control system - chapter 2

111
CHAPTER MATHEMATICAL MODELLING OF DYNAMIC SYSTEM 1

Upload: james

Post on 06-Jan-2016

5 views

Category:

Documents


0 download

DESCRIPTION

Electrical Control System

TRANSCRIPT

Page 1: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 1/111

CHAPTER

MATHEMATICAL MODELLING OF

DYNAMIC SYSTEM

1

Page 2: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 2/111

INTRODUCTION

• A mathematical model of a dynamic system isdefined as a set of equation ,i.e differential equation,that represent the dynamic of the system accuratelyor at least fairly well.

 • Note that the a mathematical model is not unique toa given system and may be represent in manydifferent ways, therefore, may have manymathematical model depending on one’s

perspective.

• In this chapter we obtain mathematical models thatrelate the outputs of the system to its input.

2

Page 3: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 3/111

INTRODUCTION (cont.)

• To develop a mathematical model we

need to use the fundamental physical law

of science and engineering.

  – To model electrical networks we need apply

Ohm’s law & kirchhoff’s law.

 – To model mechanical system we need applyNewton’s Law.

3

Page 4: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 4/111

INTRODUCTION (cont.)

• The relation between the input and output of the

system can be described by differential

equation.

Output, c(t)Input, r(t)

System

Figure 2.1

4

Page 5: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 5/111

INTRODUCTION (cont.)

• In practice, the complexity of the system

requires some assumptions in the

determination of the mathematical model.

 • The equations of the mathematical model

may be solved using mathematical tools

such as the Laplace Transform.

5

Page 6: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 6/111

 2.1 Review of Laplace Transform

6

Page 7: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 7/111

• The Laplace transform method substitutes relatively

easily solved algebraic equations for the more difficult

differential equations.

• The Laplace transformation for a function of time, is;

 

LAPLACE TRANSFORM (cont.)

 

where s= σ+ j ω, a complex variable. While j = −1 , σ =Re {s} (real part)and ω = Im {s} (imaginary part).

• The Eq. 2.1 allows us to convert f(t) F(s).

0

)()(   dt et  f   s F    st =£{f(t)} Eq 2.1

7

Page 8: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 8/111

LAPLACE TRANSFORM (cont.)

EXAMPLE Eq 2.1:

Find the Laplace transform of 

Sol:

)()(   t u Aet  f     at 

t a s st at  st    )(

a s

 A

e

a s

 A   t t a s

 

  0)(

0 0 0

8

Page 9: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 9/111

• Table 2.1 shows the conversion of f(t) to F(s) for specific cases derived

using Eq.2.1

Table 2.1: Laplace Transform Table

9

Page 10: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 10/111

LAPLACE TRANSFORM (cont.)

• To transform F(s) to f(t), the inverse Laplace transform is

used.

• The inverse Laplace transform is written as:

 

1   j st   

 

• However Eq. 2.2 requires complex integration to find f(t)

given F(s)

• The easy way to find f(t) given F(s) is by using Laplace

Transform Table, Table 2.1.

2   j   j    

10

q .

Page 11: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 11/111

LAPLACE TRANSFORM (cont.)

Example 2.2 (Find f(t) given F(s) using table ILT):

Find the inverse Laplace transform of  21

3

1)(

 s s F 

Solution:

From laplace table

)()()3(

1

)()(

1

3

2

2

t  f  t ute s

There fo re

t utea s

at 

11

at m

m  e

m

a s

    !)(

1

I L TT a b l eF ro m: N o te

1

Page 12: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 12/111

 2.3 Laplace transform theorems

12

Page 13: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 13/111

LAPLACE TRANSFORM (cont.)

Laplace Transform theorems, Table 2.2 is addition to the Laplace

transform table, Table 2.1 to assist in transforming between f(t) and

F(s).

13

Page 14: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 14/111

LAPLACE TRANSFORM (cont.)

Table 2.1: Laplace Transform Theorems

14

Page 15: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 15/111

LAPLACE TRANSFORM (cont.)

2.3.1 Partial- Fraction Expansion method• Used to find the inverse Laplace transform of a complicated

system.

• Have 4 case:

 Case1: Roots of Denominator of F(s) are Real and Distinct

)(..........

)()()(

)..().........()(

)(

)(

)(

)(

21

21

n

n

 s s

 N 

 s s

 B

 s s

 A s F 

 s s s s s s

 sC 

 s R

 sC 

 s F 

15

Page 16: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 16/111

LAPLACE TRANSFORM (cont.)

Case2: Roots of Denominator of F(s) are Real and Repeated

n s s s s s s

 sC 

 s R

 sC  s F 

)..().........()(

)(

)(

)()(

21  

n s s

 N 

 s s

 B

 s s

 A s F 

)(..........

)()()(

21  

Case3: Roots of Denominator of F(s) are Complex or imaginary

16

Page 17: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 17/111

LAPLACE TRANSFORM (cont.)

Case 4:

Partial Fraction can be used when the order numerator 

N(s) is less than the order denominator D(s). If the order 

numerator is greater than or equal to the order 

 denominator, then the numerator must be divided by

denominator successively until the result has a

remainder whose numerator is of order less than its

denominator.

17

Page 18: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 18/111

LAPLACE TRANSFORM (cont.)

Note:

• Example all of the cases partial-fraction

expansion are shown on extra note .

• Example of the application of Laplace

transform, inverse Laplace transform

and partial-fraction expansion for solving differential equation are shown

on extra note given. ( extra note 2  )18

Page 19: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 19/111

 MODELLING OF PHYSICAL

SYSTEM

19

Page 20: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 20/111

 2.4 Modeling of Electrical System

Elements

20

Page 21: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 21/111

Modeling of Electrical System Elements

• A mathematical model of an electrical circuit can be

obtained by Kirchhoff’s laws.

Figure Electronic Components

21

Page 22: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 22/111

Modeling of Electrical System Elements. (cont)

Example 1 :

Obtain the transfer function of the RC network shown below.

22

Page 23: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 23/111

Modeling of Electrical System Elements. (cont)

Solution:

Network equation

V1(t) = i(t)R + V2(t)

 

)()(   2   t dV C t  I   

 

By using laplace transform, transfer function obtained is,

 

 

    /1

/1

1

1

1

1

)(

)()(

1

2

 s s RCs sV 

 sV  sG

where =  RC, the time constant of the network 

23

Page 24: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 24/111

Modeling of Electrical System Elements. (cont)

Example 2 :

Construct the block diagram of the system and obtain the transfer 

function of the RLC network shown below.

Fig : Series RLC network

24

Page 25: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 25/111

Modeling of Electrical System Elements. (cont)

Solution

• The network equations are

» eq1

 

)()( t it dvC    C 

 

»

» eq 2

)()(

)()(   t vdt 

t di L Rt it v C 

)()()()( t v Rt it vdt t di L C 

25

Page 26: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 26/111

Modeling of Electrical System Elements. (cont)

Laplace transformed the eq. 1 and eq. 2, we get

 eq

eq 4

)()(   s I  sCsVc  

LsI(s) = V(s) – I(s)R – V C (s)

Draw block diagram of the RLC network using eq 3 and eq 4

26

Page 27: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 27/111

Modeling of Electrical System Elements. (cont)

we get, Block diagram of the series RLC network

+

-

1

Ls

1

Cs

-

V(s)V C (s)+ LsI(s) I(s)

I(s)R V C (s)

The transfer function of the system is:

1

1

)(

)(2

 RCs LCs sV 

 sV c

27

Page 28: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 28/111

Modeling of Electrical System Elements. (cont)

Exercise

Construct a block diagram of this system in the Figure below and

obtain the transfer function .

)()(

)(2

0

 R Ls RLCs

 R

 sV 

 sV 

i  

solution

28

Page 29: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 29/111

Modeling of Electrical System Elements. (cont)

Example: Refer to extra note 3

.

29

Page 30: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 30/111

Modeling of Electrical System Elements.

Potentiometer 

 potentiometer is used to measure a linear or rotational

displacement. . There are two types of potentiometers which is;

1. rotational potentiometers

2. linear potentiometers.

Fig: Rotational potentiometer 

30

Page 31: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 31/111

Modeling of Electrical System Elements.

Potentiometer . (cont.)

For a rotational potentiometer 

e(t) α θ(t)

Therefore, e(t) = Kpθ(t); where Kp = Potentiometer constant V/rads

Laplace transform of the equation is

 

E(s) = K  pθ(s)

Block diagram of the system

K  pE(s)θ(s)

31

Page 32: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 32/111

Modeling of Electrical System Elements.

Tachometer .

Tachometer produce a voltage proportional to the angular velocity of the

generator shaft.

et(t)   m(t)

et(t) = K k  m(t)

Inverse laplace transform, we get,

E t (s) = K k  

m(s)

Where, Kk = tachometer constant

K k 

E t (s)m(s)

Fig: Block diagram of a tachometer 32

Page 33: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 33/111

Modeling of Electrical System Elements.

Operational Amplifier (Op-Amps)

The output of the amplifier 

Vo = KsVi(t)

Where, Ks = amplifier gain, and Vi = amplifier input

Laplace transform of the equation is 

Vo(s) = KsVi(s)

Block diagram of the system

K sV 0 (s)V i (s)

Fig: Block diagram of an Op Amp

33

Page 34: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 34/111

2.5 MODELLING OF MECHANICAL

SYSTEM

34

Page 35: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 35/111

MODELLING OF MECHANICAL SYSTEM

The motion of mechanical elements can

be described in various dimensions, which

are:

 

. .

2. Rotational.

3. Gear System.

35

Page 36: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 36/111

Translational Mechanical ystem

36

Page 37: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 37/111

Modeling of Translational Mechanical System.

The motion of translation is defined as a

motion that takes place along or curved .

describe translational motion are

acceleration, velocity, and displacement.

37

Page 38: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 38/111

Modeling of Translational Mechanical System.

(cont.)

Figure below shows the translational mechanical system

Figure: Translational Mechanical Components38

Page 39: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 39/111

Modeling of Translational Mechanical System.

(cont.)

Example:

Find the transfer function of X(s)/F(s) , for system shown below

Figure : Spring-Mass-Damper System

39

Page 40: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 40/111

Modeling of Translational Mechanical System.

(cont.)

Solution

Draw the free-body diagram of a system and assume the mass is

traveling toward the right.

Figure 2.4 a. Free-body diagram of mass, spring, and damper system;

b. transformed free-body diagram

40

Page 41: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 41/111

Modeling of Translational Mechanical System.

(cont.)

From free-body diagram, write differential equation of motion using

Newton’s Law. Thus we get;

)()()()(

2

2

t  f  t  Kxdt 

t dx f  

dt 

t  xd  M 

v

 

By taking the Laplace transform

)()()()(2  s F  s KX  s sX  f   s X  Ms v  

Therefore the transfer function of system is;

 K  s f   Ms s F 

 s X  sG

v  

2

1

)(

)()(

41

Page 42: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 42/111

Modeling of Translational Mechanical System.

(cont.)

Spring-mass system

Example : Obtain the transfer function between Xo(s)/Xi(s)

42

How to solve: Refer to extra note 4

Page 43: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 43/111

Modeling of Translational Mechanical System.

(cont.)

Spring-mass with viscous frictional damping

Example : Obtain the transfer function between Xo(s)/Xi(s)

43

How to solve: Refer to extra note 4

Page 44: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 44/111

Modeling of Translational Mechanical System. (cont.)

Obtain the transfer function between X22(s)/F(s)

44

Page 45: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 45/111

Modeling of Translational Mechanical System. (cont.)

45

Page 46: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 46/111

Modeling of Translational Mechanical System. (cont.)

46

How to solve: Refer to extra note 4

Page 47: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 47/111

Rotational Mechanical ystem

47

Page 48: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 48/111

Rotational Mechanical System. (Cont)

The rotational motion can be defined as motion about a fixed axis.

The extension of Newton’s Law of motion for rotational motion states

that the algebraic sum of moments or torque about a fixed axis is

equal to the product of the inertia and the angular acceleration about

the axis where, 

T = Torque

θ = Angular Displacement

ω = Angular Velocity

where Newton’s second law for rotational system are,

o nacceleratiangular where J T Torque          :,)(

48

Page 49: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 49/111

Modeling of Rotational Mechanical System. (Cont)

49

Page 50: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 50/111

Modeling of Rotational Mechanical System. (Cont)

Obtain the transfer function between θ2(s)/T(s)

50

Page 51: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 51/111

Modeling of Rotational Mechanical System. (Cont)

51

Page 52: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 52/111

Modeling of Rotational Mechanical System. (Cont)

52

How to solve: Refer to extra note 5

Page 53: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 53/111

Obtain the transfer function between θ2(s)/T(s)

Modeling of Rotational Mechanical System. (Cont)

53

How to solve: Refer to extra note 5

Page 54: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 54/111

 Gear system

54

Page 55: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 55/111

Gear system

Gear system is a mechanical device that

transmit energy from one part of the

system to another in such away that force,

 , ,

altered. These devices can also be

regarded as matching devices used to

attain maximum power transfer.

55

Page 56: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 56/111

Gear system. (Cont.)

Figure below show two gears are coupled together 

Where,

 T = torque

θ = angular displacement

N = teeth number 

56

Page 57: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 57/111

Gear system. (Cont.)

from front view

57

Page 58: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 58/111

Gear system. (Cont.)

For ideal case, inertia and friction are neglected. The

relationship between T1 and T2, θ1 and θ2 and N1 and N2

are derived from the following facts;

1. The number of teeth on the surface of the gears is proportional

to the radius r 1 and r 2 of the ears that is

 r 1N2 = r 2N1

2. The distance traveled along the surface of each gear is the same,

thus,

θ1r 1 = θ2r 2

3. The work done by one gears is same to that other since there areassumed to be no losses. thus,

T1θ1 = T2θ2

58

Page 59: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 59/111

Gear system. (Cont.)

If the angular velocities of two gears ω1 and ω2 are brought into the

picture, Therefore

1

2

2

1

2

1

 NT    

59

Page 60: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 60/111

Gear system. (Cont.)

60

Page 61: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 61/111

Find transfer function between θ 1(s)/T 1(s)

Gear system. (Cont.)

61How to solve: Refer to extra note 6

Page 62: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 62/111

Find transfer function between θ 2 (s)/T 1(s)

Gear system. (Cont.)

62

How to solve: Refer to extra note 6

Page 63: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 63/111

Gear system. (Cont.)

63

Page 64: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 64/111

Find transfer function between θ 1(s)/T 1(s)

Gear system. (Cont.)

64

Page 65: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 65/111

Find transfer function between θ 2 (s)/T 1(s)

Gear system. (Cont.)

65

How to solve: Refer to extra note 6

Page 66: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 66/111

2.6 Modelin of Electromechanical S stem Elements.

66

 

Page 67: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 67/111

Modeling of Electromechanical System Elements.

(cont.)

Direct Current (DC) Motor 

•  Applications of DC motor e.g. tape drive, disk drive,

printer, CNC machines, and robot.

 • The DC motor is represented by a circuits shown on

the next slide.

67

Page 68: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 68/111

Modeling of Electromechanical System Elements.

(cont.)

Magnetic flux

R  Li a(t)

eb(t)v a(t)

 Armature circuit

T L(t)

J m,

T m(t)

 m

 m(t)

rigid

Load

J L

68

BL

Bm

Page 69: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 69/111

Modeling of Electromechanical System Elements.

(cont.)

Let:

Ra = armature resistance

La = armature inductance

ia(t) = armature current m  

Va(t) = armature input voltage

eb(t) = back emf 

ωm(t) = motor angular velocity

θm(t) = motor angular displacementJm= moment of inertia of motor + loadBm=viscous frictional constant of motor + load

69

Page 70: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 70/111

Modeling of Electromechanical System Elements.

(cont.)

Two method to control DC motor, which are:

 1. Armature control

2. Field control

70

Page 71: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 71/111

Modeling of Electromechanical System Elements.

(cont.) (Armature control)

Field current is fix and variable voltage

is applied to armature circuit.

For the given DC servo unit , find θθmm(s)/(s)/VVaa(s),(s), assume thatassume that KKtt is torqueis torque

constant andconstant and KKbb isis emf emf constantconstant..

71

Page 72: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 72/111

Modeling of Electromechanical System Elements.

(cont.) (Armature control)

There are 3 conditions of armature, which

are:

 . n- oa con on

2. No-load condition

3. Combining with gear system

72

Page 73: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 73/111

Modeling of Electromechanical System Elements.

(cont.) (Armature control)(In load Condition)(In load Condition)

a) Find Armature circuit equation

 

s

b

 

73

Page 74: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 74/111

b) Find force equation applied to the motor 

Modeling of Electromechanical System Elements.

(cont.) (Armature control)(In load Condition)(In load Condition)

 

L

2

L

 

74

Page 75: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 75/111

)3()s(IK )s(T atm  

3) Find relationship between torque(TTmm(s)(s)) and armature current(IIaa(s)(s))

 

Modeling of Electromechanical System Elements.

(cont.) (Armature control)(In load Condition)(In load Condition)

4) Find relationship between motor emf(EEbb(s)(s)) and motor shaft velocity (ωωmm(s(s))))

)4()s(sK )s(E mbb  

75

Page 76: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 76/111

 

s

b

 

So now, we have four equations which are:

 

L

2

L

 

Modeling of Electromechanical System Elements.

(cont.) (Armature control)(In load Condition)(In load Condition)

)3()s(IK )s(T atm  

)4()s(sK )s(E mbb  

From (3) and (2)

 

K

s

 

t

L

2

L

a

 

76

Page 77: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 77/111

 Assume :

Insert (4) and (5) to equation (1)

 

s

K

s

 

m

t

L

2

L

a

Modeling of Electromechanical System Elements.

(cont.) (Armature control)(In load Condition)(In load Condition)

 

s

L

2

L

 

So that :

 

s

K

Z

 

b

t

a

m

sK K Z

)s(V

)s(

bta

t

a

m

 

77

Page 78: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 78/111

t

a

m

K s

K

 

ANSWER :ANSWER :

Modeling of Electromechanical System Elements.

(cont.) (Armature control)(In load Condition)(In load Condition)

t

a

m

K s

K

 

78

Page 79: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 79/111

For No-load condition and Combining with 

Modeling of Electromechanical System Elements.

(cont.) (Armature control)(no load Condition)(no load Condition)

 gear sys em p ease see e ex ra no e .

79

Page 80: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 80/111

ExerciseExercise Armature control

Find θL(s)/Va(s)

 L(t)

J m , Bm

T m(t)

 m(t)

 m(t)

Load

J L, BL

N1

N2

 

 

 

b

2

2

1

L

2

2

1

L

t

2

1

a

L

K

N

N

B

N

N

J s

K

N

N

 

ANSWER :ANSWER :

80

Page 81: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 81/111

Exercise

Find transfer function between θ L(s)/E a(s)

81

2

2

1

2

2

1

2

1

)()(

)(

 

  

 

 

  

 

 N 

 N  B B Deq

 N 

 N  J  J  Jeq

 KtKb Deq Jeqs Ra s

 Kt  N 

 N 

 s Ea

 s

 La

 La

 L 

 Ans:

Page 82: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 82/111

Modeling of Electromechanical System Elements.

(cont.) (Field control)

 Armature current is fix and variable

voltage is applied to field circuit.

For the given DC servo unit , find

 mm f f  ,,   f f   

constantconstant..

82

Page 83: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 83/111

Modeling of Electromechanical System Elements.

(cont.) (Field control)

83

Page 84: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 84/111

Modeling of Electromechanical System Elements.

(cont.) (Field control)

1) Find Field circuit equation

 

f

 

84

Page 85: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 85/111

Modeling of Electromechanical System Elements.

(cont.) (Field control)

2) Find force equation applied to the motor 

L

2

L

 

 

m

2

m

 

or or 

wherewhere

Lam   JJJ   Lam   BBB  andand85

Page 86: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 86/111

Modeling of Electromechanical System Elements.

(cont.) (Field control)

)3()s(IK )s(T f f m 

3) Find relationship between torque(TTmm(s)(s)) and field current(IIf f (s)(s))

86

Page 87: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 87/111

Modeling of Electromechanical System Elements.

(cont.) (Field control)

 

m

2

m

 

So now, we have three equations which are:

)3()s(IK )s(T f f m 

f

 

From (3) and (2)

 

K

s

 

f

m

2

m

f

 

From (4) and (1)

 

K

s

 

f

f

m

2

m

f

 

87

Page 88: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 88/111

2

m

f

f

m

B

K

 

ANSWER :ANSWER :

Modeling of Electromechanical System Elements.

(cont.) (Field control)

2

m

f

f

m

B

K

 

Where :Where :

Lam

  JJJ  

Lam   BBB  

88

Page 89: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 89/111

2.7 Modeling of speed and Position Control System

89

Page 90: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 90/111

Modeling closed loop Position Control System

90

Page 91: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 91/111

Modeling closed loop Position Control System

(cont.)

Figure below shows the closed loop position control system.

91

Page 92: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 92/111

Modeling closed loop Position Control System

(cont.)

The objective of this system is to control the position of the

mechanical load in according with the reference position

The operation of this system is as follows:-

 A pair of potentiometers acts as an error-measuring device. For input potentiometer, vi(t) = kpθi(t)

For the output potentiometer, vo(t) = kpθo(t)

The error signal,

Ve(t) = Vi(t) – Vo(t)

= kpθi(t) - kpθo(t) --------------------( 1

This error signal are amplified by the amplifier with gain constant, Ks.

Va(t) = K s Ve(t) -----------------------------( 2 )

92

Page 93: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 93/111

Modeling closed loop Position Control System

(cont.)

Transforming equations ( 1 ) and ( 2 ):-

Ve(s) = Kpθi(s) - Kpθo(s) -----------------( 3 )

By using the mathematical models developed previously for motor and

gear the block diagram of the position control system is shown below:-

93

Page 94: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 94/111

Modeling closed loop Position Control System

(cont.)

Transfer function

Let

bt eqeq

a

m

 K  K  B s J  R Ls

 K 

 sV 

 s

))(()(

)(

11

 J  J ieq   and   B Bieq 

Therefore

bt  s

a

m

 K  K  B Js R L

 K 

 sV 

 s

))(()(

)(

For small motors, the armature inductance, L is small and can be neglected

Where, L = 0

94

Page 95: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 95/111

Modeling closed loop Position Control System

(cont.)

Therefore,

)()(

)(

bt 

a

m

 K  K  BR sRJ 

 K 

 sV 

 s

 K t 

1

 s K  K  BR

 RJ 

bt 

bt 

1

 sm

m

  

where,

bt 

t m

 K  K  BR K  K 

bt 

m K  K  BR

 RJ 

 

= motor again

= motor time constant

95

Page 96: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 96/111

Modeling closed loop Position Control System

(cont.)

The simplified block diagram.

where,

 sT 

 K 

 sV 

 s

m

m

a

m

1)(

)(

From the block diagram we get,

)1()(

 sT  s

n K  K  K  sG

m

m s p

96

Page 97: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 97/111

Modeling closed loop Position Control System

(cont.)

Let,   n K  K  K  K  m s p

)1()(

 sT  s

 K  sG

m

so,

,

)1(1

)1(

)(

)(

 sT  s

 K 

 sT  s

 K 

 s

 s

m

m

i

o

 

 

mm

m

m

m

 K  s

T  s

 K 

 K  s sT 

 K 

 K  sT  s

 K 

1

)1(

22

97

Page 98: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 98/111

Modeling closed loop Position Control System

(cont.)

From the equation above, if θi(s) given, therefore,

θo(t)=  

 K  s sT 

 s K 

m

i

2

1   )( 

£

From that, the value K are not fixed and can be change,

therefore the system response are depends on the value K.

98

Page 99: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 99/111

Modeling closed loop Position Control sys em w ve oc y ee ac

99

Modeling closed loop Position Control system with

Page 100: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 100/111

Modeling closed loop Position Control system with

velocity feedback

(cont.)

 A tachometer is coupled to the motor shaft so that a voltage signal

which is proportional to motor speed can be feedback as shown

below

100

Modeling closed loop Position Control system

Page 101: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 101/111

Modeling closed loop Position Control system

with velocity feedback

(cont.)

From block diagram above, the transfer function for 

 g m sm

m s

 g m s

m

m s

e

m

 K  K  K  sT 

 K  K 

 K  K  K 

 sT 

 K  K 

 sV 

 s

11

)1(

)(

)(

m sT 1

Therefore the forward path transfer function of the system is,

)1()1(

)(

 g m sm g m sm

m s p

 K  K  K  sT  s

 K 

 K  K  K  sT  s

n K  K  K  sG

101

Modeling closed loop Position Control system

Page 102: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 102/111

Modeling closed loop Position Control system

with velocity feedback

(cont.)

Therefore the transfer function of system is,

)1(1

)1(

)(

)(

 g m sm

 g m sm

i

o

 K  K  K  sT  s

 K 

 K 

 K  K  K  sT  s

 K 

 s

 s

 

 

 g m sm s s  

 K  s K  K  K  s

 K 

 g m sm  

)1(2 

102

Page 103: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 103/111

Modeling closed loop Velocity Control System

103

M d li l d l V l it C t l S t

Page 104: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 104/111

Modeling closed loop Velocity Control System

(cont.)

Figure below shows Schematic Diagram for speed control system.

K g 

104

K  s 

R  L

 m(t)

Tachometer 

+E 

-E 

K  p

v e(t)v a(t)

v i (t)

M d li l d l V l it C t l S t

Page 105: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 105/111

Modeling closed loop Velocity Control System

(cont.)

• Input Voltage (Input Velocity)

• Precision control of the angular velocity of an inertia load driven directly by an

armature controlled dc motor can be achieved by comparing an input voltage,

Vi representing a demanded speed and derived from a source of constant

voltage Vs via a potentiometer with a feedback voltage Vg derived from a 

iiiV         

tachometer coupled to the motor shaft.

)()()(   t V t V t V   g ie  

Therefore we get,

and,

)()(   t V  K t V  e sa  

105

M d li l d l V l it C t l S t

Page 106: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 106/111

Modeling closed loop Velocity Control System

(cont.)

The block diagram of the system are shown below.

106

M d li l d l V l it C t l S t

Page 107: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 107/111

Modeling closed loop Velocity Control System

(cont.)

Transfer function for 

bt mm

a

m

 K  K  B s J  Ls R

 K 

 sV 

 s

))(()(

)(

For small motors, the armature inductance L can be neglected where L=0 

,

bt mm

a

m

 K  K  B s J  R

 K 

 sV 

 s

)()(

)(

)( bt mm

 K  K  RB s RJ 

 K 

1

 s K  K  RB

 RJ 

 K  K  RB

 K 

bt m

m

bt m

107

M d li l d l V l it C t l S t

Page 108: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 108/111

Modeling closed loop Velocity Control System

(cont.)

Let

m

bt m

t   K  K  K  RB

 K 

= motor gain

m

bt m

m

 K  K  RB 

= motor time constant

Therefore,

m

m

a

m

 s K 

 sV  s

 

1)()(

108

Modeling closed loop Velocity Control System

Page 109: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 109/111

Modeling closed loop Velocity Control System

(cont.)

The overall transfer function

 g m s

m

m s

 p

i

m

 K  K  K 

 s

 K  K 

 K 

 s

 s    

 

  1

)(

)(

m s 1

)1()(

)(

 g m sm

m s p

i

m

 K  K  K  s

 K  K  K 

 s

 s

  

109

Page 110: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 110/111

Did u know what is Speed Regulation?

(refer to extra note 8)

110

Page 111: Control System - Chapter 2

7/17/2019 Control System - Chapter 2

http://slidepdf.com/reader/full/control-system-chapter-2 111/111

SEKIAN TERIMA KASIHEKIAN TERIMA KASIH