controlled diffusion compressor blades at stall bs

139
NAVAL POSTGRADUATE SCHOOL __Monterey, California T DIC •i EI-ECTE 6U1~ 994 THESIS LASER-DOPPLER VELOCIMETER MEASUREMENTS IN A CASCADE OF CONTROLLED DIFFUSION COMPRESSOR BLADES AT STALL by 1Humberto Javier Ganaim Rickel June, 1994 Principal Advisor: Garth V. Hobson Approved for public release; distribution is unlimited. S~25694 9

Upload: others

Post on 03-Feb-2022

9 views

Category:

Documents


0 download

TRANSCRIPT

NAVAL POSTGRADUATE

SCHOOL__Monterey, California

T DIC• •i EI-ECTE

6U1~994

THESIS

LASER-DOPPLER VELOCIMETER MEASUREMENTS IN ACASCADE OF CONTROLLED DIFFUSION COMPRESSOR

BLADES AT STALL

by

1Humberto Javier Ganaim Rickel

June, 1994

Principal Advisor: Garth V. Hobson

Approved for public release; distribution is unlimited.

S~25694 9

REPORT DOCUMENTATION PAGE OMFoBT At.roedlomeju ng I M8 No. 0704-0188

Pt re V b~n 1' Owns cofen of iforrmwtm is e, to av e I hw paresponse, w M the Una1wm " •srucs. s, &wV *"ft data our ,gas&W ff " ft d~at nefd, ad comnpIn VWd teler0 ft cof n of omionabn. SOreN commeont rgan ths estmaste or any o~ ape of "us cofiscn ofidmf o., wcký s ý t redug #Vs Ww. to W M Headw~rWrs S~wsm OirscwoMe f1 Opuahonh aons and Repots. 1215 Jeftton Dos Highway. S~s1204. ArkigiM. VA 22202-430., and to the Oftc of Maaement and jdget. PapewoA Redutin Pmod (0704-0188). WashMnon, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE

June, 1994 Master's Thesis

4. TITLE AND SUBTITLE S. FUNDING NUMBERSLASER-DOPPLER VELOCIMETER MEASUREMENTS IN A CASCADE OFCONTROLLED DIFFUSION COMPRESSOR BLADES AT STALL

SAUTHOR(S)

Ganaim Rickel, Humberto Javier

7 PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION

Naval Postgraduate SchoolMonterey, CA 93943-5000

IL SONINGMNITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORINGAGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTESThe views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department ofDefense or the U.S. Government.

12L DSSTIg UTIONIAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited. A

13. ABSTRACT ( Maximum 200 words)An incipient compressor blade stall has been generated and examined in the Low Speed Cascade Wind Tunnel at the Turbopropulsion Laboratory. The testblades were a controlled-diffusion design with solidity 1.67, and stalling occured at 10 degrees of incidence above the design inlet air angle. Tufting andlaser-sheet flow-visualization techniques showed that the stalling process was unsteady, and occurred over the whole cascade of 20 blades. Detailedlaser-doppler velocimeter measurements over the suction side of the blades showed regions of continuous and intermittent reversed flow. The measurementsof the continuous reversed flow region at the leading edge were the first data to be obtained of flow within the leading edge separation bubble. Theintermittent reversed flow region measurements quantified what was observed in the flow visualization studies. Blade surface pressure measurements showeda decrease in normal force on the blade as would be expected at stall.

14. SUBJECT TERMS 16. PRICE CODE

15. NUMBER OF PAGES14

17. SECURITYCLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACTOF REPORT OF T"I PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 296 (Rev. 2-89)

Approved for public release; distribution is unlimited.

LASER-DOPPLER VELOCIMETER MEASUREMENTS IN A CASCADE OFCONTROLLED DIFFUSION COMPRESSOR BLADES AT STALL

by

Humberto Javier Ganaim RickelBS, Venezuelan Naval School, 1985

Submitted in partial fulfillmentof the requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOLJune, 1994

Author:9irGanaim, Rickel

Approved By: p-,

0 Dr. Garth V. Hobson, Advisor

Dr. Raymond P. Shreeve, Second Reader

Dr. Daniel J. 0&llins, ChairmanDepartment of Aeronautical and Astronautical Engineering

ii

ABSTRACT

An incipient compressor blade stall has been generated and examined in the Low

Speed Cascade Wind Tunnel at the Turbopropulsion Laboratory. The test blades were a

controlled-diffusion design with solidity 1.67, and stalling occured at 10 degrees of

incidence above the design inlet air angle. Tufting and laser-sheet flow-visualization

techniques showed that the stalling process was unsteady, and occurred over the whole

cascade of 20 blades. Detailed laser-doppler velocimeter measurements over the suction

side of the blades showed regions of continuous and intermittent reversed flow. The

measurements of the continuous reversed flow region at the leading edge were the first

data to be obtained of flow within the leading edge separation bubble. The intermittent

reversed flow region measurements quantified what was observed in the flow

visualization studies. Blade surface pressure measurements showed a decrease in normal

force on the blade as would be expected at stall. Acces.ion For

NTIS CRA&IDTIC TABUnannouncedJustification

ByDi-t. ibition I

Availability Codes

Avail and /orDist Special

liii

TABLE OF CONTENTS

1. INTRODUCTION .................................................. 1

A. BACKGROUND ............................................... I

B. PU RPO SE ..................................................... I

II. TEST FACILITY AND INSTRUMENTATION .......................... 3

A. LOW-SPEED CASCADE WIND TUNNEL .......................... 3

B. INSTRUMENTATION .......................................... 3

1. Pneumatic Data Acquisition System .............................. 3

2. Laser-Doppler Velocimeter ..................................... 3

a. Laser and Optics .......................................... 7

b. Data Acquisition .......................................... 7

c. Automated Traverse table ................................... 8

d. Atomizer and Seeding Probe ................................. 8

III. EXPERIMENTAL PROCEDURE ................................... 10

A. PRESSURE MEASUREMENTS AND FLOW VISUALIZATION ....... 10

iv

B. TUNNEL SET-UP AND TEST-SECTION CONFIGURATION .......... 10

C. LASER SET-UP ............................................... 12

D. SURVEYS .................................................. 14

i. Inlet Surveys at 48 and 50 Degrees .............................. 14

2. Passage Surveys at 50 Degrees ................................. 14

3. W ake Surveys at 50 Degrees ................................... 17

IV. RESULTS AND DISCUSSION ..................................... 18

A. BLADE SURFACE PRESSURE MEASUREMENTS ................. 18

B. INLET SURVEYS (STATIONS I THROUGH l E) ................... 18

C. PASSAGE SURVEYS (STATIONS 2 THROUGH 15) ................ 26

D. WAKE SURVEYS (STATIONS 16 THROUGH 19) .................. 43

E. SUM M ARY .................................................. 43

V. CONCLUSIONS AND RECOMMENDATIONS ....................... 50

A. CONCLUSIONS .............................................. 50

B. RECOMMENDATIONS ........................................ 51

Vl. APPENDICES .................................................. 52

A. INLET SURVEY AT 48 DEGREES (STATIONS 1 THROUGH I E) ..... 52

V

B. H

B. HISTOGRAMS FROM STATIONS 2 THROUGH 15 FOR 50 DEG ...... 64

C. HISTOGRAMS FROM STATIONS 16 THROUGH 19 FOR S0 DEG ...... 86

D. TABLE OF SHIFT SELECTIONS AT PLUS OR MINUS 5 MHz ........ 94

E. TUNNEL CALIBRATION DATA ................................ 96

F. SURVEYS FROM STATION I THROUGH 19 ..................... 105

REFERENCES .................................................... 127

INITIAL DISTRIBUTION LIST ...................................... 128

vi

LIST OF FIGURES

Figure 1. Low Speed Cascade Tunnel Schematic ......................... 4

Figure 2. CD Blade Pressure Tap Locations on Pressure and Suction Sides ..... 5

Figure 3. LDV System Installation ..................................... 6

Figure 4. Atomizer and Seeding Probe .................................. 9

Figure 5. Anodized Blades .......................................... I I

Figure 6. LDV Fringe Pattern and Beam Arrangement .................... 13

Figure 7. Inlet and Exit Pitchwise Survey Locations ...................... 15

Figure 8. Suction Side Passage Survey Locations ........................ 16

Figure 9. Pressure Distribution and Normal Force Coefficient ............... 19

Figure 10. Survey at Station I ....................................... 20

Figure 11. Survey at Station I A ...................................... 21

Figure 12. Survey at Station IB ...................................... 22

Figure 13. Survey at Station I C ...................................... 23

Figure 14. Survey at Station ID ...................................... 24

Figure 15. Survey at Station IE ...................................... 25

Figure 16. Survey at Station 2 ........................................ 27

Figure 17. Survey at Station 2A ...................................... 28

Figure 18. Survey at Station 2B ...................................... 29

vii

Figure 19. Survey at Station 3 ..................................... 30

Figure 20. Survey at Station 4 ..................................... 31

Figure 21. Survey at Station 5 ..................................... 32

Figure 22. Survey at Station 6 ..................................... 33

Figure 23. Survey at Station 7 ..................................... 34

Figure 24. Survey at Station 8 ..................................... 35

Figure 25. Survey at Station 9 ..................................... 36

Figure 26. Survey at Station 10 .................................... 37

Figure 27. Survey at Station I ..................................... 38

Figure 28. Survey at Station 12 .................................... 39

Figure 29. Survey at Station 13 .................................... 40

Figure 30. Survey at Station 14 .................................... 41

Figure 3 1. Survey at Station 15 .................................... 42

Figure 32. Survey at Station 16 .................................... 44

Figure 33. Survey at Station 17 .................................... 45

Figure 34. Survey at Station 18 .................................... 46

Figure 35. Survey at Station 19 .................................... 47

Figure 36. Reverse Flow Regions ................................... 48

viii

ACKNOWLEDGEMENTS

I would like to avail myself of this opportunity to thank Dr. Garth V. Hobson

for taking so much of his time to explain the procedures involved in this project to

me and for all his patience during his explanation. I would also like to thank Dr.

Raymond Shreeve for his advice, which positively influenced my thesis. I would like

to thank my wife Jaira and my children, Humbert and Kevin, for giving me the

support to finish my studies at the Naval Postgraduate School. Jaira: you are the

main reason in my life that helps me improve.

ix

1. INTRODUCTION

A. BACKGROUND

The continuing effort to predict off-design performance and stalling behavior of

compressor blades during the design phase has prompted studies to characterize the flow

in and around leading edge separation bubbles of blades in cascade. Experimental studies

have attempted to map viscous flow development in specific geometries. Recently

Hobson and Shreeve [Ref. 1] reported detailed two-component (LDV) measurements of

the flow through a controlled-diffusion (CD) compressor cascade at a Reynolds number

of about 700,000, and at a very high-incidence angle (8 deg above design).

They obtained a laminar leading-edge separation, which reattached turbulent, and

enclosed a (laminar) bubble on the suction surface of the blade. Consistent with

measurements at lower incidence angles, the reattached suction surface boundary layer

remained turbulent and attached over the rear part of the blade. Since boundary layer

separation ( for a code-validation test case) had not been achieved, the next step was to

increase the incidence angle further to 10 deg above design and try to stall the (CD)

blades. This was the motivation for the present study in which the flowfield through the

CD cascade was extensively surveyed at a fixed incidence angle which was 2 deg greater

than the previous incidence reported by Hobson and Shreeve [Ref. I].

B. PURPOSE

The objective was to increase the inlet air angle beyond 48 degrees, as tested by

Classick [Ref. 2], Murray [Ref. 3], Hobson and Shreeve [Ref. I], and Wakefield [Ref. 4],

to 50 degrees in an attempt to stall the blades. The intention was to determine the

maximum turning or lift generated by the blades, and to determine the way in which the

suction-side boundary layer separated. Would the leading-edge separation bubble grow or

LI

would separation begin from the trailing edge where the boundary layer was fully

turbulent. Two-dimensional laser Iripler velocimeter measurements were to be taken in

the pitchwise or blade-to-blade direction at most of the stations measured by Hobson and

Shreeve [Ref. 1].

Prior to performing the above study, LDV measurements at 48 degrees were

obtained in the inlet region in order to verify the resilts that both Hobson and Shreeve

[Ref. 1] and Wakefield [Ref. 4] obtained during their experiments. This was desirable

because Hobson and Shreeve had used different inlet guide vanes (IGV's) and, after new

IGV's were installed, Wakefield performed only Hot-Wire measurements. A comparison

of the measurements taken by the present author with those taken by Hobson and Shreeve

at 48 degrees is presented in Appendix A. The study carried out at an inlet-air angle of

50 degrees is reported in the sections which follow.

2

II. TEST FACILITY AND INSTRUMENTATION

A. LOW-SPEED CASCADE WIND TUNNEL

The subsonic cascade wind tunnel and operating instrumentation were as described

by Wakefield [Ref. 5]. The cascade had 20 blades, the flow Reynolds number, based on

chord length, was approximately 700,000 and the inlet air angle was 48 and 50 deg.

The blades had a chord length of 5.01 in. and a spacing of 3 in. The blade

coordinates and cascade geometry were reported by Elazar [Ref. 5]. Figure 1 shows the

schematic of the cascade.

B. INSTRUMENTATION

1. Pneumatic Data Acquisition System

Blade surface static pressure measurements were recorded with a 48-channel

Scanivalve. The pneumatic data acquisition system was the same as that described and

used by Classick [Ref. 2] and the program "ACQUIRE" was used to perform the

pressure measurements. Figure 2 shows the location of the pressure taps on blade number

10, the location of which is shown in Figure 1.

2. Laser-Doppler Velocimeter

The horizontal (U) and vertical (V) mnean velocity components, U-turbulence,

V-turbulence, and Reynolds stress were measured with a two-dimensional LDV system

consisting of four major subsystems:(a) the laser and optics, (b) the data acquisition

system, (c) the automated traverse table, and (d) the seeding probe. A photograph of the

LDV equipment, traverse table, counters and oscilloscope is shown in Figure 3, which

also shows the north endwall of the cascade.

3

U-

Ag Fnt�'I

I

I

hiII-

ii

4

IIn

.0

2 14

Figure 3. LDV System Installation

6

a. Laser and Optics

A four beam, two color TSI model 9100-7 LDV system was used. The laser

was a Lexell four-Watt Argon-Ion laser which was operated nominally at 2 Watts in a

multi-line mode. Two colors, green (514.5 tnm) and blue (488 nm) were selected by the

color separator. The two beams were centered and split into a four beam arrangement to

measure two velocity components at right angles to each other. Two Bragg cells shifted

the frequency of one beam in each pair to allow measurement of reverse flows. The ir

beams then passed through a divergence section which improved the dimensions

measuring volume. Two photo-detectors collected the scattered light after it passed

through the same optics. Table I contains a summary of the characteristics of the LDV

system.TABLE I

"CHARACTERISTIC BLUE BEAM GREEN BEAMWAVELENGTH 488 nanometers 514.5 nanometers

FRINGE SPACING 4.51 microns 4.76 microns

FOCAL LENGTH 762 mm 762 mmNUMBER OF FRINGES 28 28

HALF ANGLE 3.10 degrees 3.10 degreesMEASURING VOL. DIAM 133 micro meter 133 micro meter

MEASURING VOL. LENG 2.5 mm 2.5 mmFREQ. SHIFT (FIND) + 5 Mhz + 5 Mhz

BEAM SPACING 82.5 mm 82.5 mmORIENTATION HORIZONTAL VERTICAL

CHANNEL 2 1FREQUENCY SHIFT 5 Mhz UP 5 Mhz DOWN

b. Data Acquisition

The data acquisition system consisted of two TSI Model 1990 counter-type

signal processors and a 1998A Master Interface in which the signals from the

photo-detectors were digitized. An oscilloscope attached to the input conditioner of the

counters provided real-time display of the photomultiplier output. The digitized signals

from the counters were send to an IBM PC in which the information was processed by

7

TSI proprietary software "FIND" version 4.0 . Through this software it was possible to

position the LDV at programmed locations and automatically take measurements in

surveys at any desired increment.

c. Automated Traverse table

The automated three-axis traverse was Model 9500 from TSI. The traverse

used stepping motors for positioning the optical table which rested between the upper

support arms. Digital encoders along each axis provided positioning accuracy to 0.0001

inch. The traverse and encoder interface to the PC used RS-232C protocol.

d. Atomizer and Seeding Probe

Olive oil was used as a seed material in a TSI atomizer which produced

approximately I micro-meter sized particles as measured by Elazar [Ref. 5]. The seeding

wand was adjustable, however, the adjustment was done on an arc, perpendicular to the

tunnel, thus the seeding was not always at midspan. This limited the distance over which

the pitchwise surveys could be extended. Figure 4 shows the atomizer and seeding probe.

8

Figure 4. Atomizer and Seeding Probe

,A- -! ! ! ;

III. EXPERIMENTAL PROCEDURE

A. PRESSURE MEASUREMENTS AND FLOW VISUALIZATION

Once the tunnel was set up at 50 degrees and running at a plenum pressure of 12

inches of water (approximately 700,000 Reynolds number), the pressure measurements

were taken as specified by Classick [Ref. 2].

The flow visualization was carried out by projecting a laser sheet from the bottom

left of the cascade to blade number 14, and while the tunnel plenum pressure was set at

12 inches of water (gauge), fog was introduced through one of the endwalls. The flow

pattern of the fog between the blades was illuminated by the laser sheet. This process was

performed at night for better visibility. The process was filmed ussing an 8mm video

camera.

B. TUNNEL SET-UP AND TEST-SECTION CONFIGURATION

For the present study, the 50 degree inlet flow angle was set by adjusting the inlet

guide vanes and side walls to equalize the endwall static pressures on both upstream

walls. The exit flow angle was adjusted by setting the tailboards at angles which gave

nearly uniform downstream wall static pressure measurements in the pitchwise direction

across the cascade. The average inlet flow angle was measured, with the LDV, over three

passage widths, 31.3% of an axial chord length upstream of the blade leading edge. Fine

adjustments of the inlet guide vanes were made to achieve an average inlet flow angle (as

measured by the LDV) of 50.21 degrees.

Previous LDV measurements were taken between blades 7 and 8 which were

anodized black to minimize reflections. Because of the present inlet flow angle setting of

50.21 deg., blade 8 was too close to the edge of the window. Thus blade 8 and 6 were

10

�1

Figure 5. Anodized Blades

11

exchanged and all subsequent measurements during this study were taken between blades

6 and 7 as shown in Figure 5.

The tunnel reference velocity (Vref) was determined using the analysis of Elazar

[Ref. 5]. At different tunnel speeds, the inlet flow velocity was measured (31.3% axial

chord upstream) with the LDV, and the plenum pressure and temperature and ambient

pressure were recorded. A least-squares curve fit was applied to the data to determine the

calibration curve. During each subsequent run, the plenum and atmospheric conditions

were recorded and used as input to a Newton method iteration algorithm to determine

Vref. The result of this calibration is presented in Appendix E.

C. LASER SET-UP

The green beams of the laser were aligned vertically with the unshifted beam at the

bottom and the blue beams were horizontal with the unshifted beam to the right , as

shown in Figure 6. All surveys were conducted with the LDV optics "standard", i.e., the

488-nm blue beam measuring the horizontal velocity component (U), and the 514.5-nm

green beam measuring the vertical velocity component (V). Down shifting was used in

the following form; the green beam was downshifted by 5MHz and the blue beam was

upshifted by 5MHz. The 1990 signal processors had the following settings: continuous

(CONT) Mode; High Filter, 20MHz; Low Filter, 0.3MHz; Amplitude Limit, full

counterclockwise; Cycles/Burst, 8; Comparison, 1 percent; Auto (green button), in;

Voltage, External (EXT); Data Ready, Internal(INT); Gain, One (01); Resolution

(No/SEC), One (01). For the Data Interface Master; Coincidence Mode, Range XI and

Delta Interval 2 to the power 3 micro-seconds was used throughout this study.

In the Optics screen of the acquisition menu of FIND the frequency shift was set to

+5MHz on both channels. As the maximum reverse flow Doppler frequency was

approximately I MHz this level of 5MHz downshifting allowed the determination of

reverse flow velocities, both in the mean and intermittently. The determination of this

final selection is shown in Appendix D.

12

[i

Si m I II I I ii I I I I I

BLUE

Two Color I:Fiilge Palloei

Beam Arratigellmel1

Figure S. LDV Fringe Pattern and Beam Arrangement

13

D. SURVEYS

1. Inlet Surveys at 48 and 50 Degrees

All LDV measurements presented herein were averaged over 3000 data points,

and plus or minus 2 Standard Deviation histogram editing was performed for the

flowfield distribution plots. The edited histograms were used to determine the edge of the

separation and reverse flow regions.

The initial pitchwise survey at station I (Figure 7) was conducted over three

passage widths to determine the flow periodicity. All subsequent inlet pitchwise surveys

were traversed over a 4 in. distance, spanning the region of maximum seeding. The first

three inlet surveys, at stations 1, l a and l b, were carried out with the LDV horizontal.

Station lb was repeated with the laser pitched upwards by 4 deg. The need for pitching

was to allow for closer access to the leading edge, i.e., so that there would not be any

blade shadow interference at the subsequent stations ic-le. At any time during the

experiment, if the laser was either pitched or yawed, then the previous survey would be

repeated to enable the determination of any errors due to the measurement volume

orientation. The maximum spatial error, due to probe volume orientation, was calculated

by Hobson and Shreeve [Ref. 1] to be 0.3mm. This error was because the probe volume

was not parallel to the blade span, and therefore seed particles displaced from the actual

measurement location could be measured. The location of the measurement volume was

always referenced to the same location between the blades throughout the study. The

alignment procedure is described by Elazar [Ref. 5].

2. Passage Surveys at 50 Degrees

Measurements were taken only on the suction side, over a two inch pitchwise

distance. Figure 7 shows the positions for the passage surveys and each dot on the figure

represents a measurement location. These dots were stretched away from the surface to

approximate a boundary layer survey. The passage surveys (between blades 6 and 7) were

conducted with the same LDV optics configuration specified for the inlet surveys. In

addition, the LDV was yawed by 4 deg to the left and pitched upward by 2 deg to avoid

14

If) lo i ) u):(' (NJ (1, (*'i

0

,~CV L0ttI•

Ul

15

U,)

II L I I I l ,,,C)

• 15

ii

I p

I I I'

a

' |U

~ T- ~ ( *-4 T )

161

the laser beams being shadowed by the blade. This was done for the suction side close to

the leading edge, from station 2 to 7. At stations 7 to 15 the LDV was only yawed by 4

deg.

3. Wake Surveys at 50 Degrees

Wake surveys (between blades 6 and 7) were conducted with the same LDV

optics configuration specified for the inlet surveys. The LDV was horizontal and

perpendicular to the tunnel for stations 16 to 19 and the surveys were performed over two

passage widths (6 inches). Figure 7 shows the positions for tL. wake surveys.

17

IV. RESULT AND DISCUSSION

A. BLADE SURFACE PRESSURE MEASUREMENTS

The upper plot of Figure 9 shows the blade surface pressure distribution measured

by Dreon [Ref. 6] at 40 and 43 degrees, Armstrong [Ref. 7] at 48 degrees and the present

work at 50 degrees. The integration of the area within the pressure distributions for each

angle gave the Normal Force Coefficient. The lower plot (Normal Force Coefficient

versus Angle of Attack) shows a drop-off in force (or lift) at 50 degrees, consistent with

the observation that the cascade had entered into stall.

B. INLET SURVEYS (STATIONS 1 THROUGH IE)

Figures 10 through 15 show the horizontal (U), vertical (V) components and the

total velocity (Utot) distributions in the pitchwise direction ahead of the blades. At station

1, a disturbance in the total velocity profile is evident which is periodic and three inches

apart. This disturbance corresponds to the spacing of the blades and thus the presence of

the blades is now felt 30% of an axial chord ahead of the leading edges. This magnitude

of upstream disturbance, was not evident at lower inlet air angles.

Station IA (Fig. 11) shows measurement anomalies on the U component which are

due to imperfections in the acrylic window. In subsequent figures (12 through 15) the

total velocity (Utot) decreased as the flow approached the leading edge of blade number 6

and then increased again as the flow rounded the leading edge of the blade.

The final inlet profile (Fig. 15) shows a variation in total velocity of 40% (from 1.0

to 0.6) across the leading edge. This variation is less than that previously measured at 48

degrees inlet air angle (> 50% variations), and this too is an indication that stall had

occurred.

18

-0.5

Dr~.On - Beta-4Odeq. Preen.. ivnrf.Drew.,- *eta-40deq. Su'ct. uorf.

*Dreono- Beta-43deq. Press.. lurt. I?Orson:- Bets-43deq. Suct. surf.Arustranqt- 8*ts-49deq. Preen.. silrV.

4.aArostrona:- *ota-49dcq. Stict. qurf.v varneim:- 0:1ta-SOdeq. Pr.'s,. ,',,rt.

ranaim: ata-dnq. S,:ut. ~.urf.

-20 0.2 0.%f. OR

0.64

*' 0.62

U

02

R 0.54 Draw. 12 pts), Arutstronq G anal.

0.52

33 40 4Z 44 16 .14 SInlet Fin" Anql-

Figure 9. Pressure Distribution and Normal Force Coefficient

19

ClEl

4 U)

LI-> Uý

4 U 0

4 U 0So ommuosaiUO

4 U X20

4 U 44 U I-

4 U C0

Cl) 4 U *4.,

4 , U_ 4 ,. I(U) 4 , U

4

w 4 U4 U 0 1�44 Uu

e4 3 0 54 U 0

4 U 0 C4 U*4 U*

4 3*4

ci 0 CD1� o a o

A�POi.A IWUOISLWWIO-UON

21

cri/O 0

Iw

'.4

C4 CR CR l NJ

AljooIOA g3UoISU~uwla-uoN

22

C'4

Cf)

00.jx

z

- e

APOIOgA P16uowiauuf-IoN

23

(l)

*1 aj

CI) 0

w l qw Cz ; ci c

Al~q9 PUOSUOUJG-Ue

w2

C14

1- 4-

cCE)C"! C4 '

olqAluisai-o

0 25

C. PASSAGE SURVEYS (STATIONS 2 THROUGH 15)

At station 2 only forward moving particles were measured, and the mean velocities

(both U and V components) were all positive (Fig. 16). The discontinuity in the VNref

profile between points 11 and 12 was unexplained. At station 2A the magnitude of the

first data point dropped off significantly (Fig. 17). Upon examination of the histograms

for the vertical velocity component it was found to contain reverse flow particles, which

indicated that this region had intermittent reverse flow. The first data point at station 2B

had a negative mean V velocity and a positive mean U velocity (Fig. 18), and this

indicated the beginning of the leading edge reverse flow region (i.e., negative mean

velocity on V). The following 5 data points had intermittent reverse flow histograms.

At station 3 the first three data points had negative mean velocities, both U and V,

and then the following 7 data points had intermittent reverse flow particles. Station 4 only

had intermittent reverse flow particles (no histograms with a negative mean) for the first 6

data points. The discontinuity in the profile as shown in Figure 20 illustrated the change

over from intermittent reverse flow to all positive, or forward-moving particles. The

profile at station 5 (Fig. 21) was very similar to that at station 4.

At station 6 (Fig. 22) the first two points showed only forward moving particles, the

third data point had intermittent reverse flow, the next five data points were all positive

and the ninth data point again had intermittent reverse flow. All other data points beyond

the tenth point had histograms with only positive values. The first data point at station 7

(Fig. 23) only had positive moving particles, the second through sixteenth data points

showed intermittent reverse flow and then all higher points were positive.

The first data point at station 8 (Fig. 24) had only positive particles, the next 17

data points showed intermittent reverse flow, and then all the points showed only positive

flow. The mean flow profile once again showed a significant discontinuity in that region.

Stations 9 through 15 (Figs. 25 through 31) were similar in that they all showed

regions of intermittent reverse flow close to the suction surface of the blade followed by

the core flow where all the measured particles had positive velocity components.

26

50

U))

0 do

CWL

>1zE

lw 0

M4IG im setaIO

27

I-

U)0

'C(NII-. C

0Cl)0 0

dUo

o -

-j xW I') 0c

Z e'Cw

I I I� I IC'. (0 C'. 0

0 0 0 D

A11,oIeA IBtiO!SIi8IU!G-UON

28

jCN'4,

C)) 0i c 6Al~qA IeOISBUII-Ua

029

C1)

or)0

0 S

oj -

wz

AIPO19A IeUOISUOul(u!-UON

30

;> 0

Cl)5

0 a 0ý

31~

LfU)

43019 CeIIUUJ(-

32a

Titm:('44

CO c

(00

0(

o Ul9S

C)Cl

I L.

C'N

C,)3looO Ce~siiuc-O

34a

LCI

U))

C'.

>IuU,

C3 9

0 ~ 9 -~uls 'I)uO

o C35

C#) Cl

AIPOIA Rwsum!-(JC

36I

I '

0 ,•F--

o 0< Iwm U) i

_ 1. . .. . II I

C d ('.1

/AIPONISA leUOt9ueSu!U-UON

37

D

cid

C14

U)

x U

w - M

M*

zW**412

woCc; ci a

AIPOISAPNM9IJO!SUBW(JUN

38

-j9

wS

LU)

CR CRC

opq& -eossum-

o 39

CI-O

U))

F--

I-j

w

400

*1~4a

(1) (0

(0wz

.Izw

A)I!OqGA jeuoISGIsuwO-uoN

41

.00

CM

U))

0 S,-i x

w> U)

zw

Iq IR 't NI )C) 0 C) ('4

A)POISA IRtJOI9UGWcIO-UON

42

It can be seen in Appendix B that for each station all the histograms to the left of

the discontinuity had negative and positive velocities and the histograms to the right of

the discontinuity had only positive velocities.

D. WAKE SURVEYS (STATIONS 16 THROUGH 19)

Figure 32 through 34 show the horizontal (U) and vertical (V) velocity components

and the total velocity (Utot) distributions through the wakes at the exit of the cascade.

Like the other surveys, each point in these plots represents a histogram of 3000 data

points which where analyzed at plus and minus two standard deviations. The ones that

delimited positive from negative velocities for each station are printed ir Appendix C.

Two features are evident in these plots; firstly, the width of the wake increased from

station 16 to 19, and secondly, the region of intermittent reverse flow was within the

wake on the suction side of the blade (to the left of the X=0 line for blade 6).

E. SUMMARY

Once all the histograms from each station were analyzed, the boundary of the

region of intermittent reverse flow (last point of negative velocity at a station) was plotted

for each station 2 through 19. This is shown in figure 36 with dotted lines. Also shown on

this plot , with the solid line, is the region of reverse flow as determined by a negative

mean velocity on the vertical component. This line represented the reverse flow region of

the leading edge separation bubble which had been observed with flow visualization

techniques. It was postulated that the reason reverse flow was measured in this region

was because the flow was unsteady and seed particles were entrained into the leading

edge separation bubble. This was not possible at lower inlet air angles because the flow

was relatively steady compared to the present study. Flow visualization also confirmed

the two distinct regions of intermittent reverse flow, as shown by the two regions of

dotted lines; the lower region being associated with the leading edge separation bubble

and the upper region representing the turbulent separation that occurred aft of mid chord.

43

I-c

tto

> CE)

C) I

cw w (0

w 44

D D

45

ED

to

0

I'U)o-be

w 4 4

-6

0)0

U)

C) IPPU-.

-U..--- '%. soWIOUO

47'

-, I . I;: (q) -- ,

tP.

4)0)

"0| Il , 4 -

-'I0'1 I I

'(IP (P 11*

.-. I I$

*. .. . . • _ - _ - _ , I I--

48

S. . . . .l I l

More detailed surveys are needed between stations 6 and 7 to fully characterize the

transition between these two regions.

49

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The lack of experimental data of compressor cascades at or near stall has been

somewhat alleviated with the current set of detailed measurements. The following

specific conclusions can be drawn.

1. The controlled diffusion (CD) cascade was successfully stalled. This was

confirmed with the blade surface pressure measurements, which showed that for

50 degrees the normal force on the blade had decreased. Flow visualization

techniques (both tufting and laser sheet with fog or smoke) also confirmed that the

blades had stalled.

2. It was possible to measure both mean reverse flow and intermittent reverse flow

with the LDV. With the appropriate use of firequency shifting it was possible to do

these measurements with the certainty that the results from the histograms were

correctly representing negative or positive velocities.

3. The regions of reverse flow were plotted. With the information obtained from

each histogram at each station it was possible to plot regions of intermittent

reverse flow and also a region of leading-edge reverse flow.

4. It was possible to take LDV measurements inside the reverse flow region during

the stalling process, which was unsteady.

5. The inlet-flow pitchwise surveys at an inlet air angle of 48 degrees compared very

well with previous measurements.

50

B. RECOMMENDATIONS

The following specific recommendations for further measurements at the 50

degrees inlet-air angle setting are proposed;

i. More detailed measurements should be taken in the leading edge separation

bubble region (station 2 to 4).

2. More detailed measurements should be taken between stations 6 and 8 to further

characterize the region of forward and intermittent reverse flow.

3. Detailed measurements are needed between stations 15 and 16 to determine the

trailing edge base flow region.

4. Pressure side passage surveys are also needed.

5. Measurements away from mid span are needed to determine the degree of two

dimensionality of the flow.

Blade surface pressure measurements at approximately 49 degrees inlet air angle

are also needed to determine the maximum blade loading condition.

51

UZ m ICuS

A. InLM BUiWVY8 k? 46 DR UM98 (STATIONS I THROUGN 12)

Pitchvise survey at station 1

X(l) Y(l) U/Vrst V/Vref U-turb V-turb Reynolds Correl.refer reter Stream Coeff.

3 -6.292 0.74136 0.692654 1.463915 1.413003 0.067123 0.0469022.75 -6.292 0.746466 0.692364 1.416979 1.263615 0.065471 0.06789

2.4999 -6.292 0.753923 0.6S8168 1.334609 1.346387 0.042565 0.0342232.2499 -6.292 0.756570 0.602245 1.311649 1.348066 0.05643 0.04609

2 -6.292 0.753071 0.674006 1.300756 1.346572 0.017453 0.0143741.75 -6.292 0.740567 0.67201 1.31101 1.306448 0.059379 0.0500971.5 -6.292 0.742543 0.671297 1.303492 1.298236 0.043573 0.0372

1.25 -6.292 0.730081 0.670637 1.501345 1.343765 0.127392 0.0906691 -6.292 0.730915 0.676326 1.574865 1.353234 0.120067 0.091395

0.75 -6.2921 0.735436 0.600991 1.61169 1.334633 0.115111 0.0773150.4999 -6.292 0.730607 0.687099 1.475767 1.369417 0.11726 0.063042

0.25 -6.292 0.741475 0.690215 1.509765 1.488283 0.056298 0.036198-0.0001 -6.292 0.744766 0.690736 1.487172 1.414451 0.093394 0.064144-0.2501 -6.292 0.746923 0.691276 1.409122 1.312934 0.002955 0.002307-0.5001 -6.292 0.751632 0.668292 1.455245 1.362432 0.12164 0.069793

-0.75 -6.292 0.754739 0.603100 1.350539 1.25601 0.110055 0.093525-1 -6.292 0.755149 0.676992 1.576743 1.411971 0.074725 0.046492

9 J 99 I ,p JlIPI.* I lf,. 1 .' '..,I .99t 5hI. ' *ev,

'9.

-ISh

? l0 9

X f1,9

52

1.4

I HDV U-Iks~, iand Slat oevy. -0V/Viet Illobsoeb and Sloreeve -0

It/Vret - Present 0

X (I .i

1.5

q.

(C Iill

45

Pitchwise survey at station la

X(I) Y(i) U/Vref V/Vref U-turb V-turb Reynolds Correl.refer refer Stress Coeff.

1 -5.5 0.703738 0.644747 1.320592 1.353239 0.112141 0.0921110.75 -5.5 0.700153 0.668084 1.394284 1.284097 0.127712 0.104707

0.5 -5.5 0.705206 0.687196 1.384214 1.217664 0.033909 0.0295310.25 -5.5 0.718 0.702983 1.589035 1.464419 0.166871 0.105262

0 -5.5001 0.736945 0.71407 1.665003 1.373785 0.190951 0.122541-0.2501 -5.5 0.756807 0.718059 1.72404 1.296312 -0.06843 -0.04495

-0.5 -5.5 0.782435 0.712994 1.508213 1.245929 0.064386 0.050296-0.75 -5.5001 0.799708 0.693006 1.487321 1.454848 -0.00563 -0.00382

-1 -5.5 0.800899 0.666727 1.479869 1.467399 -0.00566 -0.00383-1.25 -5.5 0.779457 0.642881 1.482129 1.449028 -0.00456 -0.00311-1.5 -5.5 0.749275 0.638938 1.373295 1.386049 0.071845 0.055405

-1.7501 -5.5 0.726591 0.651752 1.472721 1.426907 0.126707 0.088507-2 -5.5 0.716153 0.670346 1.632892 1.457935 0.164624 0.101506

-2.25 -5.5 0.718584 0.692819 1.663465 1.428475 0.146736 0.090645-2.5001 -5.5 0.728194 0.711438 1.754875 1.446504 0.188347 0.108915-2.7501 -5.5 0.744533 0.725975 1.892023 1.714723 0.139615 0.063169

-3 -5.5 0.763451 0.732077 1.694677 1.649282 0.01088 0.005714

5 4 I itt' ll. I *...,,*

I a

-1... oL -. ,.I .. -. I.-*.'

54

4.

I Vt ,ivh~~~a~pvi~~X I- IIIl~~ i~ ~r''"

f 4-

1 1 .2A -, -1. -I sllq fle

V/Vref - lloko~.,lv And3 Shr-evý -4--lI/Vr'-f -pr".I.' t fl

V/Vrof - rIq,R-w

If* IfI- 4 -

1'n

I - 0- *)

45

Pitchvise survey at station lb

X(I) Y(i) U/Vref V/Vref U-turb V-turb Reynolds Corral.refer refer Stress Coeff.

2 -5 0.958084 0.627842 1.607578 1.791224 0.096447 0.0493471.75 -5 0.653672 0.444457 1.729976 1.526591 0.025728 0.0142731.5 -5 0.673265 0.487715 1.244763 1.41887 0.117505 0.097474

1.25 -5 0.63042 0.569016 1.298135 1.408513 0.060343 0.0483511 -5 0.624632 0.626094 1.413872 1.319718 0.113958 0.089479

0.75 -5 0.632516 0.669163 1.375079 1.271422 0.162005 0.1357610.4999 -5.0001 0.647871 0.703524 1.474691 1.29333 0.197921 0.152035

0.25 -5 0.668768 0.730604 1.378618 1.227759 0.152697 0.1321720 -5 0.699079 0.755237 1.472813 1.265611 0.154464 0.121407

-0.2501 -5 0.738667 0.770627 1.907636 1.633206 -0.02761 -0.01298-0.5 -5 0.791511 0.77656 1.580932 1.429406 0.100471 0.065139

-0.75 -5 0.866611 0.750163 1.757226 1.776589 -0.29205 -0.13706-1 -5 0.931505 0.641569 1.729945 2.052353 0.062178 0.025658

-1.25 -5 0.827368 0.477815 1.866588 1.647463 0.104234 0.04966-1.5 -5 0.677658 0.521568 1.426295 1.718446 0.149499 0.089363

-1.75 -5 0.640081 0.594843 1.475752 1.367188 0.244467 0.177518-2 -5 0.63561 0.646967 1.527771 1.302694 0.204851 0.1508

56

4, L

0. A - 4

57-4

Pitchvise survey at station Ic

X(I) ¥(1) U/Vref V/Vref U-turb V-turb Reynolds Correl.refer refer Stress Coeff.

2 -4.896 1.032942 0.655777 1.95444 2.395522 0.309529 0.096531.75 -4.896 0.899393 0.305473 4.000105 4.453251 -3.537 -0.289911.5 -4.896 0.611193 0.452963 1.218652 1.492263 0.128289 0.103002

1.25 -4.896 0.592662 0.560462 1.266566 1.320667 0.138072 0.1205221 -4.896 0.596724 0.621573 1.264895 1.247186 0.166161 0.15379

0.75 -4.896 0.609269 0.668145 1.407681 1.275609 0.15649 0.1272470.4999 -4.896 0.626958 0.705764 1.471754 1.314726 0.242738 0.183168

0.25 -4.896 0.65313 0.73a446 1.490103 1.267063 0.210081 0.1624630 -4.896 0.685123 0.765836 1.481566 1.287087 0.121722 0.093201

-0.25 -4.896 0.726156 0.707 1.542182 1.306153 0.117827 0.085408-0.5 -4.896 0.78884 0.799841 1.883499 1.530384 -0.03132 -0.01587

-0.75 -4.896 0.884321 0.784678 1.922391 2.078085 -0.77927 -0.28482-1 -4.896 1.019106 0.655669 2.272077 3.191467 -0.67551 -0.13602

-1.25 -4.896 0.846569 0.34376 2.641355 2.621281 -0.66567 -0.14038-1.5 -4.896 0.627775 0.48539 1.513604 1.485803 0.192735 0.125133

-1.75 -4.896 0.609753 0.585436 1.529772 1.327857 0.26045 0.18721-2 -4.896 0.616697 0.645592 1.495324 1.342328 0.165122 0.120114

58

II A.

58

V-t iI, ~.'

n. A 4, - -

- --. ' rl E

4 /V1.4 .'

o5

Pitchwise strvey at statiooi id

X(t) Y(i) Ii/Vrrf V/Vre f 1-tiurh V-turh ReyrnnIdrl Correl.refer refer Stress ('opfft.

2 -4.844 1.07927 0.691071 1.70938 2.788001 0.175375 0.053731.975 -4.844 1.187367 0.497841 3.30138 3.384047 1.44019 0.188222

1.75 -4.844 1.187167 0.497841 3.30138 3.384047 1.44019 0.1882221.625 -4.844 0.577508 0.328685 1.266654 1.977669 0.232642 0.135599

1.5 -4.844 0.568449 0.450116 1.300276 1.457942 0.132569 0.1021051.375 -4.8441 0.569421 0.518367 1.247914 1.316408 0.125447 0.1114981.25 -4.844 0.573569 0.563031 1.317631 1.238009 0.167099 0.149569

1.125 -4.844 0.577005 0.598154 1.354335 1.259156 0.17762 0.1520791 -4.8441 0.58466 0.626691 1.316982 1.238104 0.277691 0.159315

0.875 -4.8441 0.591686 0.651528 1.421663 1.298462 0.20271 0.1603360.75 -4.844 0.599771 0.672473 1.411686 1.197735 0.148799 0.128494

0.625 -4.844 0.609006 0.693352 1.542253 1.321696 0.154754 0.1108510.5 -4.644 0.62082 0.711766 1.534475 1.310233 0.184049 0.133661

0.375 -4.844 0.63455 0.728728 1.519501 1.234516 0.170355 0.1325990.2499 -4.844 0.649186 0.74463 1.482682 1.261745 0.127431 0.0994570.125 -4.8441 0.66519 0.75998 1.454505 1.277603 0.122416 0.096185

0.0001 -4.844 0.680677 0.77378 1.423782 1.221272 0.16884 0.141775-0.125 -4.844 0.699117 0.786315 1.466321 1.288817 0.18499 0.142925

-0.2501 -4.844 0.723446 0.799266 1.550707 1.289112 0.11641 0.085026-0.3751 -4.844 0.748298 0.807987 1.524747 1.349774 0.108343 0.076664

-0.5 -4.844 0.78575 0.817583 1.755867 1.459877 0.037677 0.021461-0.625 -4.844 0.829675 0.820534 1.750142 1.541152 0.114339 0.061895

-0.7501 -4.844 0.888058 0.812054 2.131969 2.158399 -0.63247 -0.20068-0.875 -4.844 0.980107 0.778259 2.326029 2.584094 -1.17601 -0.28567

-1 -4.844 1.087523 0.683 2.355792 3.890212 -0.99661 -0.15879-1.125 -4.844 1.164313 0.45077 4.517489 3.635272 2.47677 0.220208-1.25 -4.844 0.795877 0.345364 3.956939 7.094027 -4.37986 -0.22782

-1.375 -4.844 0.619863 0.373951 1.557443 1.789111 0.141239 0.074009-1.5 -4.844 0.601546 0.482327 1.528185 1.44206 0.223027 0.147768

-1.625 -4.844 0.597837 0.545238 1.65922 1.501836 0.200149 0.217276-1.75 -4.844 0.598954 0.589662 1.510196 1.374525 0.216697 0.252423

-1.875 -4.844 0.60419 0.623358 1.480675 1.420208 0.258699 0.179625-2 -4.844 0.608207 0.649622 1.460579 1.435412 0.215375 0.163q21

iI

L- I j....

60

S - -I . . . . 1 . .. m .'.. . -' 'l.* i

60

4.k

0.4

in 14'~ D

61i

a.,

ea

-^g flftIM

*SccC. ii W,**.*t c .ccacvc ciata - f

S. . . . .o p . . C. . o . . . . . . • 4 i a a c * * b a * C a n F 4 .W a f *. a. . . .o;

---- -- . -. . . ..-- - .... -- - - - -. c- t- 1 * t .. t fi ..l ....lS..... .3 . a. .... enact .... Sccb . ..... C *U... Oa..- se.. ..a ~ t!.. .*...... *.. *. *... ... i ....... l.i. ..*!n.

i Illpllt ll~lllIi nu l zma :niu mv~lll il• ticic s •

jil ... ~. ...... ..... ......-- 2..

1-HiSIZN 11101-20 *0 Cofoace n.eantSS*oi c acec=a.o S.ec caancf.C a..... e-eac.-.iS. .nIc.lIlia2..a a:.....~iI .. .oo. I .. ... 8 .ll ...

. .. .. ... -.... ....... a.. . . I . .... ... .....

nacc C Scftaofl,4-i Ile aa Ve . * c c J

62

~* * 3 e~ an.. .a annaanaa..Ab*a.

_ ~ ~ ~ ~ ... ....... ,....n.J - .. .. j... i

I. U

• V ) ef - I, I1.1 lr--- -ilieS) --- - -

0404 Wei ll

-0. 11 0.5/ ,

-• I .I -"-(VIl) 0. I I.'

63

" i i i I II I

B. HISTOGRAMS FROM STATION 2 THROUGH 15 FOR 50 DEG

FIlenme.: C:%%L9V2D94%•.511S2l.mll v rrof1IrflFo: 2 MOOe: :.10,:IA..,is.su0 -' _______......... ...___L._

7.501-

2.5W6 -

6.006 --.3.919 12.524 21. 239.S2 311.N f, 46.9

Uelocity (WO/) for Compnumnt U1

Powitlon (rec/in) (-1.1421, 6.8MO8. -4.7929) Velocity at crirsor 3.419'Velocity mean = 25.445 Percent at r.mranr - .80

Fltionam: C:NLD20D4•\6•i121.%32 I Proceg.,mrs: 2 iAe: ('qIu,,, foowm18.801-- #I _-

7.5458-

I 5.6i8 -

2. S2.5681 -

-4.193 19.671 43.535 67.399 91.261 II ;.Velocity (We/) for C'mponevmt 1

Position (rec/in) (0.6679, 0.00M6, -4.7928) VeinlcIt at ritr.orVelocity nann = 55.467 prremilt at CO....qr - t.f6

64

F ilenme,: C:%LD12D4%S5IISAI.*.31 I Processors: 2 Maoe: Cnincidenc

7.5W8

J5.M

2.588

-111.634 -68.6188 -9.725 41.M29 92.104 143.Uelocity (wa) for Component U

Position (rec/in) (-1.1331, 8.8868. 4.7906) Velocity at cursor = -8.'iUelocity mean = 15.759 Percent at cursor 8.96

Fl lenams: C:%LDU2D4%851182A1.*82 I Processors: 2 Hode: CoinclencIO.MO

1s.m1 -- I _________________

7 .

J5.M

2.5W8

-8.836 6.487 28.85 35.293 49.736 64.1Velocity (WS) for Component U

Position (roe/in) (-1.1233, 8.888., -4.7985) Velocitg at cursor -8.012Velocitg mean = 28.871 Percent at cursor = 8.88

65

FIlename: c:mLW2Imm2 1tz261.sg1 8 Procssors: 2 noae: Colocidnnc

7.588I 5.000 -

2.568

s,8m -.

-185.373 -63.296 -21.297 26.976 62.959 185.Uelocity (W'e) for Component U

Position (usc/In) (-1.8928. 6.6988. -4.7566) Velocity at cursor = 8.0C5UVlocity mean z -6.164 Percent at cursor 3.11

Filename: C:NLIlU2D4%Mll*2b1.s*I2 a Processors: 2 Itkde: Coincidonc

7.5W8

S5.8w8-

2.5W6

-122.596 -72.725 -22.869 26.99 76.841 126.Velocity (•e) for Component U

Position (res/in) (-9.3W36, 9.9 , -4.75M8) Velocity at cursor a 8.ztVelocity mean = 2.859 Percent at cursor = 8.95

66

Fllenam : C*\LDV2D"451182bl.u% I Processors: 2 lnude: (tiociardc

7.508-

2.58-

-124.665 -63.746 -2.11 .1.9 119.934 179.Uelocity Wmes) for Component II

P]wition (src/In) (-1.6321, 8.1l66, -4.75M1) Uelocitya at cursor -@.%'5Veloc•t• mean = 27.64? Percent at cursor = 0.33

Fiemsme: C'%ILJ92*4*5Is2I1.-s7 U Processors: 2 nolie: Coincidenc

7.5W-

Z.Sw -

6.6M8 4~idiIhL&J-38.622 -4.i89 22.604 49.218 75.831 182.

Velocity CW's) for Component U

Position (ruc/in) (-1.6162, 6.6M8, -4.7588) Velocity at cursor = O6.Velsocity mean = 35.911 Percent at cursor 8.11

67

FII.,wanms: C:%g.W23m4%9151R3. gall I Prucesso S: 2 tlkbAe: (:osiou:demu16.9" - ------ '--- a - -I*--* - -j- - - - -

7.5111

5.0101

0.11111 - -v - .- - -- ---47.5 -311.11M -14 611 1.v" 1. 34.velocityi (s/) for Co~mponent U

Poal1tion free/"in) t-8.9360, 01.91110. -4.S428) veoacity at cursor 60Velocity mean - -. S12 Pervent at cursor, - .23

VS esa..: C:%LINAMMI51233.03 a Processohs: 2 11040: ColnCIdAGOC

7.566 -

2.51101-

9.0111 -1 1 1 -- --132.926-t .9 -29.063 23. 61 75.2186 127.

Velocityg Wsn) for Co~mpommat UI

Poeltion drec/1 1s)(-. 1.611011. -4.S428) kUwincitt at cursor O- SVelocity man = -2.1158 Percent at cuso 9.75

Fil emme.: C:%LDV234%6512331 .4 0 Pr~oeuauur: 2 fMMO: Calic dmic

2.166

O.Me ------_____

-195.955 -336.715 -37.47S 41.S 121.915 2M6.velocity (Wa) for comnponent 11

Position (rec/ln) (-11.9631. 3.9661, -4.S429) Velocity at ctiuanr - .f~Vel~ocity nean = 9.149 Percent at cursor - 1.14

68

Filenme: C:%J.DV2DM%512S31.sall I Processors: 2 linde: Colucideticis. -a i -

7.580-

5.001-

2.568

-88.434 -22.222 35.996 94.283 152.415 210.Velocity (Cw's) for Component U

Position (inc/in) (-6.7575. 6.0061, -4.5428) Velocity at c:ursor A.111Velocity mean = 65.097 Percent at I.Ersor 8.08

FIIeuge : C:%L3DU34\I*M2831.esl 2 Processors: 2 linde: Coincidenc

7.580-

J 5.m00

2.566

-247.371 -128.994 -18.617 187.761 226.138 344.Uelocity (0/a) for Component U

Position (rec/,n) (-8.7811, 6.6801, -4.5429) Uelocity at cursor -9.142Ueloclty mean = 48.572 Percent at cursor 8.59

69

fIlemnea: C:%1.De'/3|4%W23S4.a7 8 Processors. 2 hoje: QilcIdenc18.008 .L I ....

2 5Sell -

eii, s - 1"4 . .

t -w.e8 -(35.318 2. 9. 46 157?.523 221.-e8ocity (-.8) for Component II

Position (rec/ibe) (-9.6339. 6.m0i. -4.292) Uelocity at cursor 6.131Velacity mean = 61.167 Percent at c6rsur RIM

Fllename: C:%L'V2,4%ffi2341.m% I Processors: 2 lkude. Coincidenc

7.S8l -

2.501 -

-237.210 -123.960 61.39 193 .6= Z16.429 379.velocity (we) tar Campomaet II

Position (rec/in) (-0.6490. 61.61 , -4.2920) Uelocity at ,:usrsur -. 1,.1oUelocity mean x 46.330 Percent at cursor 8 6.7S

Filename: C:%LW1ZD4'I452S41.861 I8 Processors: 2 ioloe: Coincidenc

7.5891 -

2.581

-237.097 -131.244 -25.391 80.462 106.315 292.Velooity (Cm/V) for Component to

nsitlion (rec/i,) (-8.7187. 9.811111. -4.2920) Velocity at cursor S.5S1Uelocity mean Z?.SS3 Percent at curor 1.40

70

Filmen : C:MLvM%"l2S51.s@1 a fracsor: Ha: Coi"ncidema

7.51111 -

15.•-

mSAW -

-162.696 -94.9561 -7.:6 66.531 168.271 256.eIoclltg (We) for COMPonEnt U

Position (.ci/lu) (-6.5469, 6.6631, -4.0429) Uilocity at cursor WL-Velocity um" x 36.661 Percent at cursor = 6.39

Manseama: C:\L3V23%551I225 I Processors: 2 Nods: CoIncidene

7.5661I 5.666

2.566

.m--214.1175 -169.994 -5S.&33 99.mN 284.869 399.

Ueloclty (We) for Component U

Position (ma/cn) (-6.4962, 6.U11, -4.0419) Velocity at cursor =UVIocity mean z 47.428 Percent at cursor 6.39

Filenase: c:%L3UM4%M651.218" el Po nrcoSm0": 2 "ode: ColCindeiuc

7.5368

I 5.666

SAM

2.536- 9A.-196.M5 -40.331 26.242 92.916 159.398 225.

Velocity (Wie') for Component II

Position (rec/In) (-8.4642. 8.1161, -4.6421) UVlocity at cursor = -5.15Uelocity swan a 59.52" Percent at cursor : 9.66

71

L. .

FIi|naae." C :\L|U234111%.612St,1..sil U Pr•*-•r 2 I.de : (C4|I•: Jde,Csumall L JI I

........-

2.510 -

-131."2 -(A6.942 9. •. w 151.72 .Uelocity (,'.) for Component II

Positian (pectln) (-6.3825. @I.O ., -3.7919) VeIocit y at cursor .Velacity aean a 45.139 Percent at curatsor 9 6.

Filename. C:%LiU2SI4%6Ml2S6l.s.62 P rocesors: 2 noMde: CnIn.idenc

7.566-

S 5.101111

4..

2.5111 .

-13.763 411M 2 9 143.957 265.Velocity (WO) for Component U

Position (rec/in) (-4.3725, 6.6I61, -3.792M) Uelncitg at "truar - .10,UeIncity mean = 51.662 Percent at cursor = 6O.

rIleneam: C:%L9W234.6517%61.s63 I Prrgwesors: 2 iJnd:c CJlinciJ4devIis.08 - ______________________ -L.-~.

7.566

-194.b25 -9.432 -4.239 90.955 16. 14" 21)5.Uel.cityt (Weu) for Componnnt 1I

Position (i.c/in) (-9.3614. .6IAMt. -3.7926) Velecitil at rur-ror a - filUnIn.Ity mean = 43.358 Percent at r.arunr - 0.49

72

FI Ifr.n•.s: C:\I.DqJ2D4%•.r, tZSS6 .fl4 U Ir'r w~•..rs 7 ? l,,, : 'l~:I•.

4.FA

5. f --

2.511 -

am88 - -~--.-----r- ----100.846 -43.76*1 21.316 t 6.300 151.46,6, 216(

Velocity ( "/') for Compolent II

Position (rec/in) (-F1.3494, @.NM8I, -1 7928) Velocity at cursor A.2lfiU eel a,.. "eon = 53.819 Percent at ctursor ".8M

Plifnneme: C:NLOU2D4$%KI52S61.s8 a Processorx: 2 hinse: CohInI.4lecIO.868 -I -. I ..

7.598 -

+, 5.60 -

2 .5 M*

. A-

-117.208 -47.131 22.946 93.623 163.1181 233.Uelocity (C/o) for Component ii

Position (rec/!n) (-0.2M08. 8.881@ . -3.7920) velocity at cursor = 0.3ZVelocity mean = 57.984 Percent at cursor 0.08

FIlenome: C.:LDU2D4\S5I2••I .s89 0 Pro.ce"sors: 2 tinod: CoIlnidntI c

7.58 -

5.8880116

2.58a -

8.8011 --M- '--- r --232.877 -119.982 -7.689 164.587 216.782 320.

Velocity (m'.) for Component II

Position (rec/In) ([email protected]". 8.9MI8. -3.7921) Velocitip at buirsnr - S.,UVlocity m•an = 4n.418 Percent at ervser-or - W!

73

Filename: C:\LD42D4\8512S .usl IU Processors: 2 Modne: Cnincridnec

7. SOS

2.500-

-106.136 -3F.7S0 28.619 9S.997 163.374 Z30.Velocityp (W/O) for Component U

Position (rec/in) (-0.2474, 8.6061, -3.7921) Velocity at cursor = -9.146Velocity mean = 62.309 Percent at cursor 8.09

Filename: C:%LDSJ2D4%•912S61.n22 I Processors: 2 "fide: Coincideoc16.989 - i p

7.58 -

4'

~ 5.006

2.590

9.999 - _______

4.765 31.188 57.670 94.153 11i .635 137.Velocity (Ws) far Component U

Position (rftc/in) (0.2541, 8.8001, -3.7920) Velocity at cursor 30.111

Velocity mt r = 78.912 Percent at cursor 8.00

74

F lnnai :.: cI.Du2D4%1r•dP?.e7R. 3sill I Prmennsnrma: 2 plhwe: C(•wI,.rId.6,-

18.4

SS"

/ .,2.500

--A17.215 -52.175 12.665 77.9%6 142.946 287.Velocity (ms/) rpo Component ii

Position (rec/In) (-0.1434, 9.9999. -3.2921) Velocity at cursor 8.1pUflocity %esn = 45.3m5 Percent at cursor 8.98

Filename: C:%LUUZD4%.5787I7.w62 8 Processors: 2 mod*: Col3CJdenc18.696 ' - i ____________

7.566 -

2.599

6.999 - ; 1--_; .......

-199.639 -163.691 -7.?44 983 194.158 211R.Uelocity (W's) for Copponent U

Position (rac/in) (-6.1335, 9.88M9. -3.2921) Ielocity at cursor B.-WAUelocity mean = 4.229 Percent at cursor 6.55

Piloeneae: C:%143U2D4%9M97S71.%I| I Processors: 2 Wode: Collilaenc

7.599

j5.960

2.599 -

-253.254 -132.254 -11.,4 169.746 238.746 35.Ueloclty (m/8) for Component U

Position (reciin) (9.172S. S.A6M9. -3.2921) Uelocity at cursor 0.414Ueolcity ean = 49.281 Percent at cursor - 8.72

75

lile"ame: C:%LDV234%ISO7\879.at7 I Proc.manre: 2 floas: CttleiA:Iantie.sss , L Jj_ __ _ ......-

7.5011 -

-56 .116 -6 .. 9 44.626 94.442 144.0541 1%.Ueloclty (in/) for Componelt to

rsltion (rec/in) (0.2141. 6.1011, -3.2921) Velucity at cursor 9.264Vvincity mean = 69.234 Percent at cursor - 0.01

FilenAnme: C:%L|W2DI4%\SR87l.sIR 9 Processors: 2 IUAC: Cnlncidenc16.8011 _ -A

7.S86 -

2.568! -

6i.66 -~ ------ ,T-- -,--- - -

-221.S24 -111.45 -1.310 169.604 218.754 3201.Uelocity (N'S) for Component U

Position (roc/in) (0.2598, 6.01111, -3.Z921) Uelocity at cursor [email protected].)Uelocity mean = 53.656 Percent at cursor = 1.14

llename: C:%LWM24%4WPS71.119 I Processors: 2 hode: Coiuvidmnc

ss.me - -

2.566

FoiSo~.c/n(S366-24.7M 58i 52. ICý7 98.465 1 28.873 1fi7.

Uelocity (W/e) for Component U

Position (roe/in) (11.3161, 94.1. -3.2921) Ueloclty at cursor = O.,,Uelocity mean = 71.261 Percent at cursorr 8.16

76

Filename: C:NLDU2D4%AF68S81.*B1 I Processors: 2 "ode: Coincidenc18.86 - - 1Lt i ..... .

7.566I --

40

2.508-

.I Ow1-86.947 -35.763 1S.422 66.616 117.791 160.

Velocity (wMs) for Component I!

Position (rec/in) (-9.83, 6.8688. -2.7928) Velocity at cursor -O.VVelocity mean = 41.014 Percent at cursor 9.00

Filename: C:%LDU2D4N85SM01.s82 I Processors: 2 Hods: CoinclAencisse . - I I L. -. 1 I

7.568-

4J 500

2.M66

-179.996 -94.104 -8.212 77.666 163!572 249.Velocity (WO") for Component U

Position (rec/in) (8.8816. 6.89M. -2.79M6) Velocity at curolr - .w)eUelocity mean = 34.754 Percent at coirsor = 0.59

77

II Fileumm: C:\l.DV2D.4N9SS8M8..*19 V Processors: 2 Mule: (Coinciaenc

7.580-

S.M

2.5011

-78.884 -19.864 39.M75 90.914 156.953 215.

Velocity (Wa') for Component 0

Position (rec/in) (9.4451, -9. -2.7920) Uelocity at cursor 9.21C

Uelocity mean = G8.545 Percent at cursor 0.88

Filenam: C*%LD2D4%BSMS9I.81U I Processors: 2 HnAe: Cohcildencls.Im - a _l~~~ ~~ ----I ....

7.58-

' 5....-

Z.596

-247.668 -127.722 -7.,. 11Z.176 232.123 352.Velocity (a's) for Component U

Position (rme/In) (0.3949. -8.661M. -2.7926) Velocity at cursor 0 9.021Ueloaity mean = 52.282 Percent at cursor ".is

78

Filiniamm C:%LW?84%NMl7S9t el9 Uperneemsors: 2 I1,es: Coni,.iA..uc

HA.m

-295.956 -178.275 -16.663 11.W57 M S.764I ?342.Velnc ityg (mao) fnr Cmpwonent 11

Position (rec.'in) (9.MM. -0.81611, -2.2978) Velocitye at curino, - eiUsiocttq ponme = 3264 Pamoverit at c..reetr - .68

FIlvename: C:%L9VMD%J158791.m1g I prncerm-otns: 2 rllru: Conigcaflotc:

7.SM -

-23.955 -123.27 -1.5!; 191.95 22.1.419 134.Veoacity (me) few. Componenit if

Positiffon (roe/in) (6.4894. -0.016111 -2.7920) Umlncitg at crormaruenicity~ mman a 73.26? Parrmnt at cumormre - .52

Fienm Cp~D4Re79..g U ntmnu 2 HneC79iju

Fiillaamu: c:%3duU•l4A597u~ull.Jd1 U Paqrf•nsor: 2. ttA.: r'nl-I,w-g n,w

7A1

?. rim -

-161.537 ? -9.016 -19.456 3. 7 174.518 196.V/elocity (We/u) ror Componmlst j

Position (rec/In) (0.129•. -0.1111. -1.7927) Uelocity at curnor - .9l.5-olocltI imean = 17.262 Precent at mirsrtr - 0.l90

Fllewan: c:%ld w2d4%WU7alO . n.t I Proceasorv: 2 lIloe: CnlnerlAnc

7.9;M -

-223.65B -115.542 -7.626 II 491 M .507 M1f.Usluocit (We/) fn. Cmqpomnrt U

Position (ree/In) (11.31M9, -8.8011. -1.7921) Velocity at cursor - 8S0&klslcmItg sman m 46.474 Percent at mrant .- CA

Filename: c:%ldv2d4%SW647.s1.s16 I Processors: 2 ",Je: ! Colnclmm

7.590

I I

-112.408 -43.759 2 93. 162.464 23t.

Uelcity (nWu) for C4nenent II

Position (veclhn) (B.1365, -9.00t1. -1.7921) Uelocity at cursor - .. IxUnlocity vman u S9.3761 Permct at r•,rwr - R.AW

80

Fil le".aus c :'%ld2d4.%3;7w111 .wrn g l,7*~s ~~

7s. -M

2.66a-

-152.669 -84.646 -16.*6*4 17.27 S. 197.Uelaaftio (We) for COMPO"otet U

Foitition (wc'n 613 .666. -1.29m6) nwul"Cty at Co~rmvr-UflaCltW meals = 17.367 Fnrieent At cte.oran - .39

IFIlanane' c:'ddv2d4\35WsallI.m16 I Proc.esaors: 2 flnae: CniintrEdnc

-213.932 -169.678 -6.36 9?AFS; 7M1.417 1"3.Uelarltja (W*-) for. CompamwIn to

Posiltion (rec/in) (3.4594, .hl -1.2971) Uelorlt' *t cursor -~ llUelocltWg mean a 4S.363 Part,.nt at .ner fl1.4'

Filename: c:NiJ,214%AMU?*111.al7 3 pware..esnrt: 7 &SAO! Co I t-.4#dtnc

7.569

2.5W9

-7.6.14 -t7.785 36 794 14".721 1')l.UIRIOCItY (WO.) fur CAoMPonent 11

feisition (vec/in) (3.9111. 8.1696 -1.29M1) Uulocoty at cursor- Ul'Velocnity Omean 61.MAN peircet at mirner - 1.6

81

2. 54111

-127.987 -71.613 -1512 41.74 97.WJAV 1";..eoraityg ("/a) for Cosspenvelvet If

Poviltion (reci'I,) (6.1238. 6l.66U -0.79211) Velocity at evervanr .1Velcityj swam - M3.ERN p.,u~cent at reruu.,r -~ir

FIPauaas c:%Id,,2d4%8Ws?121.u19 I I'roc..nur: 2 8ndAc: CUISIIApac16.11111 - a________ I'---- I---* ------ -I--- - -

7.586

-149.121 -67.223 14. 74 16 . 1 MAWI(. MA.N.Velocity (a/*a) for Cenweennet if

Petiltion (reecdix) (6.77. 8.00M6. -0.797A) Uelocltq at everar 9.25)Velocity smalla 55.623 Paepnnt att g.mrinh. If 8.9

FTlen-a~ -na- --- a-' MM4 S A7 a 12 .126 U Prnecasors: 7 flnie: (oI1WAldrnmc

7.568

4.ý

2.566

-SI.794 -5.116 411.T~I I 71 134 .646 Infi.Velocity (eu) for Cm~nueflvet 11

Pasgitia. (wuc.'in) (8.632S. 6ý 86 6 .67976) Volocite; at regretter - .0"-

Velocity swan 2 64.7"5 Pre cet at r."ruarwr- .

82

Fli.nvwao* c:NIduZd4MF0597*l3l.wtI . U ii- egns: 2 flnAe "IwJ.

2..W6

-175.449 -6i9.46? -13.566 42.35% 98.276. 154.Velocityi (rn) for Component U

Position freclin) (9.2739, 9.881111, -. 9-S") Velocityi at cursonr 6.xVelocity mean u 14.3114 ?tbreent at curoran- 9.29

Fileonae: c*%Idu2J4%M857a13l.sA2 I rrv~~n* 2 ltne*e CovuIKw-Idnc

7.C99

40

-259.10" -73.79.r 1 1.476 96.73 M ~ 11.9"' 26i7.Velocity (Wa/) fnr- Componont It

Position (rec/in) (6.6-25, 6.806M, -0.4999) UeancmIty at curmor - .- wVelocity mean = 4.190 Pner,,ant at eternor 0 .47

Filenome: c:%Idv2A4%9567u31.*21 I Procosgars: 2 *tAe* ConEwlrnlnc18.11411111__ __ _ _ ~- - - -

-146.561 -65S.143 16i.2 in -7.495 179.114 MR0.Velocity (We/) for Comtpovwnt U

Position (wee/in) (3.6933. S.666, -6.4999) Velocity at rursor - .151Unloritg mean = 696Pennant at cursor 0.13t

83

Flinnams. c-'\1du214\WvAhtwtl.l ql v Prr. ."nrs 7 "Mn.e! .I.Ir

PnlIo r. /n - 0181 1.M. --. Veoit Itcro F#

7 .SM -

6 .666 -I - I --- I---- -

-154.1S4 -71.1629 -1.407 39.09 1178. 14 M~.Uelocity (m/9), for Component 10

Position (rec'ln) (6.16m1 6.061111 -0.2566) Velocity at .curxnr - .1ULcInft~g mean 15S.469 Percent at c,,r"nr 0.462

Filenaume: c:Nl~d.44%656fls4I..21 I Pru.esrsors: 2 fln~e: EninclAun.c16.ow6 - a - II --- - - - - -I -

7.SM1

-15.SI4 719.322 816396 7.15 15.17 44~Velocity (M/ia) for CAmpo~net If

Pouition (rue/in) (9.76S,5 11.06100, -6.2551) Velocity~ at c~ursor -8.4Velocity mean a53.190 Percent at r~ursnr ".910

484

FI'Ilgame. C\Idu7d4\R!UiIxls5.wn1 8 Processors: 2 ffnAe: C-11sIw pit.,c

7.%0"

S.S W

0.

2.'6

- 124.6M6 -68.296i -11.964 44.357 1 M.r,79 Ir.7.Velocityj (rn/a) for Conponent to

Position (roe/in) (10.18M3 S.OM6, 6.161011) Velocity at cursor- goVelocity swan = 116.194 Pe*.onnt at cursonr 1$ .47

Ftwn:c:,%iavzd4%#566u151.*z26 r.,,.-,ssors: 2 6nde, CoI~xllelmcemme - I -- - A

7.91111

-143.555S -68.9827 1.916 911.6,13 178.371, 2¶;6.Velocityg (rn/) for Crm~panut If

Position (pee/in) (11.61113. 11.11011111.66t Unincitt at c'u~rsorVelocity 9men m S13.??? Percen~t at mr'uoqr - (.33

rilenArne: C!IdivZA4'M656sl5.x21 2 Prcsos 2 I`In~e: Coin.nIArnmln.eis -A. ~- I -

7.66 S

129.8 -S5.1111 19.A76 93. 156 6711 241.Velocity. (rn/s) far Componeant If

Position (rec/le) (0.6719, 8.6866, 3.61) alncita at Curnw.v -

Ufnlt.itt mean = 56.7.%Z Peremnt at c-urrnr 6.66

I- 85

C. HISTOGRAMS FROM STATION 16 THROUGH 19 FOR 50 DEGFilename.: c:\Idu~d4%9514w161 .s1fl 1 ,e..,.r~ 7 IeA'Eeu.~'w

7.%W8

5.0m"A..

2.5m8

38.86 3 49.8.3______ 62.912 76.792 941.677 11

Velticity (%/s) roar Coinisomst I

Position (rec/in) (2.8749, 8.861M, 0.2626) Veinclty at cier-m. 35.u5SVelocity moan 269.852 Prt-Purnt at ventrir - iiFMl

F ilestapm: c :\ ldvZd4\S514. 161.%78 Prntqea-,ws: 2 lh '11C I W. I4nmot,

7.508

I .8Me -

-145.928 -M0.744 8. 411 85.6725 16?.IW9 Z.3).Velocity ("/as) for Ctmpostevit 11

Position (rec/in) (0.6258, 8.861.I 8.2620) Veocinty at (12nr si. 29?Velocity mean = 47.8326 Perceist at t-tirmor 9.s55

86

Filaname: c:%%1Ju2d4%6514w161.*32 I Processors: 2 ttods: Coinacidenc18.ms8- I I I

7.586

J5.-2.568

-116.366 -63.254 -10.143 42.969 96.881 149.Velocity in/=s) for Component 11

Position (rec/in) (8.1258, 6.8881, 8.2626) Velocity at cursor 1.6Velocity mean = 16.427 Percent at cursor 6 .68

Filem,..: c:%31u2d4%8514sI61.*34 I Processors: 2 "ode: coincideoc

7. SM

J.Om

31.540 47.282 62.956 79.510 94.164 189.Velocity Wis) for Component U

Position (rec/in) (-8.1256, 8.6881, 8.2628) V~elocityj at cursor 31.S48lVelocity mean = 76.663 Percent at cursor 8.no

87

Fliename: c:\ldv2d4%Ml514s1?.sZ? I Processors: 2 Mode: Coincidoem1i .m -; _________ 1. __I__

7.506 -

2.588 -

-148.979 -63.2M8 14.!4m 92.368 178.139 247.Velocity (rnX) for Component It

Position (rec/in) (8.7588, O.861, 0.3628) Velocity at cursor = 0.016Velocity mean = 53.464 Percent at cursor = 6.86

Filenam: c:%Idu2d4%k614s171.s28 I Processors: 2 Node: Coincidenc168. 68 --- t I__ __ _ _ .. . . - -..... .

7.588

2.51W

-152.290 -72.464 7.378 87.284 167.030 246.Velocity (Wrs) for Component 11

Position (rec/in) (8.6250, 8.8881, 8.3626) Velocity at cursor = .i(,.Velocity nean = 47.268 Percent at cursor 0.42

88

Filename: c:%1dv2d4%6514sll.u33 I Processors: 2 Mode: Coincidleac

19.1911- I t I

7.5W0-

1 5.000

a.6w

2.581

o.es - ____

-•6.453 -44.882 -3.311 39.266 79.831 121.Velocity (0r/) for Component U

Position (uec/in) (-0.11111. 6.991. 0.3620) Uelocity at cursor = -e.114Uelocity mean = 17.474 Percent at ceursor = 9.16

Filename: c:%ld2d4%9514*171..34 I Processors: 2 "ole: Coincidenc

7.5111

'5.00-

2.58 -

8.99 -. 1__ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ __

36.811 46.515 62.218 77.922 93.626 109.Velocity (rn/8) for Component U

Position (rec/in) (-4.1258. 9.9961, 8.3626) Velocity at cursor = 39.85Velocity man = 7h.W7 Percent at cursor = 8.9

89

Filenamme: . '%ldw2d4%14wI8.s27 8 Processors: 2 "ode: Coincidenclls.Om - ____________ ______________

7.5W8-

S.8

2.888- U

-122.616 -S1.842 18.932 89.787 166.481 231.Velocity (orn/) for Component Ul

Position (rec/in) (8.7588, 6.8888. 0.6779) Velocity at cursor = -O.Z jVelocity mean = 54.324 Percent at cursor 8.8M

Filename: c:%ldu2v4%M' 14*1G1.s20 I Processors: 2 nOde: CoInclIdeon

0.61180-I

2.5M-

8.O08 -

-146.848 -69.7 7. 2 84..63 161.833 239.Velocity (a."s) for Component U

Position (rec/in) (8.i256, S.8118, 8.6779) Velocity at cursor = -0.08Velocity mean = 45.S57 Percent at cursor 8.23

90

Filename: c:\ldv2d4M514su1t.*3Z I Processors: 2 "ode' Coincidem•10s.m - t t_______ ___

7.509 -

2.58 -

-92.326 -49.116 -3.907 49.393 84.513 128.Uelocity (Ck/s) for Cmponent II

Position (rec/in) (9.125, O.9811M, 9.6779) Velocity at cursor = -8.10Vellocity mean = 18.190 Percent at cursor 0 6.49

Filename: o:\ldv2d4%MM14s181.m33 U Processors: 2 Node: coincidenc1.669 I we -

7.598

S5.0--

2.59 -

-88.766 -38.922 16.922 68.767 118.611 166.Uelocity (ma/s) for Component U

Position (rec/in) (-6.698I, ,66S69, 0.6779) Velocity at cursor -- S.Velocity mean = 35,993 Percent at cursor 9.98

91

Filename: c:%IwZd4%M64st191.s2n I Prac.smors: 2 "#)do: CoinciJenc10.0" - I _ i ... .. .....

?.568-

IS. Ow

2.5W8-

O.Om -. 1 _ T-12• .438 -59.e15 S.AW 79.432 149.055 219.

Uelocity (Cm/a) for Component II

Position (rec/In) (M.62S, 0.M888. 1.6620) Uslocit, at cutrsor -R.z&bVelocity mean = 44.614 Percent at cotrsor = 0.60

Filename: c:%ld2d4%M14x191.e29 I PrnmoR.srU: 2 Mllode: Coln.ldmnc18.88 - 1 . -. I .... .. .

7.568-I 5.686-

2.598

-126.686 -60.601 5.. 96 71.572 137.659 283.Uelocity (m/a) for Component II

Position (rec/in) (8.4999 M, 8.68M 1.0626) Velocity at cursor = 8,83UVlocity mean = 39.5 Percent at cirsor = 0.29

92

F lename: c:\Id¶,2d4%hS14ulgl.e31 3 Processors: 2 lOtAe: Ce1ln1InAnicIe.eee - !___ _____ ____ ___

7.58 -

S.D

2.588

-182.876 -51.346 -0.615 58.115 100.845 151.Velocity (n/*) for Component II

Position (rec/in) (8.258, 6.08888, 1.0620) Velocity at cursor 0.0Uelocity mean = 24.759 Percent at Cursor = 0.33

Filname: c:%Idv2d4%M14el9l.u32 8 Processors: 2 Hnde: Coinc IeAncie.mlO -- ! ______a___

7.508-

J 5.808 -

2.5 -

-84.733 -48.661 3.i11 47.483 91.555 135.Uelocity (WO) for Component II

Position (rec-in) (0.1250, 8.66, 1.8628) Velocity at cursor nD.ngUslocity mean - 25.447 Percent at cursor 8.86

93

D. TABLE OF SHIFT SELECTION AT PLUS OR MINUS 5MHZ AND LDV

MEASUREMENTS.

BLUE BEAM (NORMAL FLOW), FRINGES DIRECTION -, FLOW DIRECTION -,

SHIFT FIND SOFTWARE VELOCITY M/S FREQUENCY MHZ

0 0

UP 5 0 22.832 5.128

DOWN 5 0 21.501 4.702

UP 5 +5 0.492 5.213

DOWN 5 +5 -1.689 4.639

UP 5 -5 45.031 5.063

DOWN 5 -5 44.823 4.889

BLUE BEAM (REVERSE FLOW), FRINGES DIRECTION - FLOW DIRECTION 4-

SHIFT FIND SOFTWARE VELOCITY M/S FREQUENCY MHZ

0 0

UP 5 0 20.597 4.622

DOWN 5 0 24.232 5.422

UP 5 +5 -2.253 4.543

DOWN 5 +5 1.710 5.363

UP 5 - 5 43.005 4.576

DOWN 5 - 5 46.660 5.347

This two tables shows that with the shifter at UP 5MHz and FIND software at +5 it ispossible to measured a positive and negative velocity (normal and reverse flow).

94

GREEN BEAN (NORMAL FLOW), FRINOES I)IRECTI( IN ., H OW DIRECTIONS I

SHIFT FIND SOFTWARE VELOCITY M/S FREQUENCY MHZ

0 0 2.389 0.481

UP 5 0 21.795 4.549

DOWN 5 0 25.433 5.284

UP 5 +5 -2.116 4.682

DOWN 5 +5 1.724 5.350

UP 5 -5 45.805 4.401

DOWN 5 -5 49.137 5.392

GREEN BEAN (REVERSE FLOW), FRIN(GIES DIRECTI )N F, 10W DIRECTIONS •,

SHIFT FIND SOFTWARE VELOCITY M/S FREQUENCY MHZ

0 0 6.077 1.282

UP 5 0 29.226 6.136

DOWN 5 0 17.658 3.725

UP 5 +5 5.025 6.185

DOWN 5 +5 -6.355 3.672

UP 5 - 5 53.047 6.185

DOWN 5 - 5 41.470 3.757

This two tables shows that with the shifter at DOWN 5MHz and FIND software at +5

it is possible to measured a positive and negative velocity (normial and reverse flow).

L9

E. TUNNEL CALIBRATION DATA

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC.C(.Cccc`c((..c.(.(.CCCC CC OUTPUT FROM PROGRAM CALIBRATE CC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(('(`( C(,C(`CCc(`cc(-c(U('(`

LEAST SQUARES STRAIGHT LINE CURVE FIT IS USEDTO DETERMINE TUNNEL CHARACTERISTICS AT DIFFERENT SPEEDS

NEWTON S METHOD IS USED TO DETERMINE THE REFERENCE VEI)CITYFROM THE RECORDED AMBIENT PRESSURE AND TUNNEL PLENUMPRESSURE AND TEMPERATURE

BEGIN DETERMINING TUNNEL CHARACTERISTICSFROM THE FOLLOWING MEASURED VALUES

AXIAL VEL. TANGENTIAL VEL. AMBIENT PRESS. PLENUM PRESS. PLENUM TEMP.M PER SEC M PER SEC. INCHES MERCURY INCHES WATER DEG. C.

19.9600 24.6660 29.8941 2.0000 17.777832.0520 39.2970 29.8941 4.7000 18.055639.7110 48.1900 29.8941 7.3000 18.888946.6360 55.9700 29.9841 10.0000 19.444450.9830 61.5980 29.9841 12.0000 20.000054.9530 66.2070 29.9841 14.1000 20.5556

CALCULATED VALUES FOR THE TUNNEL CONFIGURATION

TOTAL VALOCITY MACH NUMBER MACH NUMBER FUNCT. PRESSURE RATIO

0.317303192E+02 0.414931434E-01 0.599998018E-02 -0.19331]650EI030.507107968E+02 0.662619212E-01 0.152081979E-01 -0.816858085E+020.624439918E+02 0.815012269E-01 0.228644274E-01 -0.522360685E+020.728529648E+02 0.949967822E-01 0.309775796E-01 -0. 379793300E4020.799598643E+02 0.104164963E+O0 0.369544196E-01 -0.314827750Ef020.860418448E+02 0.111981989E+00 0.425268503E-01 -0.266449149EI02

CALLING LEAST SQUARES SUBROUTINETO DETERMINE THE PRESSURE RATIO AS A FUNCTION OF MACH NO. PARAM

PRESSURE RATIO - At * ANUX + AO

MATRIX EQUATION

0.60E+02 -0.42E+03 AO 0.15E+00-0.42E+03 0.50E+05 Al -0.71E+01

A1 - 0.19109469172E-03 AO = 0.39221597704E-01

REFERENCE CONDITIONS FOR EACH RUNAMBIENT PRESSURE PLENUM PRESSURE PLENUM TEMPERATURE RUIN NAME

INCHES MERCURY INCHES WATER DEGREES CELSIUS

96

29.8737 12.0000 18.8889 0514sll.PRN29.8737 12.0000 20.0000 0514slal.PRN29.8684 12.0000 22.7778 0514slbl.PRN29.8481 12.0000 22.2222 0514slcl.PRN29.8481 12.0000 22.7778 0514sldl.PRN29.8481 12.0000 22.7778 0514slel.PRN30.0110 12.1000 21.1111 0511s21.PRN30.0110 12.1000 21.1111 0511s2al.PRN30.0110 12.1000 22.2222 0511s2bl.PRN29.9702 12.2000 20.5556 0512s31.PRN29.9906 12.2000 21.1111 0512s41.PRN29.9906 12.1000 21.1111 0512s51.PRN29.9906 12.1000 21.1111 0512s61.PRN29.9092 12.1000 22.2222 0507s71.PRN29.9295 12.2000 22.7778 0508s81.PRN29.9295 12.2000 22.7778 0507s91.PRN29.9295 12.2000 22.7778 0507sl0I.PRN29.9295 12.2000 23.3333 0507s111.PRN29.9499 12.2000 23.3333 0507sl21.PRN29.9499 12.2000 23.3333 0507s131.PRN30.0110 12.0000 21.1111 0508s141.PRN29.9906 12.0000 21.6667 0508s151.PRN29.8684 12.0000 21.6667 0514s161.PRN29.8684 12.0000 22.2222 0514s171.PRN29.8684 12.0000 22.2222 0514s181.PRN29.8684 12.0000 22.2222 0514s191.PRN

I= 1PRESSURE RATIO = -31.36317 MACH NUMBER PARAMETER 0.4151E-01RUN NAME - 0514a11.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. = 0.104363 ERROR TERM = -0.6401E-02ITERATION NU1BE9R 2 MACH NO. PARAM. - 0.110764 ERROR TERM - 0.1655E-03ITERATION NUMBER 3 MACH NO. PARAN. - 0.110598 ERROR TERM - 0.5999E-07ITERATION NUMBER 4 MACH NO. PARAM. - 0.110598 ERROR TERM = -0.1731E-10

VREF - 84.73722268314

I- 2PRESSURE RATIO - -31.36317 MACH NUMBER PARAMETER = 0.4151E-01RUN NAME - 0514s1aI.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. = 0.104165 ERROR TERM = -0.6610E-02ITERATION NUMBER 2 MACH NO. PARAM. = 0.110775 ERROR TERM = 0.1765E-03ITERATION NUMBER 3 MACH NO. PARAM. = 0.110598 ERROR TERM - 0.7161E-07ITERATION NUMBER 4 MACH NO. PARAM. - 0.110598 ERROR TERM = -0.2066E-10

VREF - 84.89826103496

1 3

97

PRESSURE RATIO = -31.35743 MACH NUMBER PARAMETER = 0.4151E-01RUN NAME - 0514slbl.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. = 0.103675 ERROR TERM = -0.7129E-02ITERATION NUMBER 2 MACH NO. PARAM. = 0.110804 ERROR TERM = 0.2053E-03ITERATION NUMBER 3 MACH NO. PARAM. - 0.110598 ERROR TERM = 0.1066E-06ITERATION NUMBER 4 MACH NO. PARAM. - 0.110598 ERROR TERM = -0.3074E-10

VREF - 85.29953401308

I - 4PRESSURE RATIO - -31.33544 MACH NUMBER PARAMETER = 0.4151E-01RUN NAME - 0514slcl.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. - 0.103772 ERROR TERM - -0.7025E-02ITERATION NUMBER 2 MACH NO. PARAM. - 0.110798 ERROR TERM - 0.1994E-03ITERATION NUMBER 3 MACH NO. PARAN. - 0.110598 ERROR TERM - 0.9887E-07ITERATION NUMBER 4 MACH NO. PARAM. - 0.110598 ERROR TERM - -0.2852E-10

VREF - 85.21942480550

I= 5PRESSURE RATIO - -31.33544 MACH NUMBER PARAMETER - 0.4151E-01RUN NAME - 0514sldl.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. - 0.103675 ERROR TERM - -0.7129E-02ITERATION NUMBER 2 MACH NO. PARAN. - 0.110804 ERROR TERM - 0.2053E-03ITERATION NUMBER 3 MACH NO. PARAM. - 0.110598 ERROR TERM = 0.1066E-06ITERATION NUMBER 4 MACH NO. PARAN. = 0.110598 ERROR TERM = -0.3074E-10

VREF - 85.29953401308

1, 6PRESSURE RATIO - -31.33544 MACH NUMBER PARAMETER = 0.4151E-01RUN NAME - 0514slel.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAN. = 0.103675 ERROR TERM = -0.7129E-02ITERATION UMBER 2 MACH NO. PARAM. - 0.110804 ERROR TERM = 0.2053E-03ITERATION NUMBER 3 MACH NO. PARAN. - 0.110598 ERROR TERM = 0.1066E-06ITERATION NUMBER 4 MACH NO. PARAN. = 0.110598 ERROR TERM = -0.3074E-10

98

VREF - 85.29953401308

1- 7PRESSURE RATIO - -31.24322 MACH NUMBER PARAMETER = 0.4153E-01RIJN NAME - 0511s21.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. - 0.103968 ERROR TERM = -0.6846E-02ITERATION NUMBER 2 MACH NO. PARAM. - 0.?'0814 ERROR TERM - 0.1893E-03ITERATION NUMBER 3 MACH NO. PARAM. - 0.1-0625 ERROR TERM - 0.8621E-07ITERATION NUMBER 4 MACH NO. PARAM. = 0.110625 ERROR TERM = -0.2489E-10

VREF 85.07919440271

1= 8PRESSURE RATIO - -31.24322 MACH NUMBER PARAMETER 0.4153E-01RUN NAME = 0511s2al.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. - 0.103968 ERROR TERM = -0.6846E-02ITERATION NUMBER 2 MACH NO. PARAN. - 0.110814 ERROR TERM - 0.1893E-03ITERATION NUMBER 3 MACH NO. PARAM. - 0.110625 ERROR TERM = 0.8621E-07ITERATION NUMBER 4 MACH NO. PARAM. - 0.110625 ERROR TERM = -0.2489E-10

VREF - 85.07919440271

I - 9PRESSURE RATIO - -31.24322 MACH NUMBER PARAMETER 0.4153E-01RUN NAME - 0511s2bI.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. = 0.103772 ERROR TERM = -0.7053E-02ITERATION NUMBER 2 MACH NO. PARAM. - 0.110826 ERROR TERM - 0.2009E-03ITERATION NUMBER 3 MACH NO. PARAM. - 0.110625 ERROR TERM = 0.1007E-06ITERATION NUMBER 4 MACH NO. PARAM. - 0.110625 ERROR TERM - -0.2908E-10

VREF - 85.23966280667

I = 10PRESSURE RATIO = -30.93546 MACH NUMBER PARAMETER = 0.4155E-01RUN NAME - 0512s31.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. - 0.104066 ERROR TERM = -0.6770E-02

S~99

ITERATION NUMBER 2 MACH NO. PARAM. - 0.110836 ERROR TERM = 0.1850E-03ITERATION NUMBER 3 MACH NO. PARAM. - 0.110651 ERROR TERM = 0.8108E-07ITERATION NUMBER 4 MACH NO. PARAM. - 0.110651 ERROR TERM = -0.2344E-10

VREF - 85.01903047416

I = 11PRESSURE RATIO - -30.95720 MACH NUMBER PARAMETER 0.4155E-01RUN NAME - 0512s41.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. - 0.103968 ERROR TERM = -0.6874E-02ITERATION NUMBER 2 MACH NO. PARAM. - 0.110842 ERROR TERM = 0.1908E-03ITERATION NUMBER 3 MACH NO. PARAM. - 0.110651 ERROR TERM = 0.8790E-07ITERATION NUMBER 4 MACH NO. PARAM. - 0.110651 ERROR TERM = -0.2540E-10

VREF - 85.09939011711

I - 12PRESSURE RATIO = -31.22131 MACH NUMBER PARAMETER 0.4153E-01RUN NAME - 0512s51.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. - 0.103968 ERROR TERM - -0.6846E-02ITERATION NUMBER 2 MACH NO. PARAN. - 0.110814 ERROR TERM - 0.1893E-03ITERATION NUMBER 3 MACH NO. PARAN. - 0.110625 ERROR TERM - 0.8621E-07ITERATION NUMBER 4 MACH NO. PARAN. - 0.110625 ERROR TERM - -0.2489E-10

VREF - 85.07919440271

I - 13PRESSURE RATIO - -31.22131 MACH NUMBER PARAMETER 0.4153E-01RUN NAME - 0512s61.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAN. - 0.103968 ERROR TERM = -0.6846E-02ITERATION NUMBER 2 MACH NO. PARAM. - 0.110814 ERROR TERM = 0.18938-03ITERATION NUMBER 3 MACH NO. PARAM. = 0.110625 ERROR TERM - 0.8621E-07ITERATION NUMBER 4 MACH NO. PARAM. - 0.110625 ERROR TERM - -0.2489E-10

VREF - 85.07919440271

I - 14PRESSURE RATIO = -31.13385 MACH NUMBER PARAMETER = 0.4153E-01RUN NAME - 0507s71.PRN

100

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. - 0.103772 ERROR TERM = -0.7053E-02ITERATION NUMBER 2 MACH NO. PARAM. - 0.110826 ERROR TERM - 0.2009E-03ITERATION NUMBER 3 MACH NO. PARAM. - 0.110625 ERROR TERM = 0.1007E-06ITERATION NUMBER 4 MACH NO. PARAM. - 0.110625 ERROR TERM = -0.2908E-10

VREF - 85.23966280667

I - 15PRESSURE RATIO - -30.89209 MACH NUMBER PARAMETER = 0.4155E-01RUN NAME - 0508s81.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. = 0.103675 ERROR TERM - -0.7184E-02ITERATION NUMBER 2 MACH NO. PARAM. - 0.110859 ERROR TERM = 0.2084E-03ITERATION NUMBER 3 MACH NO. PARAM. - 0.110651 ERROR TERM = 0.1105E-06ITERATION NUMBER 4 MACH NO. PARAM. = 0.110651 ERROR TERM = -0.3193E-10

VREF - 85.34004386482

I - 16PRESSURE RATIO - -30.89209 MACH NUMBER PARAMETER = 0.4155E-01RUN NAME " 0507s91.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. = 0.103675 ERROR TERM = -0.7184E-02ITERATION NUMBER 2 MACH NO. PARAM. - 0.110859 ERROR TERM - 0.2084E-03ITERATION NUMBER 3 MACH NO. PARAM. - 0.110651 ERROR TERM - 0.1105E-06ITERATION NUMBER 4 MACH NO. PARAM. - 0.110651 ERROR TERM - -0.3193E-10

'ZREF = 85.34004386482

I - 17PRESSURE RATIO - -30.89209 MACH NUMBER PARAMETER 0.4155E-01RUN NAME - 0507sa01.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. - 0.103675 ERROR TERM - -0.7184E-02ITERATION NUM4BER 2 MACH NO. PARJAH. = 0.110859 ERROR TERM = 0.2084E-03ITERATION NUMBER 3 MACH NO. PARAM. - 0.110651 ERROR TERM = 0.1105E-06ITERATION NUMBER 4 MACH NO. PARAK. - 0.110651 ERROR TERM = -0.3193E-10

VREF - 85.34004386482

I "18

101

PRESSURE RATIO - -30.89209 MACH NUMBER PARAMETER = 0.4155E-O1RUN NAME - 0507s111.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER I MACH NO. PARAM. - 0.103578 ERROR TERM = -0.7288E-02ITERATION NUMBER 2 MACH NO. PARAM. - 0.110865 ERROR TERM - 0.2145E-03ITERATION NUMBER 3 MACH NO. PARAM. - 0.110651 ERROR TERM = 0.118SE-06ITERATION NUMBER 4 MACH NO. PARAM. - 0.110651 ERROR TERM - -0.3432E-10

VREF - 85.42010151240

I - 19PRESSURE RATIO - -30.91383 MACH NUMBER PARAMETER = 0.4155E-01RUN NAME - 0507s121.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAH. - 0.103578 ERROR TERM = -0.7288E-02ITERATION NUMIBER 2 MACH NO. PARAM. - 0.110865 ERROR TERM - 0.2145E-03ITERATION NUMBER 3 MACH NO. PARAM. - 0.110651 ERROR TERM1 - 0.1188E-06ITERATION NUMBER 4 MACH NO. PARAH. - 0.110651 ERROR TERM = -0.3432E-10

VREF - 85.42010151240

I - 20PRESSURE RATIO - -30.91383 MACH NUMBER PARAMETER = 0.4155E-01RUN NAME - 0507s131.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAN. - 0.103578 ERROR TERM = -O.7288E-02ITERATION NUMBER 2 MACH NO. PARAM. - 0.110865 ERROR TERM - 0.2145E-03ITERATION NUMBER 3 MACH NO. PARAM. - 0.110651 ERROR TERM - 0.1188E-06ITERATION NUMBER 4 MACH NO. PARAM. - 0.110651 ERROR TERM = -0.3432E-10

VREF - 85.42010151240

I - 21PRESSURE RATIO - -31.51192 MACH NUMBER PARAMETER 0.4151E-01RUN NAME - 0508s141.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAN. - 0.103968 ERROR TERM = -0.6818E-02ITERATION NUMBER 2 MACH NO. PARAM. - 0.110786 ERROR TERM = 0.1878E-03ITERATION NUMBER 3 MACH NO. PARAN. - 0.110598 ERROR TERM = 0.8454E-07ITERATION NUMBER 4 MACH NO. PARAM. - 0.110598 ERROR TERM = -0.2439E-10

102

VREF - 85.05899450070

I - 22PRESSURE RATIO - -31.48982 MACH NUMBER PARAMETER - 0.4151E-01RUN NAME " 0508s151.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAN. - 0.103870 ERROR TERN - -0.6922E-02ITERATION NUMBER 2 MACH NO. PARAN. - 0.110792 ERROR TERM - 0.1936E-03ITERATION NUMBER 3 MACH NO. PARAM. - 0.110598 ERROR TERM = 0.9153E-07ITERATION NUMBER 4 MACH NO. PARAM. - 0.110598 ERROR TERM = -0.2640E-10

VREF - 85.13925466046

I " 23PRESSURE RATIO - -31.35743 MACH NUMBER PARAMETER = 0.4151E-01RUN NAME - 0514s161,PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAN. - 0.103870 ERROR TERM = -0.6922E-02ITERATION NUMBER 2 MACH NO. PARAM. - 0.110792 ERROR TERM = 0.1936E-03ITERATION NUMBER 3 MACH NO. PARAN. = 0.110598 ERROR TERM - 0.9153E-07ITERATION NUMBER 4 MACH NO. PARAM. - 0.110598 ERROR TERM = -0.26403-10

VREF - 85.13925466046

I - 24PRESSURE RATIO - -31.35743 MACH NUMBER PARAMETER = 0.4151E-01RUN NAME - 0514s171.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. - 0.103772 ERROR TERM = -0.7025E-02ITERATION NUMBER 2 MACH NO. PARAM. - 0. 110793 ERROR TERM - 0.19941-03ITERATION NUMBER 3 MACH NO. PARAM. - 0. 110598 ERROR TERM - 0.9887E-07ITERATION NUMBER 4 MACH NO. PARAM. - 0.110598 ERROR TERM - -0.2852E-10

VREF - 85.21942480550

I - 25PRESSURE RATIO - -31.35743 MACH NUMBER PARAMETER = 0.4151E-01RUN NAME - 0514s181.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. , 0.103772 ERROR TERM = -0.7025E-02

103

ITERATION NUMBER 2 MACH NO. PARAM. - 0.110798 ERROR TERM = 0.1994E-03ITERATION NUMBER 3 MACH NO. PARAM. - 0.110598 ERROR TERM - 0.9887E-07ITERATION NUMBER 4 MACH NO. PARAN. - 0.110598 ERROR TERM = -0.2852E-10

VREF - 85.21942480550

I - 26PRESSURE RATIO - -31.35743 MACH NUMBER PARAMETER = 0.4151E-01RUN NAME - 0514g191.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER I MACH NO. PARAM. - 0.103772 ERROR TERM = -0.7025E-02ITERATION NUMBER 2 MACH NO. PARAN. - 0.110798 ERROR TERM - 0.1994E-03ITERATION NUMBER 3 MACH NO. PARAN. - 0.110598 ERROR TERM - 0.9887E-07ITERATION NUMBER 4 MACH NO. PARAM. - 0.110598 ERROR TERM - -0.2852E-10

VREF - 85.21942480550

EXPERIMENT NUMBER REFERENCE VELOCITY NAME

1 84.7372 0514s11.PRN2 84.8983 0514slal.PRN3 85.2995 0514slbl.PRN4 85.2194 0514slcl.PRN5 85.2995 0514sldI.PRN6 85.2995 0514slel.PRN7 85.0792 0511s21.PRN8 85.0792 0511s2al.PRN9 85.2397 0511s2bl.PRN

10 85.0190 0512s31.PRN11 85.0994 0512s41.PRN12 85.0792 0•t2s51.PRN13 85.0792 0512s61.PRN14 85.2397 0507s71.PRN15 85.3400 0508s81.PRN16 85.3400 0507991.PRN17 85.3400 0507sl01.PRN18 85.4201 0507e111.PRN19 85.4201 05079121.PRN20 85.4201 0507u131.PRN21 85.0590 0508s141.PRN22 85.1393 0508s151.PRN23 85.1393 0514s161.PRN24 85.2194 0514s171.PRN25 85.2194 0514s181.PRN26 85.2194 0514s191.PRN

104

F. SURVEYS FROM STATION I THROUGH 19

d. c;d C,:9rn6 09o9

C4 d86ca''q"4 .o

"lii m .0wPNf wI~~w II111IL11111

IdIIII0I'I 11111 I1;;II i~~~~~~~~q 114hh lie~~ dccdooddcoic

4444 6 did vdi, d d d d t4 do cd6d~ 4 4de4 6j ' 6 W4 4 . mi4 c

i I,d d* dd555 d~ - -dd~~~ddd6

Zel .

W! M in in in aw!. w!d w!. in v! r!

105

_Cý .c o c C

0c

c 17 . M l- SRO -O -. M

0 ,N(C"C Ve - ep 0 CDv M(v

0~~~V -W (fN rvW(

UN ~3~got

~0h NN .- V, -tý .4D~

LL 0M. -C4dif

A I on -_ iI W I.~

I.. Z-1 m fifmivn. im aI 4:4: F .!5!I

m v n , . :: 2 r

0 ~ ~ ~ 4 d w3s 33 d doooaa0000000000 000000000

0000 d d oOOC OOO I

IDI

a ý V in w w 0 C>0 .mtv fnv in m 4D .. tvN@ O-.(

0~l 4, W, w ID M- U 4 m~0 .

106

...... b..... @ 9 .-- e .,.. w e

4 cm

C4 tiiv 40 cocd dddddoooooooooo

d 4COP 0 E Ifdid0dd 0- E d9 Pi@0- dC'9 )U)P.l

BMW I'MM BRAC)~C

107 ,

A A a C 0 E

2 PftIwl Sum" a g ~ S leln1345 Xpn) Y~tn) 1*W VNmE uitvr~67 2 -. 862 0.62132? 0.433780 009=01a 1.94 .4.82 0.618 a313306 0.9110679 1.67 .4.82 0.137061 a310049 01666610 Ill 4.4.2 0.2 1661 01430111 0.247W6It 1.76 .4.w2 VIM?61 @66762l 01604212 1.0 4.02 a6357196O 91088 0.98071W13 1.62 .4.82 0.63666 @,3261? 0.666060

14 1.14 .4.02 @53W0 OL41140 0.67171Is I.6 4.4.2 @53lW 12,0563100 0.6666Is 1.44 4642 @64662 @4666 0@113116I? 1.37 .4.2 @5W474685@13M 0.7MM6Is 1.31 .4.82 U43010 a543101 0.71022110 1.35 4.62 @961I OLIN=0 0.78421620 1.10l -4.12 0.651101 0.06272 0792110221 1.12 4.62 a@~6616 0.67324 0.6666622 1.06 .4.82 0.960M7 @90004 0601691423 1 .4.02 @6n216 a406716 &==I3624 mew7 4.62 @677164 a611161 @6617425 @671 4.4.2 0411113 @413134 @66667as 0112 4.42 @616661 @04762 0.6222327 @71 4.6 @02361 @6862301666326 0.6 4.62 @6624 0.93771 @0.9004626 @621 .4.82 @66476 @66127 @60666330 @63 4.82 0@600510 @661621 @62141631 to 4.42 @661621I GLOOM7 &MING632 @437 4M6 06114010 0.611101 @6666233 0@371 4.82 @668674 @676676 @6760634 0.312 4.42 GLOO6 OL666 O @660 @6673035 0.35 4.02 0.700021 4087091 MOM1so 0@#$ 4.62 0@710630 @6477012 @0.612467 @126 4.62 @76332 @66619 @06242

39 @06282 4.62 @636116 su @6 06 163610339 4601 4.62 @70666 Or023 0.00614440 40621 4.62 @7167 66666 @666641 40121 4.62 @72661 @70667 1.01172942 417 -4.62 a716021 @70166N 1.01056643 426 4.62 @7381190.@7010010 1.01641044 4313 4.62 @71846 0.710644 1.031600146 4371 4.62 @L71147 0@697140 1.024029

46 4437 4.62 0@798110 @06749 1.03400447 46. 4.62 @76671 706621 1.0"m3646 4.102 4.62 GN71 0.106749 1.0467140 4615 4.62 @7646 @63666 1.061066so 467 4.62 @VM011 @67666 1.042261 471 4.62 0803053 @662363S 1.036162 4.612 .4.62 &9080 4 @4164606 1.0MM63 4676 4.02 0.8136 04 @7324 @1661?

4 4637 4.4.2 &817121 @.602M3 0160146SO .1 4.62 @62161 @4266 @UPONa .1.06 4.62 @6263 @310 @U08883s7 4.1. .4.02 @.410B GOWN16 @6636SO -1.10 4.62 @.346106 0.171142 26044W0 .1.26 .4.62 @666168 @S48M6 @70N"60 -1.31 4.62 @.57966 @22162 @616666f -. 3 .4.62 055 @ am @ U66 @66162l

62 -1.44 4.62 @.604748 0421266 @64610903 .1.5 .4.62 @1905117 @46304 @L722166 .1.66 4.62 @67412 0.40M6 WSW14

6 41.62 .4.82 @6617I @6410 @112651so 4.1.6 4.62 @66132S2 0@620610 @V6161G? .4.71 4.62 @.067W6 @4666 @.600261as 1.011 4.62 0.6158496 0.61161 0.61446666 4.006 4.62 all76 @6570610 @63M0170 .1.94 .4.82 0@1190068 0.900515 0.63930671 -2 .4.82 0.606444 06900236 0.0546367273

108

~E~9 99ot 99::;;; c,4~;.- 0 a 9M Mev CM

vp

cm

U. 0 11 H asildddd~d ~ drjdd q~0cr----Coco

W 111, 0 ! 10V.n omm9I : CC r

N N . C 44. W N N C .9 ARM C N9

ON UP IIH ;;>aoodooooooea~o o adoo do 5 oOR

dddddddddC ";9d' dC* dC

IVico . .! 99 . c

77- '0~999900c

109

C4 we-qb4 V

M!f111H'o 'HIM Pi

w ~ II.40 i mif -i -I --, -

o ~ ~ d!II -: 0sa 1jul11 .

o doco odeoccoddPdd~000 ddddd c idc0000

r odC.i4I~ ~~.dP'7 7 .7cq 4 di

110

POW , M9 C4 t - C4E. .0

Rpm P-- H! a#ma

. . . . . . -I CI F O0 1 ..-- 0 -

81 di X3 C-4 CN1. )C

S9 ddeeoooooeo -- ----- caaI ~ 0 vT o OCAOOAO w

C1 p ft

Be- .- MDR

odd ~f doo od d oo

H ri% q))) U)U)U II)))))UUUUU

U~ ~ ~ ~ ~~~P,3fli V~.NNN g0 N N NNNNNN86 !.g i'dd ct .

fi if 1'.)U 13( ý ." I:11%R1

4ddd-- d'!dddddd 999dd od00000

C40)40NU@-----U('4((Up4CCU ( Ci C5dc 06

11m

GOGUOP-004.0V.. 'A0 M WOW. 0 0

94

cm .4 11 C4

~~11,,*4 g~ll I ) P.

- ~~~ 40h~ a-

w 4,1 ic4 0)h).4 Oad- 6 a6 .

-o 51.9. "1 r E f.a#

o - a In.

o ~@~O~-!ir-f~-- ~guu i.n Z3 "C~dd~c~ddci d0ddddddd

r..t~sit. 4044004('440040044004 . 40' 004404400400440

.6Cv

CO~ !i 0 to 0000 00

112

d a odo d aoo cio a0 coo ... C ?C

-; a m00 int- n M i A *-JM,1M _g -mn ~ m

~4.- v ai- 6' v.ifl4 vD'~~ ~ei',* m w

Ael-m- 90 WIV

A i W,Id ieq id ; -.-- -- i t- - 0 0 - -i ;C ~

1*. lot. ... N0 .

- -- - -- - w via i ,a w d 46

w iffl p" H~ v Sim MT CC4 10

I~~~~ -.- A -C ;oooo~x"eooo o 00 0 0 0 00 00000zo vi

d 'i - SW 1. I', U!0 W!G 00. O I n

goC, O N .4 go cm C4- 0004 00 0 C-4o o oo o 0000 . .

00 IM in wn 01

¶ ¶~v enW~

'I 113

RI!UiftM~ a I R UH5~- -..I ARE

-j do - -

~~~~~~~f ddo d d e e ce edaa Oci 9

?

10@

coo a - o- -cioca ecocddcc

*n 0i~a: 23 : a; cia;P, V: R l

.v vi " tj" 4Civ

d~ d

ft g-. -I&: -i!-11

COO cci oc d c;ci ci c oo0

-r~~vb.W~ 3--o0- " Vmo. O ;; o'C'm con, A A

114 IU1 U ) )UU

000 0 000a,6660cccddo6c~c,9 9 9 9 9

9."

... qEd~4..A 4,04 1..

0s

0~5 a j1"CH~ 3U31 i lqcocat cc cacao ccc e eocOR

U. ;-R l

0 -0 0 m e -pd s . d o ed d c sa o q V e n @d6 6 6

ew qq~

vi 402en- aeee d40 .6P dI . 6 wV-P !ýrýF;W0O~~aa aoaac cda~C4c 'o

a a X--! --

6eP m m. m4tIt t66 ~ ~ ~ P P. P..P.P.P.P.Pccddici4: p...

12-1 C-11 0"- 12. 101 "121 10- 0

wm.-mmWA 4.0 en. "MEe- A ene A m.M A

115

!W8

~ ~ d c io o co *0IIdi".2d 6dd99b,dda d dddd-

ON Ogg* -

d_ X~ I IIi!. a MUM6dd ddoodocadadoododddd4 d

q~~qq qq I':;dd 1-W d~. d

CI -@oef' C4e ."9...on I-

116~

d d d~aa ac oacid d 9 9 9 9 9 9 9 0 0

i i 'o2

*N~)U)UNOP~000 ('d~4Din0I ~ 0 0 5 0NNp~l~~C

0-0005 S~~.UII p- ~ In~)0?0

d dds dd3(.10N

o0,mmN~0C . t'I NC1NNUWmof 1:1

~ d

4> dd~doc6dadd~d;" acao a d oco

- ------- - N C4 C t4n qMMtnM

117- I

Sooooaddodd rddddood9 9

S; i9...

fis;- -W 9. V W f

Ilia, C4 - CIO pa1m..HIC gill 8z ~ ~~~~ otoe4 V5 I 05.ýMv I`.@0~C E4C mgmEl4":. g. w Z rl?~

in~lel~--IdinweM n Uln.. 4 i~m-p-e 1'd dQ l e

A 3;35U inInsl-n~eI 0 ldCdd~d -~d dd

us 3S oi 3345 i' d ".d~o o 4dP. 4 4 R 4 coc oeq W;C4o4,

0 11~I ~ li4md

fi IEddd d .d zd d d i e,4Pd,0dEd--mm4.w4.WM

ineee~ l4.UWW e We~nD..nin ;

ddddd dd dd ;mmi;;;;:;dq'Jcý d d d ":..3;3~~U~j~0 a- *nfgm lc 3 od

4 r iI#do 44 4-00dfd~d d dd d d:-:-

tv ~ 00 0 0 00t ý 7mA ý1 o

118

ddo dRedaa oe 1 1ý0

L.~~EtR!90m 0~ - #Few

00 oco.c 000a

OD W1~w ~ ~ w 46I -6" 61;4 . . ,4,PP

o~ "O 1110 a R.iii~iiii1111119,I i

A~I -~. C jC~ C4-I'

119a

~dddýýddddd: d~dd~d d6ddddd~o""

I~ I --- -

go 1 1 6

7 T - T'7 - $17

120

;IU3 ~ ~ dd d3~; ;m 3ES

Z;~ dNpaORial

00 11211 aleulo.

HH2011fiid'dll ddddidddi 4.4c

11111111111f i!ihIIIi I ii 111111ddd I I.-diidliidlidd

udhili11IHiII I'

j ddd dd.S a o ddddddo~dod

12

Ad 9 . ......

11! 449AA AA !4

IL I 111111 11 1 1~~~~~ dW' AN""~ ili3weddd Hddde~em ddd

ddddd§15d5§18d Id6ddd ddJ*S6

dd~dddd d ! dd d dcodod:-

122

cu~~u-~qI4 X dI u lz. 11 as I fi

01

met Il;- un d 2I -IIIoudddddddddadd ddddoodo

~ddc d;;2ddd~dddddddddd dc

cm~~. Anmm4

~;123

99999999v9 O9O9699 0

coo4D -~m~wm wo

:,111P 13 9%~ 0o~99900.~ : - t~ ~ r4 i (4I) 4

0~~-t i kii L-Ik IIliaI3U aOIU

000 000 d ooooaooaa6d ooo a cood0

c$ dV g~ 0 00 6 _d00 9dgo-Urn;-ruu;3m dx3N'~ Aj3do-- M oddddccd

ID~~m ddd dd 6 doo od.d

y~ ~ M

C4ovC- C5jI I IAIfnI

3-3l~U~p-0 wrn0w124o-

00000cod00000 0 co C oO0aooooaoa

o o,

10 110 c 1100001.13101111C:0 0

do d~~o.00000 00

Mi dd2dd 60d!

4C

125

00000000 0000000 0C00000000000 occod oooooeo0o

0!@0@a0; a00aoaOod o 60 odooeoo d 00000000000000

0o 0 dI;I0 9S "0oo00000 000 0ooo ooo0oo~oo~oo d o~oooooo0oooooooooo

I

126

REFERENCES

I. Hobson, G. V., and Shreeve, R. P., "Inlet Turbulence Distortion and Viscous FlowDevelopment in a Controlled-Diffusion Compressor Cascade at Very High Incidence",AIAA paper 91-2004 presented at the 27th Joint Propulsion Conference, Sacramento,California June 24-26 1991.

2. Classick, M. A., "Off-Design Loss Measurements in a Compressor Cascade", Master'sThesis, Naval Postgraduate School, Monterey, California, September 1989.

3. Murray, K. D., "Automation and Extension of LDV Measurements of Off-Design Flowin a Subsonic Cascade Wind Tunnel", Engineer's Thesis, Naval Postgraduate School,Monterey, California, June 1989.

4. Wakefield, B. E., "Hotwire Measurements of the Turbulent Flow into a Cascade ofControlled-Diffusion Compressor Blades", Master's Thesis, Naval PostgraduateSchool, Monterey, California, December 1993.

5. Elazar, Y., "A Mapping of the Viscous Flow Behavior in a Controlled DiffusionCompressor Cascade Using Laser Doppler Velocimetry and Preliminary Evaluation ofCodes for the Prediction of Stall", Doctoral Thesis, Naval Postgraduate School,Monterey, California, March 1988.

6. Dreon, J. W., "Controlled Diffusion Compressor Blade Wake Measurements",Master's Thesis, Naval Postgraduate School, Monterey, California, September 1986.

7. Armstrong, J. H., "Near-Stall Loss Measurements in a CD Compressor Cascade WithExploratory Leading Edge Flow Control", Master's Thesis, Naval PostgraduateSchool, Monterey, California, June 1990.

127

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2Cameron StationAlexandria, Virginia 22304-6145

2. Library, Code 52 2Naval Postgraduate SchoolMonterey, California 93943-5000

3. Department Chairman, AADepartment of AeronauticsNaval Postgraduate SchoolMonterey, California 93943

4. Garth V. Hobson, Turbopropulsion Laboratory, Code AA/Hg 7Department of AeronauticsNaval Postgraduate SchoolMonterey, California 93943

5. Naval Air Systems CommandAIR-536T (Attn: Mr. Mario Duffles)Washington, District of Columbia 20361-5360

6. Naval Air Warfare CenterAircraft Division (Trenton)PE-31 (Attn: S. Clouser)250 Phillips Blvd.Princeton CrossroadsTrenton, New Jersey 08628-0176

7. N.L. SangerNASA Lewis Research CenterM/S 5-11, 21000 Brookpark RoadCleveland, Ohio 44135

128

8. Lt. Humberto Javier Ganaim Rickel 2Venezuelan NavyAcquisition Office880 NW 15th St.Miami, Florida 33172

129