample Properties

Consider the AR(1) time series with t1-distributed innovations(ϑ = −0.3) from the example

Get an idea on the remaining bias of the estimate

ELτ1,τ2n (ω) Theorem 2−−−−−−→

n→∞ELτ1,τ2(ω) = 2πfqτ1 ,qτ2

(ω)

Holger Dette Copula based spectral analysis 34 / 58

Page 44: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

AR(1) Example: Rank-based Periodograms, n = 500,t1-distributed innovations

0.0 0.1 0.2 0.3 0.4 0.5

0.02

0.06

0.10

0.14

τ 1=

0.05

0.0 0.1 0.2 0.3 0.4 0.5

−0.

050.

050.

150.

25

τ 1=

0.5

0.0 0.1 0.2 0.3 0.4 0.5

−0.

050.

000.

050.

10

τ2=0.05

τ 1=

0.95

0.0 0.1 0.2 0.3 0.4 0.5

−0.

100.

000.

10

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5

−0.

050.

050.

150.

25

τ2=0.5

0.0 0.1 0.2 0.3 0.4 0.5

−0.

04−

0.02

0.00

0.02

0.04

0.0 0.1 0.2 0.3 0.4 0.5

−0.

15−

0.05

0.05

0.0 0.1 0.2 0.3 0.4 0.5

0.02

0.06

0.10

0.14

τ2=0.95

ω

L n, Nτ 1, τ

2 (ω)

Page 45: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Asymptotics of the Laplace Periodogram Kernels

Smoothed Periodogram

Sequence of positive weights Wn = Wn(j) : |j | ≤ NnWn(k) = Wn(−k) for all k∑|k|≤Nn

Wn(k) = 1

Definition

smoothed rank-based periodogram kernel:

f τ1,τ2

n,R (ωj) :=∑|k|≤Nn

Wn(k)Lτ1,τ2

n,R (ωj+k)

Holger Dette Copula based spectral analysis 36 / 58

Page 46: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Asymptotics of the Laplace Periodogram Kernels

Theorem 3

For any ω ∈ (0, π) and any τ1, τ2 ∈ (0, 1) we have

f τ1,τ2

n,R (gn(ω)) = 2πfqτ1 ,qτ2(ω) + oP(1),

where gn(ω) denotes the Fourier frequency closest to ω.

Holger Dette Copula based spectral analysis 37 / 58

Page 47: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

AR(1) Example: Means of the Smoothed Rank-basedPeriodograms, n = 500, t1− distributed innovations

0.0 0.1 0.2 0.3 0.4 0.5

0.00

0.05

0.10

0.15

τ 1=

0.05

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

τ 1=

0.5

0.0 0.1 0.2 0.3 0.4 0.5

−0.

050.

000.

050.

10

τ2=0.05

τ 1=

0.95

0.0 0.1 0.2 0.3 0.4 0.5

−0.

100.

000.

10

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

τ2=0.5

0.0 0.1 0.2 0.3 0.4 0.5

−0.

04−

0.02

0.00

0.02

0.04

0.0 0.1 0.2 0.3 0.4 0.5

−0.

15−

0.05

0.05

0.0 0.1 0.2 0.3 0.4 0.5

0.00

0.05

0.10

0.15

τ2=0.95

ω

f nτ 1, τ

2 (ω)

Page 48: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

AR(1) Example: Means of the Smoothed Rank-basedPeriodograms, n = 500, N (0, 1)-distributed innovations

0.0 0.1 0.2 0.3 0.4 0.5

0.00

0.04

0.08

0.12

τ 1=

0.05

0.0 0.1 0.2 0.3 0.4 0.5

−0.

050.

050.

15

τ 1=

0.5

0.0 0.1 0.2 0.3 0.4 0.5

−0.

040.

000.

040.

08

τ2=0.05

τ 1=

0.95

0.0 0.1 0.2 0.3 0.4 0.5

−0.

100.

000.

050.

10

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5

−0.

050.

050.

150.

25

τ2=0.5

0.0 0.1 0.2 0.3 0.4 0.5

−0.

040.

000.

020.

04

0.0 0.1 0.2 0.3 0.4 0.5

−0.

100.

000.

050.

10

0.0 0.1 0.2 0.3 0.4 0.5

0.00

0.04

0.08

0.12

τ2=0.95

Page 49: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Standard & Poor’s 500: Daily (log-)Returns, 1963–2009

Year

S&

P 5

00 R

etur

n

1970 1980 1990 2000 2010

−0.

050.

000.

05

Holger Dette Copula based spectral analysis 40 / 58

Page 50: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Traditional Spectral Analysis (Returns)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Lag

AC

F

0.0 0.1 0.2 0.3 0.4 0.5

0.00

007

0.00

008

0.00

009

0.00

011

frequency

spec

trum

bandwidth = 0.0142

Holger Dette Copula based spectral analysis 41 / 58

Page 51: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Traditional Spectral Analysis (Quadratic (log-)Returns)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Lag

AC

F

0.0 0.1 0.2 0.3 0.4 0.5

1e−

072e

−07

3e−

075e

−07

frequency

spec

trum

bandwidth = 0.0142

Holger Dette Copula based spectral analysis 42 / 58

Page 52: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Smoothed Rank-based Periodograms

0.0 0.1 0.2 0.3 0.4 0.5

−0.

10.

00.

10.

20.

3

τ 1=

0.05

0.0 0.1 0.2 0.3 0.4 0.5

−0.

10.

00.

10.

20.

3

τ 1=

0.5

0.0 0.1 0.2 0.3 0.4 0.5

−0.

10.

00.

10.

20.

3

τ2=0.05

τ 1=

0.95

0.0 0.1 0.2 0.3 0.4 0.5

−0.

10.

00.

10.

20.

3

0.0 0.1 0.2 0.3 0.4 0.5

−0.

10.

00.

10.

20.

3

0.0 0.1 0.2 0.3 0.4 0.5

−0.

10.

00.

10.

20.

3

τ2=0.5

0.0 0.1 0.2 0.3 0.4 0.5

−0.

10.

00.

10.

20.

3

0.0 0.1 0.2 0.3 0.4 0.5

−0.

10.

00.

10.

20.

30.0 0.1 0.2 0.3 0.4 0.5

−0.

10.

00.

10.

20.

3

τ2=0.95

Page 53: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Comments

The classical approach does not detect any serial structure

... the Laplace periodogram does ...

For extreme quantiles the smoothed periodograms peak at lowfrequencies

This indicates long-range dependence in the tails (ornon-stationarity)

Imaginary parts have smaller (absolute) values than the realparts, which might indicate “time reversibility”

Holger Dette Copula based spectral analysis 44 / 58

Page 54: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Summary: “model-free” and “nonlinear” Spectral Analysis

The rank-based periodogram kernel seems to inherit much ofthe properties of the ordinary periodogram

Robustness can be expected due to the L1-nature of the toolsinvolved

Analysis of conditional distributions, not simply conditionalmeans and variances

No linearity, distribution, nor even moment assumptions arerequired

Separation of serial dependencies and marginal features

Invariance under monotone transformations of theobservations

Holger Dette Copula based spectral analysis 45 / 58

Page 55: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Much work remains on the research agenda

Distributional properties of smoothed periodograms

Locally stationary processes

Prediction

Testing time reversibility

Extreme quantiles - tail dependence - tail copulas

Integrated spectra, higher order spectra

Graphical models

Holger Dette Copula based spectral analysis 46 / 58

Page 56: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Distributional properties of smoothed periodograms

Distributional properties of smoothed periodograms:

In(ωj) :=1

n

∣∣∣ n∑t=1

Xte−itωj

∣∣∣2So far we have used generalizations of L2 projections

In(ωj) =n

4bn(ωj)

′(

1 −ii 1

)bn(ωj)

where bn(ωj) = (b1n(ωj), b2n(ωj))′ with

(an(ωj), b1n(ωj), b2n(ωj)) = arg minb∈R3

n∑t=1

(Xt − ct(ωj)

′b)2

and ct(ωj) = (1, cos(tωj), sin(tωj))′.

Holger Dette Copula based spectral analysis 47 / 58

Page 57: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Distributional properties of smoothed periodograms

Alternative representation of periodogram (DFT of ACF):

Fourier transform of empirical auto-covariance

In(ωj) =1

n

∣∣∣ n∑t=1

Xte−itωj

∣∣∣2 =∑|k|<n

e−ikωjn − k

nγk

for Fourier frequencies ωj = 2πjn ∈ (0, π)

γk is empirical auto-covariance at lag k, i.e.

γk :=1

n − |k |

n−|k|∑t=1

(Xt − X )(Xt+|k| − X ).

Holger Dette Copula based spectral analysis 48 / 58

Page 58: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Distributional properties of smoothed periodograms

Alternative estimator:

Discrete Fourier transform: dτn,R(ω) :=∑n

t=1 I 1n+1 Rt(n) ≤ τe−iωt

Copula periodogram

I τ1,τ2

n,R (ω) :=1

ndτ1

n,R(ω)dτ2

n,R(−ω), ω ∈ (0, π), (τ1, τ2) ∈ [0, 1]2,

For ω = 2πj/n with j = 1, ..., (n − 1)

I τ1,τ2

n,R (ω) =∑|k|<n

n − k

ne iωk Γτ1,τ2

k

where (k > 0)

Γτ1,τ2

k :=1

n − k

n−k∑t=1

I 1n+1 Rt(n) ≤ τ1I 1

n+1 Rt+k(n) ≤ τ2

is an estimator of the pair copula at lag k (but not the empiricalcopula!).

Holger Dette Copula based spectral analysis 49 / 58

Page 59: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Distributional properties of smoothed periodograms

Alternative smoothed estimator:

Definition

The smoothed copula periodogram kernel:

fτ1,τ2

n,R (ω) :=2π

n

n−1∑s=1

Wn

(ω − 2πs/n

)I τ1,τ2

n,R (2πs/n)

where

Wn(u) :=∞∑

j=−∞b−1n W (b−1

n [u + 2πj ])

for a kernel W and bandwidth bn.

Holger Dette Copula based spectral analysis 50 / 58

Page 60: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Distributional properties of smoothed periodograms

Theorem 4

Under suitable assumptions, for any fixed ω ∈ (0, π)√nbn

(fτ1,τ2

n,R (ω)− fqτ1,qτ2

(ω)− B(k)n (τ1, τ2;ω)

)τ1,τ2∈[0,1]

H(·, ·;ω)

in `∞([0, 1]2) where

B(k)n (τ1, τ2;ω) :=

k∑j=1

bjn

j!

∫v jW (v)dv

dj

dωjfqτ1

,qτ2(ω),

and H(·, ·;ω) is a centered Gaussian process with

Cov(H(x1, y1;ω

),H(x2, y2, ω)) = fqx1

,qy1(ω)fqx2

,qy2 (ω)

∫W 2(u)du.

Weak convergence above holds jointly for any finite collections offrequencies (asymptotic independence).

Conjecture: similar result holds for rank based periodogram

Holger Dette Copula based spectral analysis 51 / 58

Page 61: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Distributional properties of smoothed periodograms

Distributional properties of smoothed periodograms:

Estimates of copula spectra and point wise confidence intervals forsimulated ARCH-data

0.0 0.1 0.2 0.3 0.4 0.5

0.01

00.

020

0.03

0

0.0 0.1 0.2 0.3 0.4 0.5

0.00

40.

008

0.01

2

0.0 0.1 0.2 0.3 0.4 0.5

−0.0

100.

000

0.00

5

0.0 0.1 0.2 0.3 0.4 0.5

−0.0

03−0

.001

0.00

10.

003

0.0 0.1 0.2 0.3 0.4 0.5

0.03

00.

035

0.04

00.

045

0.05

0

0.0 0.1 0.2 0.3 0.4 0.5

0.00

40.

008

0.01

2

0.0 0.1 0.2 0.3 0.4 0.5

−0.0

020.

000

0.00

2

0.0 0.1 0.2 0.3 0.4 0.5

−0.0

020.

000

0.00

20.

004

0.0 0.1 0.2 0.3 0.4 0.5

0.01

00.

020

0.03

0

τ 1=0

.1τ 1

=0.5

τ 1=0

.9

τ2=0.1 τ2=0.5 τ2=0.9

ω 2πHolger Dette Copula based spectral analysis 52 / 58

Page 62: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Distributional properties of smoothed periodograms

Distributional properties of smoothed periodograms:

Estimates of copula spectra and point wise confidence intervals forsimulated e QAR-data

0.0 0.1 0.2 0.3 0.4 0.5

0.00

80.

012

0.01

6

0.0 0.1 0.2 0.3 0.4 0.5

0.00

00.

005

0.01

00.

015

0.0 0.1 0.2 0.3 0.4 0.5

−0.0

020.

000

0.00

20.

004

0.0 0.1 0.2 0.3 0.4 0.5

−0.0

08−0

.004

0.00

0

0.0 0.1 0.2 0.3 0.4 0.5

0.03

50.

040

0.04

50.

050

0.0 0.1 0.2 0.3 0.4 0.5

0.00

00.

010

0.02

0

0.0 0.1 0.2 0.3 0.4 0.5

−0.0

05−0

.003

−0.0

010.

001

0.0 0.1 0.2 0.3 0.4 0.5

−0.0

10−0

.006

−0.0

02

0.0 0.1 0.2 0.3 0.4 0.5

0.01

00.

015

0.02

00.

025

τ 1=0

.1τ 1

=0.5

τ 1=0

.9

τ2=0.1 τ2=0.5 τ2=0.9

ω 2πHolger Dette Copula based spectral analysis 53 / 58

Page 63: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Local stationarity

Local stationarity:

Definition

A triangular array (Xt,T )t∈ZT∈N of processes is called locally strictlystationary (of order two) if there exists a constant L > 0 and, forevery ϑ ∈ (0, 1), a strictly stationary process Xϑ

t , t ∈ Z such that, forevery 1 ≤ r , s ≤ T ,∥∥Fr ,s;T (·, ·)− Gϑ

r−s(·, ·)∥∥∞ ≤ L

(max(|r/T − ϑ|, |s/T − ϑ|) + 1/T

),

where

‖ · ‖∞ is the supremum norm

Fr ,s;T (·, ·) is the joint distribution functions of (Xr ,T ,Xs,T )

Gϑk (·, ·) is the joint distribution functions of (Xϑ

0 ,Xϑ−k)

Holger Dette Copula based spectral analysis 54 / 58

Page 64: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Local stationarity

Local smoothed copula periodograms:

Data: dailylog-returns of S&P500 since the sixties,13000 observations.

Compute spectrafrom local windowsand plot as heatplots.

Colours: indicatedeviations from whitenoise

Holger Dette Copula based spectral analysis 55 / 58

Page 65: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Local stationarity

Local smoothed copula periodograms:

Holger Dette Copula based spectral analysis 56 / 58

Page 66: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Local stationarity

Local smoothed copula periodograms:

Holger Dette Copula based spectral analysis 57 / 58

Page 67: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Local stationarity

Some references

- Davis, R. A., Mikosch, T. and Zhao, Y. (2013). Measures of serial extremal dependence and theirestimation. Stochastic Processes and their Applications 123 2575-2602.

- Dette, H., Hallin, M., Kley, T., Volgushev, S. (2011,2014). Of copulas, quantiles, ranks and spectra: AnL1-approach to spectral analysis. Available on Arxiv. To appear in: Bernoulli

- Hagemann, A. (2011). Robust Spectral Analysis (arXiv:1111.1965v1).

- Li, T. H. (2008). Laplace periodogram for time series analysis. Journal of the American StatisticalAssociation 103, 757- 768.

- Li, T.-H. (2012). Quantile periodograms. Journal of the American Statistical Association 107, 765-776.

- Kley, T. Volgushev, S. , Dette, H., Hallin, M., (2013). Quantile spectral processes - asymptotic analysisand inference. Available on Arxiv. To appear in: Bernoulli

- Skowronek, S., Volgushev, S., Kley, T., Dette, H., Hallin, M., (2013). Quantile Spectral Analysis forLocally Stationary Time Series,. Available on Arxiv.

- Kley, T. (2014). quantspec: Quantile-based Spectral Analysis Functions. R package version 0.1.Available on http://cran.r-project.org/web/packages/quantspec/index.html.

Holger Dette Copula based spectral analysis 58 / 58

Page 68: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Serial Dependence Spectral Analysis Asymptotic Properties Data Example Conclusions Extensions

Copula based spectral analysis

Holger Dette, Ruhr-Universitat BochumMarc Hallin, Universite Libre de Bruxelles

Tobias Kley, Ruhr-Universitat BochumStefan Skowronek, Ruhr-Universitat Bochum

Stanislav Volgushev, Ruhr-Universitat Bochum

July , 2015

Page 69: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Proof of Theorem 1 Proof of Theorem 3

Backup Slides

7 Proof of Theorem 1

8 Proof of Theorem 3

Page 70: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Proof of Theorem 1 Proof of Theorem 3

Proof of Theorem 1 (main idea)

We show for Ω := ω1, . . . , ων ⊂ Fn ⊂ (0, π) and allT := τ1, . . . , τp ⊂ (0, 1)

√n(

bτn(ω))τ∈T , ω∈Ω

L−−−→n→∞

(Nτ (ω)

)τ∈T , ω∈Ω

Here (Nτ (ω))τ∈T , ω∈Ω is a vector of centered (bivariate) normaldistributed random variables with Cov(Nτ1(ω1),Nτ2(ω2)) = 0 ifω1 6= ω2 and

Cov(Nτ1(ω1),Nτ2(ω1)) = 2

(<f τ1,τ2(ω1) =f τ1,τ2(ω1)−=f τ1,τ2(ω1) <f τ1,τ2(ω1)

)otherwise

Holger Dette Copula based spectral analysis BU 32 / 36

Page 71: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Proof of Theorem 1 Proof of Theorem 3

Most important step: uniform linearization

Define

Zn,τ,ω(δ) :=∑n

t=1

(ρτ (Xt − qτ − n−1/2c′t(ω)δ)− ρτ (Xt − qτ )

)ZX ′n,τ,ω(δ) = −δ′ζX ′

n,τ,ω + 12δ′QX ′

n,τ,ωδ

where

ζX ′

n,τ,ω = n−1/2∑n

t=1 ct(ω)(τ − IX ′t,n ≤ qn,τ)QX ′

n,τ,ω = fn,X ′(qn,τ ) n−1∑n

t=1 ct(ω)c′t(ω)fn,X ′ is the is the density of X ′t,n

then

supω∈Fn

sup‖δ−δX ′

n,τ,ω‖≤ε|Zn,τ,ω(δ)−ZX ′

n,τ,ω(δ)| = OP

((n−1/4∨(n−1/2mn))(log n)2

)where δX

′n,τ,ω = (QX ′

n,τ,ω)−1ζX′

n,τ,ω

Holger Dette Copula based spectral analysis BU 33 / 36

Page 72: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Proof of Theorem 1 Proof of Theorem 3

Most important step: uniform linearization

Define

Zn,τ,ω(δ) :=∑n

t=1

(ρτ (Xt − qτ − n−1/2c′t(ω)δ)− ρτ (Xt − qτ )

)ZX ′n,τ,ω(δ) = −δ′ζX ′

n,τ,ω + 12δ′QX ′

n,τ,ωδ

where

ζX ′

n,τ,ω = n−1/2∑n

t=1 ct(ω)(τ − IX ′t,n ≤ qn,τ)QX ′

n,τ,ω = fn,X ′(qn,τ ) n−1∑n

t=1 ct(ω)c′t(ω)fn,X ′ is the is the density of X ′t,n

then

supω∈Fn

sup‖δ−δX ′

n,τ,ω‖≤ε|Zn,τ,ω(δ)−ZX ′

n,τ,ω(δ)| = OP

((n−1/4∨(n−1/2mn))(log n)2

)where δX

′n,τ,ω = (QX ′

n,τ,ω)−1ζX′

n,τ,ω

Holger Dette Copula based spectral analysis BU 33 / 36

Page 73: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Proof of Theorem 1 Proof of Theorem 3

Consequences:

If

δn,τ,ω = arg minδ

Zn,τ,ω(δ)

δX′

n,τ,ω = arg minδ

ZX ′n,τ,ω(δ) = (QX ′

n,τ,ω)−1ζX′

n,τ,ω

then

supω∈Fn

‖δn,τ,ω − δX′

n,τ,ω‖ = OP

((n−1/8 ∨ (n−1/4m

1/2n )) log n

).

Therefore the asymptotic properties of√

nbn,τ (ωj) can be obtainedfrom those of the random variables δX

′n,τ,ω

Holger Dette Copula based spectral analysis BU 34 / 36

Page 74: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Proof of Theorem 1 Proof of Theorem 3

Consequences:

If

δn,τ,ω = arg minδ

Zn,τ,ω(δ)

δX′

n,τ,ω = arg minδ

ZX ′n,τ,ω(δ) = (QX ′

n,τ,ω)−1ζX′

n,τ,ω

then

supω∈Fn

‖δn,τ,ω − δX′

n,τ,ω‖ = OP

((n−1/8 ∨ (n−1/4m

1/2n )) log n

).

Therefore the asymptotic properties of√

nbn,τ (ωj) can be obtainedfrom those of the random variables δX

′n,τ,ω

Holger Dette Copula based spectral analysis BU 34 / 36

Page 75: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Proof of Theorem 1 Proof of Theorem 3

Consequences:

If

δn,τ,ω = arg minδ

Zn,τ,ω(δ)

δX′

n,τ,ω = arg minδ

ZX ′n,τ,ω(δ) = (QX ′

n,τ,ω)−1ζX′

n,τ,ω

then

supω∈Fn

‖δn,τ,ω − δX′

n,τ,ω‖ = OP

((n−1/8 ∨ (n−1/4m

1/2n )) log n

).

Therefore the asymptotic properties of√

nbn,τ (ωj) can be obtainedfrom those of the random variables δX

′n,τ,ω

Holger Dette Copula based spectral analysis BU 34 / 36

Page 76: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Proof of Theorem 1 Proof of Theorem 3

Proof of Theorem 3 (main idea)

Let Fn denote the empirical distribution function of X1, . . . ,Xn,We have to minimize

n∑t=1

(ρτ (Fn(Xt)− τ − n−1/2c′t(ω)δ)− ρτ (Fn(Xt)− τ)

)Replace Fn(Xt) by Fn(X ′t,n), where Xt = X ′t,n + X ′,′t,n refers to mn

decomposibility

n∑t=1

(ρτ (Fn(X ′t,n)− τ − n−1/2c′t(ω)δ)− ρτ (Fn(X ′t,n)− τ))

Replace Fn(Xt,n) by Ut,n = Fn,X (X ′t,n), where Fn,X denotes theempirical distribution function of X ′1,n, . . . ,X

′n,n

Holger Dette Copula based spectral analysis BU 35 / 36

Page 77: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Proof of Theorem 1 Proof of Theorem 3

Proof of Theorem 3 (main idea)

Let Fn denote the empirical distribution function of X1, . . . ,Xn,We have to minimize

n∑t=1

(ρτ (Fn(Xt)− τ − n−1/2c′t(ω)δ)− ρτ (Fn(Xt)− τ)

)Replace Fn(Xt) by Fn(X ′t,n), where Xt = X ′t,n + X ′,′t,n refers to mn

decomposibility

n∑t=1

(ρτ (Fn(X ′t,n)− τ − n−1/2c′t(ω)δ)− ρτ (Fn(X ′t,n)− τ))

Replace Fn(Xt,n) by Ut,n = Fn,X (X ′t,n), where Fn,X denotes theempirical distribution function of X ′1,n, . . . ,X

′n,n

Holger Dette Copula based spectral analysis BU 35 / 36

Page 78: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Proof of Theorem 1 Proof of Theorem 3

Proof of Theorem 3 (main idea)

Let Fn denote the empirical distribution function of X1, . . . ,Xn,We have to minimize

n∑t=1

(ρτ (Fn(Xt)− τ − n−1/2c′t(ω)δ)− ρτ (Fn(Xt)− τ)

)Replace Fn(Xt) by Fn(X ′t,n), where Xt = X ′t,n + X ′,′t,n refers to mn

decomposibility

n∑t=1

(ρτ (Fn(X ′t,n)− τ − n−1/2c′t(ω)δ)− ρτ (Fn(X ′t,n)− τ))

Replace Fn(Xt,n) by Ut,n = Fn,X (X ′t,n), where Fn,X denotes theempirical distribution function of X ′1,n, . . . ,X

′n,n

Holger Dette Copula based spectral analysis BU 35 / 36

Page 79: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Proof of Theorem 1 Proof of Theorem 3

Proof of Theorem 3 (main idea)

n∑t=1

(ρτ (Ut,n−τ−n−1/2c′t(ω)δ)−ρτ (Ut,n−τ)

)−δ1

√n(Fn,X (F−1

n (τ))−τ)

where δ = (δ1, δ2, δ3)′.

Linearization (e1 = (1, 0, 0)′)

−δ′(ζUn,τ,ω + e1

√n(Fn,X (F−1

n (τ))− τ))

+1

2δ′QU

n,ωδ

where

QUn,ω =

1

n

n∑t=1

ct(ω)c′t(ω)

ζUn,τ,ω = n−1/2n∑

t=1

ct(ω)(τ − IUt,n ≤ τ

)Holger Dette Copula based spectral analysis BU 36 / 36

Page 80: Copula based spectral analysis - sfb649.wiwi.hu-berlin.de

Proof of Theorem 1 Proof of Theorem 3

Proof of Theorem 3 (main idea)

n∑t=1

(ρτ (Ut,n−τ−n−1/2c′t(ω)δ)−ρτ (Ut,n−τ)

)−δ1

√n(Fn,X (F−1

n (τ))−τ)

where δ = (δ1, δ2, δ3)′.

Linearization (e1 = (1, 0, 0)′)

−δ′(ζUn,τ,ω + e1

√n(Fn,X (F−1

n (τ))− τ))

+1

2δ′QU

n,ωδ

where

QUn,ω =

1

n

n∑t=1

ct(ω)c′t(ω)

ζUn,τ,ω = n−1/2n∑

t=1

ct(ω)(τ − IUt,n ≤ τ

)Holger Dette Copula based spectral analysis BU 36 / 36