control dewar and vlpc bayonet can platform connection

56
CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION DESIGN AND ANALYSIS DO Engineering Note: 3823.11S-EN-467 July 29, 1997 Andrew Kuwazaki PPD-ETT DO Upgrade Group Approved By

Upload: others

Post on 13-Feb-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

DESIGN AND ANALYSIS

DO Engineering Note 382311S-EN-467 July 29 1997

Andrew Kuwazaki PPD-ETT DO Upgrade Group

Approved By

-

TABLE OF CONTENTS

Page

LIST OF TABLES AND FIGURE iii

ABSTRACf v

i

INTRODUcnON 1

APPENDIX A PLATFORM DESIGN CALCULATIONS AI-A6

AND LOAD ESTIMATE

APPENDIX B CONTOUR STRESS PLOTS BI-BI5

APPENDIX C BOLT PATTERNS CI-C6

INITIAL CONDITIONS 2

METHOD OF ANALYSIS 3

CANTILEVER BEAM ANALYSIS 7

CANTILEVER BEAM RESULTS 10

PLATFORM CONNECTION DESIGN 11

RECOMMENDATIONS 16

BOLT PATTERN DESIGN 17

WELD SPECIFICATIONS 20

WELD RECOMMENDATIONS 23

BIBLIOGRAPHY 24

ii

LIST OF TABLES AND FIGURES

Page

Figure 1 Cantilever Beam 1 0x2x 1 with 1 0000 in-Ib 7

Moment

Figure 2 Cantilever Beam 10x2x I with Extension and Lumped 7

Mass Applied

Figure 3 Assembly of Plate Connection at Nodes 1 and 288 18

Figure 4 Reinforcement Material 19

Figure 5 Assembly of Bracket Connection at Nodes 26 and 313 22

Figure I-B

Figure 2-B

Figure 3-B

Figure 4-B

Figure 5-B

Figure 6-B

Figure 7-B

Figure 8-B

Figure 9-B

Cantilever Beam Stresses with Lumped Mass and I-B

Extensions (Mz shy 10000 in-lb)

Cantilever Beam Stresses without Lumped Mass 2-B

and Partial Boom Excluded

Cantilever Beam Stresses without Entire Volume 3-B

on Lumped Mass Side

Cantilever Beam Stresses without Lumped Mass 4-B

and Extensions

Node Connection 288 Lumped Mass and Boom 5-B

Node Connection 288 Lumped Mass and Partial 6-B

Boom Excluded

Node Connection 288 Lumped Mass Partial 7-B

Boom and Fastener Tension Excluded

Node Connection 1 Lumped Mass and Boom 8-B

Node Connection 1 Lumped Mass and Partial 9-B

Boom Excluded

Figure 10-B Node Connection 1 Lumped Mass Partial IO-B

Boom and Fastener Tension Excluded

- Figure II-B Node Connection 313 Stresses with Lumped 11-B

ill

------------ -----~----

Mass and Boom

Figure 12-B Node Connection 313 Stress with Lumped 12-B

Mass and Partial Boom Excluded

Figure 13-B Node Connection 313 Stresses with Fastener 13-B

Tension Lumped Mass and Partial Boom

Figure 14-B Node Connection 26 Stresses with Lumped 14-B

Mass and Partial Boom Excluded

Figure 15-B Node Connection 26 Stresses with Fastener 15-B

Tension Lumped Mass and Partial Boom Excluded

Table 1 Moment Results for all Cantilever Beam 9

Lumped Mass Models

Table 2 Comparison of Moments Results for all 13

Lumped Mass Models

iv

ABSTRACT

The four connections for the control dewar and VLPC bayonet can platform are

designed using finite element analysis to carry all dead weight and live loads Based on

the loads applied to the platform two 1 inch thick plates and two 34 inch thick brackets

made of ASTM A572middotGrade 42 are required The 1 inch thick plate requires a 3S inch

thick intermediate steel material between the Sx4x14 boom and the plate for load

reinforcement as well as weld area reinforcement Both the plates and the brackets

require 34 inch steel bolt connections

v

INTRODUCTION

The new solenoid which just arrived from Japan will be tested while the detector

is positioned outside the collision hall to assure that the solenoid operates correctly before

it is rolled back into the collision hall In order for these tests to begin the proper

cryogenics must be made available The components needed to operate the solenoid are a

control dewar vacuum pump and controllers All of these components along with a

VLPC bayonet can have been designated to sit on a platform which will be mounted onto

the cryobridge The cryobridge is essentially a rectangular column that houses cryogenic

piping and runs around the perimeter of the detector The focus of this report is the

platform connections

First the load estimates due to the above components are considered Second

the platform dimensional outline and the loads as applied to the platform structure are

presented Third the reaction forces and moments generated by a fmite element analysis

are presented for all four connection points Once these three steps are complete the

platform connection design begins

The platform connection designs start by frrst explaining the initial conditions

governing the design Second the design analysis method is presented Third the

tgtlatform connection design is presented And fmally the recommendations for the

connections the bolt patterns and the weld calculations are presented

2

INITIAL CONDITONS

The platfonn design begins with a load analysis which is based on the

components mounted on the platfonn as seen in Appendix A This section of the

analysis specifies the platfonn dimensions and the type of structural material chosen

Page A3 is the dimensional outline of the platfonn structure consisting of 2x 4x 316

and 4x 8x 114 rectangular tubing After these types of tubing were chosen the loads

were distributed as seen on page A4 This model is then entered into the computer and a

fmite element analysis (PEA) is perfonned A fmite element analysis is an approximate

method for calculating the behavior of the real structure Points A B C and D on the

model are considered the connection points of the platfonn The results from the FEA are

shown on page AS where the reaction forces and moments are drawn at all four

connection points In order to maintain continuity with the FEA model the connection

points will no longer be labeled A B C D but will rather be designated as nodes 1 26

313 and 288 due to the meshing process generated by the computer Page A6 shows the

assigned nodes in a simple wireframe sketch and presents the reaction forces and

moments in table fonn at the top of the page

I Appendix A authored by Russell Rucinski Mechanical Engineer

3

METHOD OF ANALYSIS

The analysis required for the four connections involves analyzing the forces acting

on the connections as well as the moments acting on those connections Therefore the

correct analysis must include both reactions SORC I-DEAS 3-D modeling has been

chosen to perform the fmite element analysis However a limitation arises in that this

software does not allow for a direct application of a moment onto a solid part Since I am

modeling all four connections as solid parts I must devise a method that allows me to

completely and correctly model my connections I experimented with numerous elements

and meshing techniques in order to fmd the best analysis method I also consulted with

SORe After trying various techniques I found a method that yielded acceptable

solutions This method will be called the lumped mass model The lumped mass model

allows for a moment to be applied to solid and the creation of this lumped mass model is

outlined in How to Create Moments on a Solid The outline is written in SORe 1shy

OEAS commands and is presented on the following page

Lumped Mass Model

The lumped mass model begins by creating a structure which is also referred to as

a solid part The structure is then meshed where the meshing process involves

subdividing the structure into nodes and finite elements in order to perform fmite element

analysis A fmite element is a discrete entity used to subdivide the geometry of the

structure and each element is a simple shape such as rectangle or a triangle The number

of fmite elements created is determined by the shape and size of the elements This in

tum determines the number and location of the nodes In a fmite element model nodes

are the points where the elements are connected The nodes are what is needed to

continue the development of the lumped mass model

The moment application process begins by choosing a node on the surface of the

structure near the location where the moment is to be applied The selected node is then

copied at some distance away from the structures surface The distance chosen is

irrelevant since the lumped mass model translates the forces directly to the surface and

4

does not require a moment arm length This new node is designated as the lumped mass

and allows for six degrees of freedom(OOF)

5

Constraint Elements

Now that the lumped mass is created it must be constrained to the surface of the

structure Constraining the lumped mass to the structure allows the moment which is

applied to the lumped mass to translate to the structure The leading candidate for

constraint is a constraint element A constraint element connects a single node to a set of

nodes and transmits all translational and rotational forces from the single node to the set

of nodes chosen Thus the constraint element originates from the lumped mass and

connects to the elements on the surface of structure thereby translating the moment

acting on the lumped mass to the elements on the surface of the structure However in

order to transmit the moment from the elements on the surface of the structure to the

elements making up the entire structure the elements on the surface must have six

degrees of freedom as well

Thin Shell Coating

Thin shell coating has been chosen to transmit the moment from the elements on

the surface of the structure to the elements making up the entire structure The thin shell

coating perfonned on the surface of the structure is done for two reasons First it is used

to change the elements on the specified surface from three DOF elements to six DOF

elements This allows for the transmission of the moment from the lumped mass through

the constraint elements to the elements on the surface where the elements on the surface

can now accept rotational degrees of freedom as well as translational degrees of freedom

Second the thin shell coating method provides for the transmission of the moment

throughout the entire structure Since the structure already consists of elements that are

similar in size and shape any force or moment applied to one element will automatically

transmit that same force or moment to adjoining elements Thus by creating a thin shell

coating on the surface of the structure I am allowing the surface elements to receive force

and moment reactions which are in tum transmitted to all the elements in the structure

However there is one precaution that must be mentioned

6

Precaution

The constraint elements used to constrain the lumped mass to the elements on the

surface of the structure create a dissimilar mesh between This occurs because the

geometry of the elements on the surface of the structure are different fonn the geometry

of the constraint elements According to I-DEAS Creating Elements with Special

TechniQues the precaution for joining dissimilar meshes is that the results for any

elements near [this] mesh interface should be suspect In order to avoid suspect results

for elements near the mesh interface these elements are not selected for display during

post processing

7

CANTILEVER BEAM ANALYSIS

In order to validate the lumped mass method results I created several cantilever

beam models First I modeled a cantilever beam as seen below in Fig 1 The cantilever

beam is 10 x 2 x I and is made of steel The left end of the beam is held rigid while a

10000 in-lb moment is applied to the other end acting in the z-direction The resulting

bending stress should be a maximum at 15 ksi based on static calculations where the

moment is the force multiplied by the distance and the bending stress is the moment

multiplied by the distance from the neutral axis to the outer most fiber divided by the

moment of inertia COb - ~c) The results from the ftnite element analysis (FEA) are

15 ksi which agrees with the calculated bending stress of 15 ksi

M

Fig 1 Cantilever Beam 1 0x2x 1 Fig 2 Cantilever Beam lOx2xl with 1 0000 in-lb Moment Applied with Extension and Lumped

Mass Applied

The second cantilever beam model Fig 2 begins with the same dimensions used

in Fig 1 but now there is an additional beam section which extends off the end of the

cantilever beam The additional material allows me to (1) avoid suspect results near the

mesh interface and (2) post process the original cantilever beam section Now I can

constrain the lumped mass where the 10000 in-lb moment in the z-direction is applied

to the surface of the additional material Thus when I post process my model to

determine the maximum stress I can chose to post process only a portion of the extended

8

material This allows me to avoid the suspect results completely while still incorporating

the effects of the moment applied to the lumped mass

The results from the lumped mass method as applied to the cantilever beam are

shown in Table 1 The first maximum Von Mises stress for the cantilever beam 15 ksi

is the theoretical stress which all the models should predict I used this theoretical stress

as comparison for all the cantilever beam models tested

I post processed the second model of the cantilever beam which includes the

extended beam section and the lumped mass interface Figure I-B in Appendix B shows

that this maximum Von Mises stress is 29 ksi a stress that is 9333 higher than the

theoretical stress This result is precaution mentioned early stating that the results for

any elements near a mesh interface should be suspect II And as cautioned the high

stresses occur at the mesh interface

For the third model I post processed only a portion of the extended beam section

and excluded the lumped mass interface as seen in Fig 2-B The maximum Von Mises

stress dropped to 24 ksi With this post processing method I have been able to minimize

the suspect results near the mesh interface and the maximum Von Mises stress is now

only 60 higher than the theoretical stress However the true shape of the cantilever

beam must be analyzed as closely as possible Thus I post processed a fourth model

The fourth model eliminates the entire extended beam section on the side of the

applied moment as seen in Fig 3-B The result is a maximum Von Mises stress of 176

ksi This maximum Von Mises stress is only 1733 higher than the theoretical

maximum stress of 15 ksi

I used a fifth model to determine whether or not the extended beam section on the

opposite side of the lumped mass affects the results Figure 4-B shows the maximum

Von Mises stress for the fifth post processed model which post processes only the

original cantilever beam The stress remained the same at a maximum at 176 ksi

TABLE 1 Moment Resuhs for all Cantilever Beam Lumped Mass Models

PART CONDITION MAX VON MISES STRESS (ksi)

DIFFERENCE FROM THEORETICAL

Cantilever Beam 1 0 000 in-Ib moment applied to end of beam 15 0 With lumped Mass and Extensions 29 9333 Without lumped Mass 24 6000 Without Elements on lumped Mass Side 176 1733 Without lumped Mass and Extensions 176 1733

0

10

CANTILEVER BEAM RESULTS

From the cantilever beam models I found that the lumped mass model produces a

stress that is conservatively higher than that of the theoretical stress value Therefore this

method will only increase the factor of safety in my design Thus I will proceed with the

method of adding material to the original design then applying a lumped mass to the

additional material and fmally post processing only the original shape of the platform

connections

11

PLATFORM CONNECTION DESIGN

The design of all four platfonn connections begins by following the method used

for the cantilever beam The connections are drawn flfSt and then the additional material

is added I followed the procedure How to Create Moments on a Solid and applied the

reaction moments to the lumped mass corresponding to each of the four connections The

connections at nodes 1 and 288 are the plate connections for the platfonn and nodes 313

and 26 are the bracket connections for the platfonn

Boundruy Conditions

The boundary conditions are comprised of three parts The fIrst boundary

condition applied to the connections is the reaction forces The reaction forces at the

connections are shown in a previous analysis by Russ Rucinski in Appendix A Page A6

shows a summary of all the reaction forces and moments as they pertain to each node

connection

The second boundary condition specilles which surfaces will be held rigid The

rigid surfaces chosen are the surfaces of the plates and brackets which are in contact with

the cryobridge These surfaces will have no rotation or translation

The third boundary condition is the application of the 28000 lb minimum fastener

tension which is applied to all bolt holes as pertaining to the requirements of the

American Institute of Steel Construction (AlSC)

Case Scenarios

The analysis for the four node connections begins with three different case

scenarios for each connection The flISt case scenario presents the post processing of

each connection design including the extended material and the lumped mass The

12

extended material is the rectangular 8 x 4 x114 steel tubing known as a boom The

addition of the boom not only provides a surface to constrain the lumped mass but is also

a true representation of the assembled platfonn The second case scenario post processes

the connections excluding the lumped mass and a partial section of the boom The fmal

case presented post processes the connection excluding the lumped mass a partial section

of the boom and the fastener tension All three case scenarios post processed follow the

same case scenarios used to test the cantilever beam discussed previously Table 2

presents the results of these cases for all four connections and Appendix B presents the

stress plots for all the models Once a maximum Von Mises stress is found the material

selection process can begin

13

TABLE 2 Comparison of Moment Results for all Lumped Mass Models

PART CONDITION MAX VON MISES STRESS

Lumped Mass Partial Boom and Fastner Tension Excluded

14

Node Connection 288

The plate connection at node 288 is modeled ftrst Fig 5-B shows the Von Mises

stress results for the ftrst scenario the post processing of the plate including the boom

section and the lumped mass With a maximum Von Mises stress of 4860 ksi this model

is clearly beyond the acceptable stress range since the targeted maximum stress should be

less than 36 ksi At a maximum stress less than 36 ksi I can utilize ASTM A36 steel

which is abundantly available

The second scenario results plotted in Fig 6-B show a dramatic decrease in the

maximum Von Mises stress The second scenario post processes the plate excluding a

portion of the boom and the lumped mass and should be in agreement with the results

from the cantilever beam analysis The stress level dropped as expected from 4860 ksi to

811 ksi However the high stress concentration area changed from the mesh interface

between the lumped mass and the boom to the fastener tension area around the bolt holes

Since these stresses are compressive stresses and not bending stresses I can neglect their

presence when determining the maximum bending stress Also if the plate connection

was to fail at the bolts the bolts would fail ftrst during the pre-tension installation period

Therefore one more scenario must be presented to better approximate the stresses acting

on the plate

The ftnal scenario is the post processing of the plate excluding the boom section

on the applied moment side the lumped mass interface and the fastener tension applied

around the bolt holes Fig 7-B shows that the maximum Von Mises stress is now only

257 ksi

Node Connection 1

The results presented for node connection 1 are very similar to those for node

connection 288 since their geometry is exactly the same However due to the locations

of the plate connections on the platform node 1 has a lower maximum Von Mises stress

All three scenario results for node 1 follow the same trends as the scenario results for

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 2: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

-

TABLE OF CONTENTS

Page

LIST OF TABLES AND FIGURE iii

ABSTRACf v

i

INTRODUcnON 1

APPENDIX A PLATFORM DESIGN CALCULATIONS AI-A6

AND LOAD ESTIMATE

APPENDIX B CONTOUR STRESS PLOTS BI-BI5

APPENDIX C BOLT PATTERNS CI-C6

INITIAL CONDITIONS 2

METHOD OF ANALYSIS 3

CANTILEVER BEAM ANALYSIS 7

CANTILEVER BEAM RESULTS 10

PLATFORM CONNECTION DESIGN 11

RECOMMENDATIONS 16

BOLT PATTERN DESIGN 17

WELD SPECIFICATIONS 20

WELD RECOMMENDATIONS 23

BIBLIOGRAPHY 24

ii

LIST OF TABLES AND FIGURES

Page

Figure 1 Cantilever Beam 1 0x2x 1 with 1 0000 in-Ib 7

Moment

Figure 2 Cantilever Beam 10x2x I with Extension and Lumped 7

Mass Applied

Figure 3 Assembly of Plate Connection at Nodes 1 and 288 18

Figure 4 Reinforcement Material 19

Figure 5 Assembly of Bracket Connection at Nodes 26 and 313 22

Figure I-B

Figure 2-B

Figure 3-B

Figure 4-B

Figure 5-B

Figure 6-B

Figure 7-B

Figure 8-B

Figure 9-B

Cantilever Beam Stresses with Lumped Mass and I-B

Extensions (Mz shy 10000 in-lb)

Cantilever Beam Stresses without Lumped Mass 2-B

and Partial Boom Excluded

Cantilever Beam Stresses without Entire Volume 3-B

on Lumped Mass Side

Cantilever Beam Stresses without Lumped Mass 4-B

and Extensions

Node Connection 288 Lumped Mass and Boom 5-B

Node Connection 288 Lumped Mass and Partial 6-B

Boom Excluded

Node Connection 288 Lumped Mass Partial 7-B

Boom and Fastener Tension Excluded

Node Connection 1 Lumped Mass and Boom 8-B

Node Connection 1 Lumped Mass and Partial 9-B

Boom Excluded

Figure 10-B Node Connection 1 Lumped Mass Partial IO-B

Boom and Fastener Tension Excluded

- Figure II-B Node Connection 313 Stresses with Lumped 11-B

ill

------------ -----~----

Mass and Boom

Figure 12-B Node Connection 313 Stress with Lumped 12-B

Mass and Partial Boom Excluded

Figure 13-B Node Connection 313 Stresses with Fastener 13-B

Tension Lumped Mass and Partial Boom

Figure 14-B Node Connection 26 Stresses with Lumped 14-B

Mass and Partial Boom Excluded

Figure 15-B Node Connection 26 Stresses with Fastener 15-B

Tension Lumped Mass and Partial Boom Excluded

Table 1 Moment Results for all Cantilever Beam 9

Lumped Mass Models

Table 2 Comparison of Moments Results for all 13

Lumped Mass Models

iv

ABSTRACT

The four connections for the control dewar and VLPC bayonet can platform are

designed using finite element analysis to carry all dead weight and live loads Based on

the loads applied to the platform two 1 inch thick plates and two 34 inch thick brackets

made of ASTM A572middotGrade 42 are required The 1 inch thick plate requires a 3S inch

thick intermediate steel material between the Sx4x14 boom and the plate for load

reinforcement as well as weld area reinforcement Both the plates and the brackets

require 34 inch steel bolt connections

v

INTRODUCTION

The new solenoid which just arrived from Japan will be tested while the detector

is positioned outside the collision hall to assure that the solenoid operates correctly before

it is rolled back into the collision hall In order for these tests to begin the proper

cryogenics must be made available The components needed to operate the solenoid are a

control dewar vacuum pump and controllers All of these components along with a

VLPC bayonet can have been designated to sit on a platform which will be mounted onto

the cryobridge The cryobridge is essentially a rectangular column that houses cryogenic

piping and runs around the perimeter of the detector The focus of this report is the

platform connections

First the load estimates due to the above components are considered Second

the platform dimensional outline and the loads as applied to the platform structure are

presented Third the reaction forces and moments generated by a fmite element analysis

are presented for all four connection points Once these three steps are complete the

platform connection design begins

The platform connection designs start by frrst explaining the initial conditions

governing the design Second the design analysis method is presented Third the

tgtlatform connection design is presented And fmally the recommendations for the

connections the bolt patterns and the weld calculations are presented

2

INITIAL CONDITONS

The platfonn design begins with a load analysis which is based on the

components mounted on the platfonn as seen in Appendix A This section of the

analysis specifies the platfonn dimensions and the type of structural material chosen

Page A3 is the dimensional outline of the platfonn structure consisting of 2x 4x 316

and 4x 8x 114 rectangular tubing After these types of tubing were chosen the loads

were distributed as seen on page A4 This model is then entered into the computer and a

fmite element analysis (PEA) is perfonned A fmite element analysis is an approximate

method for calculating the behavior of the real structure Points A B C and D on the

model are considered the connection points of the platfonn The results from the FEA are

shown on page AS where the reaction forces and moments are drawn at all four

connection points In order to maintain continuity with the FEA model the connection

points will no longer be labeled A B C D but will rather be designated as nodes 1 26

313 and 288 due to the meshing process generated by the computer Page A6 shows the

assigned nodes in a simple wireframe sketch and presents the reaction forces and

moments in table fonn at the top of the page

I Appendix A authored by Russell Rucinski Mechanical Engineer

3

METHOD OF ANALYSIS

The analysis required for the four connections involves analyzing the forces acting

on the connections as well as the moments acting on those connections Therefore the

correct analysis must include both reactions SORC I-DEAS 3-D modeling has been

chosen to perform the fmite element analysis However a limitation arises in that this

software does not allow for a direct application of a moment onto a solid part Since I am

modeling all four connections as solid parts I must devise a method that allows me to

completely and correctly model my connections I experimented with numerous elements

and meshing techniques in order to fmd the best analysis method I also consulted with

SORe After trying various techniques I found a method that yielded acceptable

solutions This method will be called the lumped mass model The lumped mass model

allows for a moment to be applied to solid and the creation of this lumped mass model is

outlined in How to Create Moments on a Solid The outline is written in SORe 1shy

OEAS commands and is presented on the following page

Lumped Mass Model

The lumped mass model begins by creating a structure which is also referred to as

a solid part The structure is then meshed where the meshing process involves

subdividing the structure into nodes and finite elements in order to perform fmite element

analysis A fmite element is a discrete entity used to subdivide the geometry of the

structure and each element is a simple shape such as rectangle or a triangle The number

of fmite elements created is determined by the shape and size of the elements This in

tum determines the number and location of the nodes In a fmite element model nodes

are the points where the elements are connected The nodes are what is needed to

continue the development of the lumped mass model

The moment application process begins by choosing a node on the surface of the

structure near the location where the moment is to be applied The selected node is then

copied at some distance away from the structures surface The distance chosen is

irrelevant since the lumped mass model translates the forces directly to the surface and

4

does not require a moment arm length This new node is designated as the lumped mass

and allows for six degrees of freedom(OOF)

5

Constraint Elements

Now that the lumped mass is created it must be constrained to the surface of the

structure Constraining the lumped mass to the structure allows the moment which is

applied to the lumped mass to translate to the structure The leading candidate for

constraint is a constraint element A constraint element connects a single node to a set of

nodes and transmits all translational and rotational forces from the single node to the set

of nodes chosen Thus the constraint element originates from the lumped mass and

connects to the elements on the surface of structure thereby translating the moment

acting on the lumped mass to the elements on the surface of the structure However in

order to transmit the moment from the elements on the surface of the structure to the

elements making up the entire structure the elements on the surface must have six

degrees of freedom as well

Thin Shell Coating

Thin shell coating has been chosen to transmit the moment from the elements on

the surface of the structure to the elements making up the entire structure The thin shell

coating perfonned on the surface of the structure is done for two reasons First it is used

to change the elements on the specified surface from three DOF elements to six DOF

elements This allows for the transmission of the moment from the lumped mass through

the constraint elements to the elements on the surface where the elements on the surface

can now accept rotational degrees of freedom as well as translational degrees of freedom

Second the thin shell coating method provides for the transmission of the moment

throughout the entire structure Since the structure already consists of elements that are

similar in size and shape any force or moment applied to one element will automatically

transmit that same force or moment to adjoining elements Thus by creating a thin shell

coating on the surface of the structure I am allowing the surface elements to receive force

and moment reactions which are in tum transmitted to all the elements in the structure

However there is one precaution that must be mentioned

6

Precaution

The constraint elements used to constrain the lumped mass to the elements on the

surface of the structure create a dissimilar mesh between This occurs because the

geometry of the elements on the surface of the structure are different fonn the geometry

of the constraint elements According to I-DEAS Creating Elements with Special

TechniQues the precaution for joining dissimilar meshes is that the results for any

elements near [this] mesh interface should be suspect In order to avoid suspect results

for elements near the mesh interface these elements are not selected for display during

post processing

7

CANTILEVER BEAM ANALYSIS

In order to validate the lumped mass method results I created several cantilever

beam models First I modeled a cantilever beam as seen below in Fig 1 The cantilever

beam is 10 x 2 x I and is made of steel The left end of the beam is held rigid while a

10000 in-lb moment is applied to the other end acting in the z-direction The resulting

bending stress should be a maximum at 15 ksi based on static calculations where the

moment is the force multiplied by the distance and the bending stress is the moment

multiplied by the distance from the neutral axis to the outer most fiber divided by the

moment of inertia COb - ~c) The results from the ftnite element analysis (FEA) are

15 ksi which agrees with the calculated bending stress of 15 ksi

M

Fig 1 Cantilever Beam 1 0x2x 1 Fig 2 Cantilever Beam lOx2xl with 1 0000 in-lb Moment Applied with Extension and Lumped

Mass Applied

The second cantilever beam model Fig 2 begins with the same dimensions used

in Fig 1 but now there is an additional beam section which extends off the end of the

cantilever beam The additional material allows me to (1) avoid suspect results near the

mesh interface and (2) post process the original cantilever beam section Now I can

constrain the lumped mass where the 10000 in-lb moment in the z-direction is applied

to the surface of the additional material Thus when I post process my model to

determine the maximum stress I can chose to post process only a portion of the extended

8

material This allows me to avoid the suspect results completely while still incorporating

the effects of the moment applied to the lumped mass

The results from the lumped mass method as applied to the cantilever beam are

shown in Table 1 The first maximum Von Mises stress for the cantilever beam 15 ksi

is the theoretical stress which all the models should predict I used this theoretical stress

as comparison for all the cantilever beam models tested

I post processed the second model of the cantilever beam which includes the

extended beam section and the lumped mass interface Figure I-B in Appendix B shows

that this maximum Von Mises stress is 29 ksi a stress that is 9333 higher than the

theoretical stress This result is precaution mentioned early stating that the results for

any elements near a mesh interface should be suspect II And as cautioned the high

stresses occur at the mesh interface

For the third model I post processed only a portion of the extended beam section

and excluded the lumped mass interface as seen in Fig 2-B The maximum Von Mises

stress dropped to 24 ksi With this post processing method I have been able to minimize

the suspect results near the mesh interface and the maximum Von Mises stress is now

only 60 higher than the theoretical stress However the true shape of the cantilever

beam must be analyzed as closely as possible Thus I post processed a fourth model

The fourth model eliminates the entire extended beam section on the side of the

applied moment as seen in Fig 3-B The result is a maximum Von Mises stress of 176

ksi This maximum Von Mises stress is only 1733 higher than the theoretical

maximum stress of 15 ksi

I used a fifth model to determine whether or not the extended beam section on the

opposite side of the lumped mass affects the results Figure 4-B shows the maximum

Von Mises stress for the fifth post processed model which post processes only the

original cantilever beam The stress remained the same at a maximum at 176 ksi

TABLE 1 Moment Resuhs for all Cantilever Beam Lumped Mass Models

PART CONDITION MAX VON MISES STRESS (ksi)

DIFFERENCE FROM THEORETICAL

Cantilever Beam 1 0 000 in-Ib moment applied to end of beam 15 0 With lumped Mass and Extensions 29 9333 Without lumped Mass 24 6000 Without Elements on lumped Mass Side 176 1733 Without lumped Mass and Extensions 176 1733

0

10

CANTILEVER BEAM RESULTS

From the cantilever beam models I found that the lumped mass model produces a

stress that is conservatively higher than that of the theoretical stress value Therefore this

method will only increase the factor of safety in my design Thus I will proceed with the

method of adding material to the original design then applying a lumped mass to the

additional material and fmally post processing only the original shape of the platform

connections

11

PLATFORM CONNECTION DESIGN

The design of all four platfonn connections begins by following the method used

for the cantilever beam The connections are drawn flfSt and then the additional material

is added I followed the procedure How to Create Moments on a Solid and applied the

reaction moments to the lumped mass corresponding to each of the four connections The

connections at nodes 1 and 288 are the plate connections for the platfonn and nodes 313

and 26 are the bracket connections for the platfonn

Boundruy Conditions

The boundary conditions are comprised of three parts The fIrst boundary

condition applied to the connections is the reaction forces The reaction forces at the

connections are shown in a previous analysis by Russ Rucinski in Appendix A Page A6

shows a summary of all the reaction forces and moments as they pertain to each node

connection

The second boundary condition specilles which surfaces will be held rigid The

rigid surfaces chosen are the surfaces of the plates and brackets which are in contact with

the cryobridge These surfaces will have no rotation or translation

The third boundary condition is the application of the 28000 lb minimum fastener

tension which is applied to all bolt holes as pertaining to the requirements of the

American Institute of Steel Construction (AlSC)

Case Scenarios

The analysis for the four node connections begins with three different case

scenarios for each connection The flISt case scenario presents the post processing of

each connection design including the extended material and the lumped mass The

12

extended material is the rectangular 8 x 4 x114 steel tubing known as a boom The

addition of the boom not only provides a surface to constrain the lumped mass but is also

a true representation of the assembled platfonn The second case scenario post processes

the connections excluding the lumped mass and a partial section of the boom The fmal

case presented post processes the connection excluding the lumped mass a partial section

of the boom and the fastener tension All three case scenarios post processed follow the

same case scenarios used to test the cantilever beam discussed previously Table 2

presents the results of these cases for all four connections and Appendix B presents the

stress plots for all the models Once a maximum Von Mises stress is found the material

selection process can begin

13

TABLE 2 Comparison of Moment Results for all Lumped Mass Models

PART CONDITION MAX VON MISES STRESS

Lumped Mass Partial Boom and Fastner Tension Excluded

14

Node Connection 288

The plate connection at node 288 is modeled ftrst Fig 5-B shows the Von Mises

stress results for the ftrst scenario the post processing of the plate including the boom

section and the lumped mass With a maximum Von Mises stress of 4860 ksi this model

is clearly beyond the acceptable stress range since the targeted maximum stress should be

less than 36 ksi At a maximum stress less than 36 ksi I can utilize ASTM A36 steel

which is abundantly available

The second scenario results plotted in Fig 6-B show a dramatic decrease in the

maximum Von Mises stress The second scenario post processes the plate excluding a

portion of the boom and the lumped mass and should be in agreement with the results

from the cantilever beam analysis The stress level dropped as expected from 4860 ksi to

811 ksi However the high stress concentration area changed from the mesh interface

between the lumped mass and the boom to the fastener tension area around the bolt holes

Since these stresses are compressive stresses and not bending stresses I can neglect their

presence when determining the maximum bending stress Also if the plate connection

was to fail at the bolts the bolts would fail ftrst during the pre-tension installation period

Therefore one more scenario must be presented to better approximate the stresses acting

on the plate

The ftnal scenario is the post processing of the plate excluding the boom section

on the applied moment side the lumped mass interface and the fastener tension applied

around the bolt holes Fig 7-B shows that the maximum Von Mises stress is now only

257 ksi

Node Connection 1

The results presented for node connection 1 are very similar to those for node

connection 288 since their geometry is exactly the same However due to the locations

of the plate connections on the platform node 1 has a lower maximum Von Mises stress

All three scenario results for node 1 follow the same trends as the scenario results for

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 3: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

LIST OF TABLES AND FIGURES

Page

Figure 1 Cantilever Beam 1 0x2x 1 with 1 0000 in-Ib 7

Moment

Figure 2 Cantilever Beam 10x2x I with Extension and Lumped 7

Mass Applied

Figure 3 Assembly of Plate Connection at Nodes 1 and 288 18

Figure 4 Reinforcement Material 19

Figure 5 Assembly of Bracket Connection at Nodes 26 and 313 22

Figure I-B

Figure 2-B

Figure 3-B

Figure 4-B

Figure 5-B

Figure 6-B

Figure 7-B

Figure 8-B

Figure 9-B

Cantilever Beam Stresses with Lumped Mass and I-B

Extensions (Mz shy 10000 in-lb)

Cantilever Beam Stresses without Lumped Mass 2-B

and Partial Boom Excluded

Cantilever Beam Stresses without Entire Volume 3-B

on Lumped Mass Side

Cantilever Beam Stresses without Lumped Mass 4-B

and Extensions

Node Connection 288 Lumped Mass and Boom 5-B

Node Connection 288 Lumped Mass and Partial 6-B

Boom Excluded

Node Connection 288 Lumped Mass Partial 7-B

Boom and Fastener Tension Excluded

Node Connection 1 Lumped Mass and Boom 8-B

Node Connection 1 Lumped Mass and Partial 9-B

Boom Excluded

Figure 10-B Node Connection 1 Lumped Mass Partial IO-B

Boom and Fastener Tension Excluded

- Figure II-B Node Connection 313 Stresses with Lumped 11-B

ill

------------ -----~----

Mass and Boom

Figure 12-B Node Connection 313 Stress with Lumped 12-B

Mass and Partial Boom Excluded

Figure 13-B Node Connection 313 Stresses with Fastener 13-B

Tension Lumped Mass and Partial Boom

Figure 14-B Node Connection 26 Stresses with Lumped 14-B

Mass and Partial Boom Excluded

Figure 15-B Node Connection 26 Stresses with Fastener 15-B

Tension Lumped Mass and Partial Boom Excluded

Table 1 Moment Results for all Cantilever Beam 9

Lumped Mass Models

Table 2 Comparison of Moments Results for all 13

Lumped Mass Models

iv

ABSTRACT

The four connections for the control dewar and VLPC bayonet can platform are

designed using finite element analysis to carry all dead weight and live loads Based on

the loads applied to the platform two 1 inch thick plates and two 34 inch thick brackets

made of ASTM A572middotGrade 42 are required The 1 inch thick plate requires a 3S inch

thick intermediate steel material between the Sx4x14 boom and the plate for load

reinforcement as well as weld area reinforcement Both the plates and the brackets

require 34 inch steel bolt connections

v

INTRODUCTION

The new solenoid which just arrived from Japan will be tested while the detector

is positioned outside the collision hall to assure that the solenoid operates correctly before

it is rolled back into the collision hall In order for these tests to begin the proper

cryogenics must be made available The components needed to operate the solenoid are a

control dewar vacuum pump and controllers All of these components along with a

VLPC bayonet can have been designated to sit on a platform which will be mounted onto

the cryobridge The cryobridge is essentially a rectangular column that houses cryogenic

piping and runs around the perimeter of the detector The focus of this report is the

platform connections

First the load estimates due to the above components are considered Second

the platform dimensional outline and the loads as applied to the platform structure are

presented Third the reaction forces and moments generated by a fmite element analysis

are presented for all four connection points Once these three steps are complete the

platform connection design begins

The platform connection designs start by frrst explaining the initial conditions

governing the design Second the design analysis method is presented Third the

tgtlatform connection design is presented And fmally the recommendations for the

connections the bolt patterns and the weld calculations are presented

2

INITIAL CONDITONS

The platfonn design begins with a load analysis which is based on the

components mounted on the platfonn as seen in Appendix A This section of the

analysis specifies the platfonn dimensions and the type of structural material chosen

Page A3 is the dimensional outline of the platfonn structure consisting of 2x 4x 316

and 4x 8x 114 rectangular tubing After these types of tubing were chosen the loads

were distributed as seen on page A4 This model is then entered into the computer and a

fmite element analysis (PEA) is perfonned A fmite element analysis is an approximate

method for calculating the behavior of the real structure Points A B C and D on the

model are considered the connection points of the platfonn The results from the FEA are

shown on page AS where the reaction forces and moments are drawn at all four

connection points In order to maintain continuity with the FEA model the connection

points will no longer be labeled A B C D but will rather be designated as nodes 1 26

313 and 288 due to the meshing process generated by the computer Page A6 shows the

assigned nodes in a simple wireframe sketch and presents the reaction forces and

moments in table fonn at the top of the page

I Appendix A authored by Russell Rucinski Mechanical Engineer

3

METHOD OF ANALYSIS

The analysis required for the four connections involves analyzing the forces acting

on the connections as well as the moments acting on those connections Therefore the

correct analysis must include both reactions SORC I-DEAS 3-D modeling has been

chosen to perform the fmite element analysis However a limitation arises in that this

software does not allow for a direct application of a moment onto a solid part Since I am

modeling all four connections as solid parts I must devise a method that allows me to

completely and correctly model my connections I experimented with numerous elements

and meshing techniques in order to fmd the best analysis method I also consulted with

SORe After trying various techniques I found a method that yielded acceptable

solutions This method will be called the lumped mass model The lumped mass model

allows for a moment to be applied to solid and the creation of this lumped mass model is

outlined in How to Create Moments on a Solid The outline is written in SORe 1shy

OEAS commands and is presented on the following page

Lumped Mass Model

The lumped mass model begins by creating a structure which is also referred to as

a solid part The structure is then meshed where the meshing process involves

subdividing the structure into nodes and finite elements in order to perform fmite element

analysis A fmite element is a discrete entity used to subdivide the geometry of the

structure and each element is a simple shape such as rectangle or a triangle The number

of fmite elements created is determined by the shape and size of the elements This in

tum determines the number and location of the nodes In a fmite element model nodes

are the points where the elements are connected The nodes are what is needed to

continue the development of the lumped mass model

The moment application process begins by choosing a node on the surface of the

structure near the location where the moment is to be applied The selected node is then

copied at some distance away from the structures surface The distance chosen is

irrelevant since the lumped mass model translates the forces directly to the surface and

4

does not require a moment arm length This new node is designated as the lumped mass

and allows for six degrees of freedom(OOF)

5

Constraint Elements

Now that the lumped mass is created it must be constrained to the surface of the

structure Constraining the lumped mass to the structure allows the moment which is

applied to the lumped mass to translate to the structure The leading candidate for

constraint is a constraint element A constraint element connects a single node to a set of

nodes and transmits all translational and rotational forces from the single node to the set

of nodes chosen Thus the constraint element originates from the lumped mass and

connects to the elements on the surface of structure thereby translating the moment

acting on the lumped mass to the elements on the surface of the structure However in

order to transmit the moment from the elements on the surface of the structure to the

elements making up the entire structure the elements on the surface must have six

degrees of freedom as well

Thin Shell Coating

Thin shell coating has been chosen to transmit the moment from the elements on

the surface of the structure to the elements making up the entire structure The thin shell

coating perfonned on the surface of the structure is done for two reasons First it is used

to change the elements on the specified surface from three DOF elements to six DOF

elements This allows for the transmission of the moment from the lumped mass through

the constraint elements to the elements on the surface where the elements on the surface

can now accept rotational degrees of freedom as well as translational degrees of freedom

Second the thin shell coating method provides for the transmission of the moment

throughout the entire structure Since the structure already consists of elements that are

similar in size and shape any force or moment applied to one element will automatically

transmit that same force or moment to adjoining elements Thus by creating a thin shell

coating on the surface of the structure I am allowing the surface elements to receive force

and moment reactions which are in tum transmitted to all the elements in the structure

However there is one precaution that must be mentioned

6

Precaution

The constraint elements used to constrain the lumped mass to the elements on the

surface of the structure create a dissimilar mesh between This occurs because the

geometry of the elements on the surface of the structure are different fonn the geometry

of the constraint elements According to I-DEAS Creating Elements with Special

TechniQues the precaution for joining dissimilar meshes is that the results for any

elements near [this] mesh interface should be suspect In order to avoid suspect results

for elements near the mesh interface these elements are not selected for display during

post processing

7

CANTILEVER BEAM ANALYSIS

In order to validate the lumped mass method results I created several cantilever

beam models First I modeled a cantilever beam as seen below in Fig 1 The cantilever

beam is 10 x 2 x I and is made of steel The left end of the beam is held rigid while a

10000 in-lb moment is applied to the other end acting in the z-direction The resulting

bending stress should be a maximum at 15 ksi based on static calculations where the

moment is the force multiplied by the distance and the bending stress is the moment

multiplied by the distance from the neutral axis to the outer most fiber divided by the

moment of inertia COb - ~c) The results from the ftnite element analysis (FEA) are

15 ksi which agrees with the calculated bending stress of 15 ksi

M

Fig 1 Cantilever Beam 1 0x2x 1 Fig 2 Cantilever Beam lOx2xl with 1 0000 in-lb Moment Applied with Extension and Lumped

Mass Applied

The second cantilever beam model Fig 2 begins with the same dimensions used

in Fig 1 but now there is an additional beam section which extends off the end of the

cantilever beam The additional material allows me to (1) avoid suspect results near the

mesh interface and (2) post process the original cantilever beam section Now I can

constrain the lumped mass where the 10000 in-lb moment in the z-direction is applied

to the surface of the additional material Thus when I post process my model to

determine the maximum stress I can chose to post process only a portion of the extended

8

material This allows me to avoid the suspect results completely while still incorporating

the effects of the moment applied to the lumped mass

The results from the lumped mass method as applied to the cantilever beam are

shown in Table 1 The first maximum Von Mises stress for the cantilever beam 15 ksi

is the theoretical stress which all the models should predict I used this theoretical stress

as comparison for all the cantilever beam models tested

I post processed the second model of the cantilever beam which includes the

extended beam section and the lumped mass interface Figure I-B in Appendix B shows

that this maximum Von Mises stress is 29 ksi a stress that is 9333 higher than the

theoretical stress This result is precaution mentioned early stating that the results for

any elements near a mesh interface should be suspect II And as cautioned the high

stresses occur at the mesh interface

For the third model I post processed only a portion of the extended beam section

and excluded the lumped mass interface as seen in Fig 2-B The maximum Von Mises

stress dropped to 24 ksi With this post processing method I have been able to minimize

the suspect results near the mesh interface and the maximum Von Mises stress is now

only 60 higher than the theoretical stress However the true shape of the cantilever

beam must be analyzed as closely as possible Thus I post processed a fourth model

The fourth model eliminates the entire extended beam section on the side of the

applied moment as seen in Fig 3-B The result is a maximum Von Mises stress of 176

ksi This maximum Von Mises stress is only 1733 higher than the theoretical

maximum stress of 15 ksi

I used a fifth model to determine whether or not the extended beam section on the

opposite side of the lumped mass affects the results Figure 4-B shows the maximum

Von Mises stress for the fifth post processed model which post processes only the

original cantilever beam The stress remained the same at a maximum at 176 ksi

TABLE 1 Moment Resuhs for all Cantilever Beam Lumped Mass Models

PART CONDITION MAX VON MISES STRESS (ksi)

DIFFERENCE FROM THEORETICAL

Cantilever Beam 1 0 000 in-Ib moment applied to end of beam 15 0 With lumped Mass and Extensions 29 9333 Without lumped Mass 24 6000 Without Elements on lumped Mass Side 176 1733 Without lumped Mass and Extensions 176 1733

0

10

CANTILEVER BEAM RESULTS

From the cantilever beam models I found that the lumped mass model produces a

stress that is conservatively higher than that of the theoretical stress value Therefore this

method will only increase the factor of safety in my design Thus I will proceed with the

method of adding material to the original design then applying a lumped mass to the

additional material and fmally post processing only the original shape of the platform

connections

11

PLATFORM CONNECTION DESIGN

The design of all four platfonn connections begins by following the method used

for the cantilever beam The connections are drawn flfSt and then the additional material

is added I followed the procedure How to Create Moments on a Solid and applied the

reaction moments to the lumped mass corresponding to each of the four connections The

connections at nodes 1 and 288 are the plate connections for the platfonn and nodes 313

and 26 are the bracket connections for the platfonn

Boundruy Conditions

The boundary conditions are comprised of three parts The fIrst boundary

condition applied to the connections is the reaction forces The reaction forces at the

connections are shown in a previous analysis by Russ Rucinski in Appendix A Page A6

shows a summary of all the reaction forces and moments as they pertain to each node

connection

The second boundary condition specilles which surfaces will be held rigid The

rigid surfaces chosen are the surfaces of the plates and brackets which are in contact with

the cryobridge These surfaces will have no rotation or translation

The third boundary condition is the application of the 28000 lb minimum fastener

tension which is applied to all bolt holes as pertaining to the requirements of the

American Institute of Steel Construction (AlSC)

Case Scenarios

The analysis for the four node connections begins with three different case

scenarios for each connection The flISt case scenario presents the post processing of

each connection design including the extended material and the lumped mass The

12

extended material is the rectangular 8 x 4 x114 steel tubing known as a boom The

addition of the boom not only provides a surface to constrain the lumped mass but is also

a true representation of the assembled platfonn The second case scenario post processes

the connections excluding the lumped mass and a partial section of the boom The fmal

case presented post processes the connection excluding the lumped mass a partial section

of the boom and the fastener tension All three case scenarios post processed follow the

same case scenarios used to test the cantilever beam discussed previously Table 2

presents the results of these cases for all four connections and Appendix B presents the

stress plots for all the models Once a maximum Von Mises stress is found the material

selection process can begin

13

TABLE 2 Comparison of Moment Results for all Lumped Mass Models

PART CONDITION MAX VON MISES STRESS

Lumped Mass Partial Boom and Fastner Tension Excluded

14

Node Connection 288

The plate connection at node 288 is modeled ftrst Fig 5-B shows the Von Mises

stress results for the ftrst scenario the post processing of the plate including the boom

section and the lumped mass With a maximum Von Mises stress of 4860 ksi this model

is clearly beyond the acceptable stress range since the targeted maximum stress should be

less than 36 ksi At a maximum stress less than 36 ksi I can utilize ASTM A36 steel

which is abundantly available

The second scenario results plotted in Fig 6-B show a dramatic decrease in the

maximum Von Mises stress The second scenario post processes the plate excluding a

portion of the boom and the lumped mass and should be in agreement with the results

from the cantilever beam analysis The stress level dropped as expected from 4860 ksi to

811 ksi However the high stress concentration area changed from the mesh interface

between the lumped mass and the boom to the fastener tension area around the bolt holes

Since these stresses are compressive stresses and not bending stresses I can neglect their

presence when determining the maximum bending stress Also if the plate connection

was to fail at the bolts the bolts would fail ftrst during the pre-tension installation period

Therefore one more scenario must be presented to better approximate the stresses acting

on the plate

The ftnal scenario is the post processing of the plate excluding the boom section

on the applied moment side the lumped mass interface and the fastener tension applied

around the bolt holes Fig 7-B shows that the maximum Von Mises stress is now only

257 ksi

Node Connection 1

The results presented for node connection 1 are very similar to those for node

connection 288 since their geometry is exactly the same However due to the locations

of the plate connections on the platform node 1 has a lower maximum Von Mises stress

All three scenario results for node 1 follow the same trends as the scenario results for

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 4: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

Mass and Boom

Figure 12-B Node Connection 313 Stress with Lumped 12-B

Mass and Partial Boom Excluded

Figure 13-B Node Connection 313 Stresses with Fastener 13-B

Tension Lumped Mass and Partial Boom

Figure 14-B Node Connection 26 Stresses with Lumped 14-B

Mass and Partial Boom Excluded

Figure 15-B Node Connection 26 Stresses with Fastener 15-B

Tension Lumped Mass and Partial Boom Excluded

Table 1 Moment Results for all Cantilever Beam 9

Lumped Mass Models

Table 2 Comparison of Moments Results for all 13

Lumped Mass Models

iv

ABSTRACT

The four connections for the control dewar and VLPC bayonet can platform are

designed using finite element analysis to carry all dead weight and live loads Based on

the loads applied to the platform two 1 inch thick plates and two 34 inch thick brackets

made of ASTM A572middotGrade 42 are required The 1 inch thick plate requires a 3S inch

thick intermediate steel material between the Sx4x14 boom and the plate for load

reinforcement as well as weld area reinforcement Both the plates and the brackets

require 34 inch steel bolt connections

v

INTRODUCTION

The new solenoid which just arrived from Japan will be tested while the detector

is positioned outside the collision hall to assure that the solenoid operates correctly before

it is rolled back into the collision hall In order for these tests to begin the proper

cryogenics must be made available The components needed to operate the solenoid are a

control dewar vacuum pump and controllers All of these components along with a

VLPC bayonet can have been designated to sit on a platform which will be mounted onto

the cryobridge The cryobridge is essentially a rectangular column that houses cryogenic

piping and runs around the perimeter of the detector The focus of this report is the

platform connections

First the load estimates due to the above components are considered Second

the platform dimensional outline and the loads as applied to the platform structure are

presented Third the reaction forces and moments generated by a fmite element analysis

are presented for all four connection points Once these three steps are complete the

platform connection design begins

The platform connection designs start by frrst explaining the initial conditions

governing the design Second the design analysis method is presented Third the

tgtlatform connection design is presented And fmally the recommendations for the

connections the bolt patterns and the weld calculations are presented

2

INITIAL CONDITONS

The platfonn design begins with a load analysis which is based on the

components mounted on the platfonn as seen in Appendix A This section of the

analysis specifies the platfonn dimensions and the type of structural material chosen

Page A3 is the dimensional outline of the platfonn structure consisting of 2x 4x 316

and 4x 8x 114 rectangular tubing After these types of tubing were chosen the loads

were distributed as seen on page A4 This model is then entered into the computer and a

fmite element analysis (PEA) is perfonned A fmite element analysis is an approximate

method for calculating the behavior of the real structure Points A B C and D on the

model are considered the connection points of the platfonn The results from the FEA are

shown on page AS where the reaction forces and moments are drawn at all four

connection points In order to maintain continuity with the FEA model the connection

points will no longer be labeled A B C D but will rather be designated as nodes 1 26

313 and 288 due to the meshing process generated by the computer Page A6 shows the

assigned nodes in a simple wireframe sketch and presents the reaction forces and

moments in table fonn at the top of the page

I Appendix A authored by Russell Rucinski Mechanical Engineer

3

METHOD OF ANALYSIS

The analysis required for the four connections involves analyzing the forces acting

on the connections as well as the moments acting on those connections Therefore the

correct analysis must include both reactions SORC I-DEAS 3-D modeling has been

chosen to perform the fmite element analysis However a limitation arises in that this

software does not allow for a direct application of a moment onto a solid part Since I am

modeling all four connections as solid parts I must devise a method that allows me to

completely and correctly model my connections I experimented with numerous elements

and meshing techniques in order to fmd the best analysis method I also consulted with

SORe After trying various techniques I found a method that yielded acceptable

solutions This method will be called the lumped mass model The lumped mass model

allows for a moment to be applied to solid and the creation of this lumped mass model is

outlined in How to Create Moments on a Solid The outline is written in SORe 1shy

OEAS commands and is presented on the following page

Lumped Mass Model

The lumped mass model begins by creating a structure which is also referred to as

a solid part The structure is then meshed where the meshing process involves

subdividing the structure into nodes and finite elements in order to perform fmite element

analysis A fmite element is a discrete entity used to subdivide the geometry of the

structure and each element is a simple shape such as rectangle or a triangle The number

of fmite elements created is determined by the shape and size of the elements This in

tum determines the number and location of the nodes In a fmite element model nodes

are the points where the elements are connected The nodes are what is needed to

continue the development of the lumped mass model

The moment application process begins by choosing a node on the surface of the

structure near the location where the moment is to be applied The selected node is then

copied at some distance away from the structures surface The distance chosen is

irrelevant since the lumped mass model translates the forces directly to the surface and

4

does not require a moment arm length This new node is designated as the lumped mass

and allows for six degrees of freedom(OOF)

5

Constraint Elements

Now that the lumped mass is created it must be constrained to the surface of the

structure Constraining the lumped mass to the structure allows the moment which is

applied to the lumped mass to translate to the structure The leading candidate for

constraint is a constraint element A constraint element connects a single node to a set of

nodes and transmits all translational and rotational forces from the single node to the set

of nodes chosen Thus the constraint element originates from the lumped mass and

connects to the elements on the surface of structure thereby translating the moment

acting on the lumped mass to the elements on the surface of the structure However in

order to transmit the moment from the elements on the surface of the structure to the

elements making up the entire structure the elements on the surface must have six

degrees of freedom as well

Thin Shell Coating

Thin shell coating has been chosen to transmit the moment from the elements on

the surface of the structure to the elements making up the entire structure The thin shell

coating perfonned on the surface of the structure is done for two reasons First it is used

to change the elements on the specified surface from three DOF elements to six DOF

elements This allows for the transmission of the moment from the lumped mass through

the constraint elements to the elements on the surface where the elements on the surface

can now accept rotational degrees of freedom as well as translational degrees of freedom

Second the thin shell coating method provides for the transmission of the moment

throughout the entire structure Since the structure already consists of elements that are

similar in size and shape any force or moment applied to one element will automatically

transmit that same force or moment to adjoining elements Thus by creating a thin shell

coating on the surface of the structure I am allowing the surface elements to receive force

and moment reactions which are in tum transmitted to all the elements in the structure

However there is one precaution that must be mentioned

6

Precaution

The constraint elements used to constrain the lumped mass to the elements on the

surface of the structure create a dissimilar mesh between This occurs because the

geometry of the elements on the surface of the structure are different fonn the geometry

of the constraint elements According to I-DEAS Creating Elements with Special

TechniQues the precaution for joining dissimilar meshes is that the results for any

elements near [this] mesh interface should be suspect In order to avoid suspect results

for elements near the mesh interface these elements are not selected for display during

post processing

7

CANTILEVER BEAM ANALYSIS

In order to validate the lumped mass method results I created several cantilever

beam models First I modeled a cantilever beam as seen below in Fig 1 The cantilever

beam is 10 x 2 x I and is made of steel The left end of the beam is held rigid while a

10000 in-lb moment is applied to the other end acting in the z-direction The resulting

bending stress should be a maximum at 15 ksi based on static calculations where the

moment is the force multiplied by the distance and the bending stress is the moment

multiplied by the distance from the neutral axis to the outer most fiber divided by the

moment of inertia COb - ~c) The results from the ftnite element analysis (FEA) are

15 ksi which agrees with the calculated bending stress of 15 ksi

M

Fig 1 Cantilever Beam 1 0x2x 1 Fig 2 Cantilever Beam lOx2xl with 1 0000 in-lb Moment Applied with Extension and Lumped

Mass Applied

The second cantilever beam model Fig 2 begins with the same dimensions used

in Fig 1 but now there is an additional beam section which extends off the end of the

cantilever beam The additional material allows me to (1) avoid suspect results near the

mesh interface and (2) post process the original cantilever beam section Now I can

constrain the lumped mass where the 10000 in-lb moment in the z-direction is applied

to the surface of the additional material Thus when I post process my model to

determine the maximum stress I can chose to post process only a portion of the extended

8

material This allows me to avoid the suspect results completely while still incorporating

the effects of the moment applied to the lumped mass

The results from the lumped mass method as applied to the cantilever beam are

shown in Table 1 The first maximum Von Mises stress for the cantilever beam 15 ksi

is the theoretical stress which all the models should predict I used this theoretical stress

as comparison for all the cantilever beam models tested

I post processed the second model of the cantilever beam which includes the

extended beam section and the lumped mass interface Figure I-B in Appendix B shows

that this maximum Von Mises stress is 29 ksi a stress that is 9333 higher than the

theoretical stress This result is precaution mentioned early stating that the results for

any elements near a mesh interface should be suspect II And as cautioned the high

stresses occur at the mesh interface

For the third model I post processed only a portion of the extended beam section

and excluded the lumped mass interface as seen in Fig 2-B The maximum Von Mises

stress dropped to 24 ksi With this post processing method I have been able to minimize

the suspect results near the mesh interface and the maximum Von Mises stress is now

only 60 higher than the theoretical stress However the true shape of the cantilever

beam must be analyzed as closely as possible Thus I post processed a fourth model

The fourth model eliminates the entire extended beam section on the side of the

applied moment as seen in Fig 3-B The result is a maximum Von Mises stress of 176

ksi This maximum Von Mises stress is only 1733 higher than the theoretical

maximum stress of 15 ksi

I used a fifth model to determine whether or not the extended beam section on the

opposite side of the lumped mass affects the results Figure 4-B shows the maximum

Von Mises stress for the fifth post processed model which post processes only the

original cantilever beam The stress remained the same at a maximum at 176 ksi

TABLE 1 Moment Resuhs for all Cantilever Beam Lumped Mass Models

PART CONDITION MAX VON MISES STRESS (ksi)

DIFFERENCE FROM THEORETICAL

Cantilever Beam 1 0 000 in-Ib moment applied to end of beam 15 0 With lumped Mass and Extensions 29 9333 Without lumped Mass 24 6000 Without Elements on lumped Mass Side 176 1733 Without lumped Mass and Extensions 176 1733

0

10

CANTILEVER BEAM RESULTS

From the cantilever beam models I found that the lumped mass model produces a

stress that is conservatively higher than that of the theoretical stress value Therefore this

method will only increase the factor of safety in my design Thus I will proceed with the

method of adding material to the original design then applying a lumped mass to the

additional material and fmally post processing only the original shape of the platform

connections

11

PLATFORM CONNECTION DESIGN

The design of all four platfonn connections begins by following the method used

for the cantilever beam The connections are drawn flfSt and then the additional material

is added I followed the procedure How to Create Moments on a Solid and applied the

reaction moments to the lumped mass corresponding to each of the four connections The

connections at nodes 1 and 288 are the plate connections for the platfonn and nodes 313

and 26 are the bracket connections for the platfonn

Boundruy Conditions

The boundary conditions are comprised of three parts The fIrst boundary

condition applied to the connections is the reaction forces The reaction forces at the

connections are shown in a previous analysis by Russ Rucinski in Appendix A Page A6

shows a summary of all the reaction forces and moments as they pertain to each node

connection

The second boundary condition specilles which surfaces will be held rigid The

rigid surfaces chosen are the surfaces of the plates and brackets which are in contact with

the cryobridge These surfaces will have no rotation or translation

The third boundary condition is the application of the 28000 lb minimum fastener

tension which is applied to all bolt holes as pertaining to the requirements of the

American Institute of Steel Construction (AlSC)

Case Scenarios

The analysis for the four node connections begins with three different case

scenarios for each connection The flISt case scenario presents the post processing of

each connection design including the extended material and the lumped mass The

12

extended material is the rectangular 8 x 4 x114 steel tubing known as a boom The

addition of the boom not only provides a surface to constrain the lumped mass but is also

a true representation of the assembled platfonn The second case scenario post processes

the connections excluding the lumped mass and a partial section of the boom The fmal

case presented post processes the connection excluding the lumped mass a partial section

of the boom and the fastener tension All three case scenarios post processed follow the

same case scenarios used to test the cantilever beam discussed previously Table 2

presents the results of these cases for all four connections and Appendix B presents the

stress plots for all the models Once a maximum Von Mises stress is found the material

selection process can begin

13

TABLE 2 Comparison of Moment Results for all Lumped Mass Models

PART CONDITION MAX VON MISES STRESS

Lumped Mass Partial Boom and Fastner Tension Excluded

14

Node Connection 288

The plate connection at node 288 is modeled ftrst Fig 5-B shows the Von Mises

stress results for the ftrst scenario the post processing of the plate including the boom

section and the lumped mass With a maximum Von Mises stress of 4860 ksi this model

is clearly beyond the acceptable stress range since the targeted maximum stress should be

less than 36 ksi At a maximum stress less than 36 ksi I can utilize ASTM A36 steel

which is abundantly available

The second scenario results plotted in Fig 6-B show a dramatic decrease in the

maximum Von Mises stress The second scenario post processes the plate excluding a

portion of the boom and the lumped mass and should be in agreement with the results

from the cantilever beam analysis The stress level dropped as expected from 4860 ksi to

811 ksi However the high stress concentration area changed from the mesh interface

between the lumped mass and the boom to the fastener tension area around the bolt holes

Since these stresses are compressive stresses and not bending stresses I can neglect their

presence when determining the maximum bending stress Also if the plate connection

was to fail at the bolts the bolts would fail ftrst during the pre-tension installation period

Therefore one more scenario must be presented to better approximate the stresses acting

on the plate

The ftnal scenario is the post processing of the plate excluding the boom section

on the applied moment side the lumped mass interface and the fastener tension applied

around the bolt holes Fig 7-B shows that the maximum Von Mises stress is now only

257 ksi

Node Connection 1

The results presented for node connection 1 are very similar to those for node

connection 288 since their geometry is exactly the same However due to the locations

of the plate connections on the platform node 1 has a lower maximum Von Mises stress

All three scenario results for node 1 follow the same trends as the scenario results for

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 5: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

ABSTRACT

The four connections for the control dewar and VLPC bayonet can platform are

designed using finite element analysis to carry all dead weight and live loads Based on

the loads applied to the platform two 1 inch thick plates and two 34 inch thick brackets

made of ASTM A572middotGrade 42 are required The 1 inch thick plate requires a 3S inch

thick intermediate steel material between the Sx4x14 boom and the plate for load

reinforcement as well as weld area reinforcement Both the plates and the brackets

require 34 inch steel bolt connections

v

INTRODUCTION

The new solenoid which just arrived from Japan will be tested while the detector

is positioned outside the collision hall to assure that the solenoid operates correctly before

it is rolled back into the collision hall In order for these tests to begin the proper

cryogenics must be made available The components needed to operate the solenoid are a

control dewar vacuum pump and controllers All of these components along with a

VLPC bayonet can have been designated to sit on a platform which will be mounted onto

the cryobridge The cryobridge is essentially a rectangular column that houses cryogenic

piping and runs around the perimeter of the detector The focus of this report is the

platform connections

First the load estimates due to the above components are considered Second

the platform dimensional outline and the loads as applied to the platform structure are

presented Third the reaction forces and moments generated by a fmite element analysis

are presented for all four connection points Once these three steps are complete the

platform connection design begins

The platform connection designs start by frrst explaining the initial conditions

governing the design Second the design analysis method is presented Third the

tgtlatform connection design is presented And fmally the recommendations for the

connections the bolt patterns and the weld calculations are presented

2

INITIAL CONDITONS

The platfonn design begins with a load analysis which is based on the

components mounted on the platfonn as seen in Appendix A This section of the

analysis specifies the platfonn dimensions and the type of structural material chosen

Page A3 is the dimensional outline of the platfonn structure consisting of 2x 4x 316

and 4x 8x 114 rectangular tubing After these types of tubing were chosen the loads

were distributed as seen on page A4 This model is then entered into the computer and a

fmite element analysis (PEA) is perfonned A fmite element analysis is an approximate

method for calculating the behavior of the real structure Points A B C and D on the

model are considered the connection points of the platfonn The results from the FEA are

shown on page AS where the reaction forces and moments are drawn at all four

connection points In order to maintain continuity with the FEA model the connection

points will no longer be labeled A B C D but will rather be designated as nodes 1 26

313 and 288 due to the meshing process generated by the computer Page A6 shows the

assigned nodes in a simple wireframe sketch and presents the reaction forces and

moments in table fonn at the top of the page

I Appendix A authored by Russell Rucinski Mechanical Engineer

3

METHOD OF ANALYSIS

The analysis required for the four connections involves analyzing the forces acting

on the connections as well as the moments acting on those connections Therefore the

correct analysis must include both reactions SORC I-DEAS 3-D modeling has been

chosen to perform the fmite element analysis However a limitation arises in that this

software does not allow for a direct application of a moment onto a solid part Since I am

modeling all four connections as solid parts I must devise a method that allows me to

completely and correctly model my connections I experimented with numerous elements

and meshing techniques in order to fmd the best analysis method I also consulted with

SORe After trying various techniques I found a method that yielded acceptable

solutions This method will be called the lumped mass model The lumped mass model

allows for a moment to be applied to solid and the creation of this lumped mass model is

outlined in How to Create Moments on a Solid The outline is written in SORe 1shy

OEAS commands and is presented on the following page

Lumped Mass Model

The lumped mass model begins by creating a structure which is also referred to as

a solid part The structure is then meshed where the meshing process involves

subdividing the structure into nodes and finite elements in order to perform fmite element

analysis A fmite element is a discrete entity used to subdivide the geometry of the

structure and each element is a simple shape such as rectangle or a triangle The number

of fmite elements created is determined by the shape and size of the elements This in

tum determines the number and location of the nodes In a fmite element model nodes

are the points where the elements are connected The nodes are what is needed to

continue the development of the lumped mass model

The moment application process begins by choosing a node on the surface of the

structure near the location where the moment is to be applied The selected node is then

copied at some distance away from the structures surface The distance chosen is

irrelevant since the lumped mass model translates the forces directly to the surface and

4

does not require a moment arm length This new node is designated as the lumped mass

and allows for six degrees of freedom(OOF)

5

Constraint Elements

Now that the lumped mass is created it must be constrained to the surface of the

structure Constraining the lumped mass to the structure allows the moment which is

applied to the lumped mass to translate to the structure The leading candidate for

constraint is a constraint element A constraint element connects a single node to a set of

nodes and transmits all translational and rotational forces from the single node to the set

of nodes chosen Thus the constraint element originates from the lumped mass and

connects to the elements on the surface of structure thereby translating the moment

acting on the lumped mass to the elements on the surface of the structure However in

order to transmit the moment from the elements on the surface of the structure to the

elements making up the entire structure the elements on the surface must have six

degrees of freedom as well

Thin Shell Coating

Thin shell coating has been chosen to transmit the moment from the elements on

the surface of the structure to the elements making up the entire structure The thin shell

coating perfonned on the surface of the structure is done for two reasons First it is used

to change the elements on the specified surface from three DOF elements to six DOF

elements This allows for the transmission of the moment from the lumped mass through

the constraint elements to the elements on the surface where the elements on the surface

can now accept rotational degrees of freedom as well as translational degrees of freedom

Second the thin shell coating method provides for the transmission of the moment

throughout the entire structure Since the structure already consists of elements that are

similar in size and shape any force or moment applied to one element will automatically

transmit that same force or moment to adjoining elements Thus by creating a thin shell

coating on the surface of the structure I am allowing the surface elements to receive force

and moment reactions which are in tum transmitted to all the elements in the structure

However there is one precaution that must be mentioned

6

Precaution

The constraint elements used to constrain the lumped mass to the elements on the

surface of the structure create a dissimilar mesh between This occurs because the

geometry of the elements on the surface of the structure are different fonn the geometry

of the constraint elements According to I-DEAS Creating Elements with Special

TechniQues the precaution for joining dissimilar meshes is that the results for any

elements near [this] mesh interface should be suspect In order to avoid suspect results

for elements near the mesh interface these elements are not selected for display during

post processing

7

CANTILEVER BEAM ANALYSIS

In order to validate the lumped mass method results I created several cantilever

beam models First I modeled a cantilever beam as seen below in Fig 1 The cantilever

beam is 10 x 2 x I and is made of steel The left end of the beam is held rigid while a

10000 in-lb moment is applied to the other end acting in the z-direction The resulting

bending stress should be a maximum at 15 ksi based on static calculations where the

moment is the force multiplied by the distance and the bending stress is the moment

multiplied by the distance from the neutral axis to the outer most fiber divided by the

moment of inertia COb - ~c) The results from the ftnite element analysis (FEA) are

15 ksi which agrees with the calculated bending stress of 15 ksi

M

Fig 1 Cantilever Beam 1 0x2x 1 Fig 2 Cantilever Beam lOx2xl with 1 0000 in-lb Moment Applied with Extension and Lumped

Mass Applied

The second cantilever beam model Fig 2 begins with the same dimensions used

in Fig 1 but now there is an additional beam section which extends off the end of the

cantilever beam The additional material allows me to (1) avoid suspect results near the

mesh interface and (2) post process the original cantilever beam section Now I can

constrain the lumped mass where the 10000 in-lb moment in the z-direction is applied

to the surface of the additional material Thus when I post process my model to

determine the maximum stress I can chose to post process only a portion of the extended

8

material This allows me to avoid the suspect results completely while still incorporating

the effects of the moment applied to the lumped mass

The results from the lumped mass method as applied to the cantilever beam are

shown in Table 1 The first maximum Von Mises stress for the cantilever beam 15 ksi

is the theoretical stress which all the models should predict I used this theoretical stress

as comparison for all the cantilever beam models tested

I post processed the second model of the cantilever beam which includes the

extended beam section and the lumped mass interface Figure I-B in Appendix B shows

that this maximum Von Mises stress is 29 ksi a stress that is 9333 higher than the

theoretical stress This result is precaution mentioned early stating that the results for

any elements near a mesh interface should be suspect II And as cautioned the high

stresses occur at the mesh interface

For the third model I post processed only a portion of the extended beam section

and excluded the lumped mass interface as seen in Fig 2-B The maximum Von Mises

stress dropped to 24 ksi With this post processing method I have been able to minimize

the suspect results near the mesh interface and the maximum Von Mises stress is now

only 60 higher than the theoretical stress However the true shape of the cantilever

beam must be analyzed as closely as possible Thus I post processed a fourth model

The fourth model eliminates the entire extended beam section on the side of the

applied moment as seen in Fig 3-B The result is a maximum Von Mises stress of 176

ksi This maximum Von Mises stress is only 1733 higher than the theoretical

maximum stress of 15 ksi

I used a fifth model to determine whether or not the extended beam section on the

opposite side of the lumped mass affects the results Figure 4-B shows the maximum

Von Mises stress for the fifth post processed model which post processes only the

original cantilever beam The stress remained the same at a maximum at 176 ksi

TABLE 1 Moment Resuhs for all Cantilever Beam Lumped Mass Models

PART CONDITION MAX VON MISES STRESS (ksi)

DIFFERENCE FROM THEORETICAL

Cantilever Beam 1 0 000 in-Ib moment applied to end of beam 15 0 With lumped Mass and Extensions 29 9333 Without lumped Mass 24 6000 Without Elements on lumped Mass Side 176 1733 Without lumped Mass and Extensions 176 1733

0

10

CANTILEVER BEAM RESULTS

From the cantilever beam models I found that the lumped mass model produces a

stress that is conservatively higher than that of the theoretical stress value Therefore this

method will only increase the factor of safety in my design Thus I will proceed with the

method of adding material to the original design then applying a lumped mass to the

additional material and fmally post processing only the original shape of the platform

connections

11

PLATFORM CONNECTION DESIGN

The design of all four platfonn connections begins by following the method used

for the cantilever beam The connections are drawn flfSt and then the additional material

is added I followed the procedure How to Create Moments on a Solid and applied the

reaction moments to the lumped mass corresponding to each of the four connections The

connections at nodes 1 and 288 are the plate connections for the platfonn and nodes 313

and 26 are the bracket connections for the platfonn

Boundruy Conditions

The boundary conditions are comprised of three parts The fIrst boundary

condition applied to the connections is the reaction forces The reaction forces at the

connections are shown in a previous analysis by Russ Rucinski in Appendix A Page A6

shows a summary of all the reaction forces and moments as they pertain to each node

connection

The second boundary condition specilles which surfaces will be held rigid The

rigid surfaces chosen are the surfaces of the plates and brackets which are in contact with

the cryobridge These surfaces will have no rotation or translation

The third boundary condition is the application of the 28000 lb minimum fastener

tension which is applied to all bolt holes as pertaining to the requirements of the

American Institute of Steel Construction (AlSC)

Case Scenarios

The analysis for the four node connections begins with three different case

scenarios for each connection The flISt case scenario presents the post processing of

each connection design including the extended material and the lumped mass The

12

extended material is the rectangular 8 x 4 x114 steel tubing known as a boom The

addition of the boom not only provides a surface to constrain the lumped mass but is also

a true representation of the assembled platfonn The second case scenario post processes

the connections excluding the lumped mass and a partial section of the boom The fmal

case presented post processes the connection excluding the lumped mass a partial section

of the boom and the fastener tension All three case scenarios post processed follow the

same case scenarios used to test the cantilever beam discussed previously Table 2

presents the results of these cases for all four connections and Appendix B presents the

stress plots for all the models Once a maximum Von Mises stress is found the material

selection process can begin

13

TABLE 2 Comparison of Moment Results for all Lumped Mass Models

PART CONDITION MAX VON MISES STRESS

Lumped Mass Partial Boom and Fastner Tension Excluded

14

Node Connection 288

The plate connection at node 288 is modeled ftrst Fig 5-B shows the Von Mises

stress results for the ftrst scenario the post processing of the plate including the boom

section and the lumped mass With a maximum Von Mises stress of 4860 ksi this model

is clearly beyond the acceptable stress range since the targeted maximum stress should be

less than 36 ksi At a maximum stress less than 36 ksi I can utilize ASTM A36 steel

which is abundantly available

The second scenario results plotted in Fig 6-B show a dramatic decrease in the

maximum Von Mises stress The second scenario post processes the plate excluding a

portion of the boom and the lumped mass and should be in agreement with the results

from the cantilever beam analysis The stress level dropped as expected from 4860 ksi to

811 ksi However the high stress concentration area changed from the mesh interface

between the lumped mass and the boom to the fastener tension area around the bolt holes

Since these stresses are compressive stresses and not bending stresses I can neglect their

presence when determining the maximum bending stress Also if the plate connection

was to fail at the bolts the bolts would fail ftrst during the pre-tension installation period

Therefore one more scenario must be presented to better approximate the stresses acting

on the plate

The ftnal scenario is the post processing of the plate excluding the boom section

on the applied moment side the lumped mass interface and the fastener tension applied

around the bolt holes Fig 7-B shows that the maximum Von Mises stress is now only

257 ksi

Node Connection 1

The results presented for node connection 1 are very similar to those for node

connection 288 since their geometry is exactly the same However due to the locations

of the plate connections on the platform node 1 has a lower maximum Von Mises stress

All three scenario results for node 1 follow the same trends as the scenario results for

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 6: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

INTRODUCTION

The new solenoid which just arrived from Japan will be tested while the detector

is positioned outside the collision hall to assure that the solenoid operates correctly before

it is rolled back into the collision hall In order for these tests to begin the proper

cryogenics must be made available The components needed to operate the solenoid are a

control dewar vacuum pump and controllers All of these components along with a

VLPC bayonet can have been designated to sit on a platform which will be mounted onto

the cryobridge The cryobridge is essentially a rectangular column that houses cryogenic

piping and runs around the perimeter of the detector The focus of this report is the

platform connections

First the load estimates due to the above components are considered Second

the platform dimensional outline and the loads as applied to the platform structure are

presented Third the reaction forces and moments generated by a fmite element analysis

are presented for all four connection points Once these three steps are complete the

platform connection design begins

The platform connection designs start by frrst explaining the initial conditions

governing the design Second the design analysis method is presented Third the

tgtlatform connection design is presented And fmally the recommendations for the

connections the bolt patterns and the weld calculations are presented

2

INITIAL CONDITONS

The platfonn design begins with a load analysis which is based on the

components mounted on the platfonn as seen in Appendix A This section of the

analysis specifies the platfonn dimensions and the type of structural material chosen

Page A3 is the dimensional outline of the platfonn structure consisting of 2x 4x 316

and 4x 8x 114 rectangular tubing After these types of tubing were chosen the loads

were distributed as seen on page A4 This model is then entered into the computer and a

fmite element analysis (PEA) is perfonned A fmite element analysis is an approximate

method for calculating the behavior of the real structure Points A B C and D on the

model are considered the connection points of the platfonn The results from the FEA are

shown on page AS where the reaction forces and moments are drawn at all four

connection points In order to maintain continuity with the FEA model the connection

points will no longer be labeled A B C D but will rather be designated as nodes 1 26

313 and 288 due to the meshing process generated by the computer Page A6 shows the

assigned nodes in a simple wireframe sketch and presents the reaction forces and

moments in table fonn at the top of the page

I Appendix A authored by Russell Rucinski Mechanical Engineer

3

METHOD OF ANALYSIS

The analysis required for the four connections involves analyzing the forces acting

on the connections as well as the moments acting on those connections Therefore the

correct analysis must include both reactions SORC I-DEAS 3-D modeling has been

chosen to perform the fmite element analysis However a limitation arises in that this

software does not allow for a direct application of a moment onto a solid part Since I am

modeling all four connections as solid parts I must devise a method that allows me to

completely and correctly model my connections I experimented with numerous elements

and meshing techniques in order to fmd the best analysis method I also consulted with

SORe After trying various techniques I found a method that yielded acceptable

solutions This method will be called the lumped mass model The lumped mass model

allows for a moment to be applied to solid and the creation of this lumped mass model is

outlined in How to Create Moments on a Solid The outline is written in SORe 1shy

OEAS commands and is presented on the following page

Lumped Mass Model

The lumped mass model begins by creating a structure which is also referred to as

a solid part The structure is then meshed where the meshing process involves

subdividing the structure into nodes and finite elements in order to perform fmite element

analysis A fmite element is a discrete entity used to subdivide the geometry of the

structure and each element is a simple shape such as rectangle or a triangle The number

of fmite elements created is determined by the shape and size of the elements This in

tum determines the number and location of the nodes In a fmite element model nodes

are the points where the elements are connected The nodes are what is needed to

continue the development of the lumped mass model

The moment application process begins by choosing a node on the surface of the

structure near the location where the moment is to be applied The selected node is then

copied at some distance away from the structures surface The distance chosen is

irrelevant since the lumped mass model translates the forces directly to the surface and

4

does not require a moment arm length This new node is designated as the lumped mass

and allows for six degrees of freedom(OOF)

5

Constraint Elements

Now that the lumped mass is created it must be constrained to the surface of the

structure Constraining the lumped mass to the structure allows the moment which is

applied to the lumped mass to translate to the structure The leading candidate for

constraint is a constraint element A constraint element connects a single node to a set of

nodes and transmits all translational and rotational forces from the single node to the set

of nodes chosen Thus the constraint element originates from the lumped mass and

connects to the elements on the surface of structure thereby translating the moment

acting on the lumped mass to the elements on the surface of the structure However in

order to transmit the moment from the elements on the surface of the structure to the

elements making up the entire structure the elements on the surface must have six

degrees of freedom as well

Thin Shell Coating

Thin shell coating has been chosen to transmit the moment from the elements on

the surface of the structure to the elements making up the entire structure The thin shell

coating perfonned on the surface of the structure is done for two reasons First it is used

to change the elements on the specified surface from three DOF elements to six DOF

elements This allows for the transmission of the moment from the lumped mass through

the constraint elements to the elements on the surface where the elements on the surface

can now accept rotational degrees of freedom as well as translational degrees of freedom

Second the thin shell coating method provides for the transmission of the moment

throughout the entire structure Since the structure already consists of elements that are

similar in size and shape any force or moment applied to one element will automatically

transmit that same force or moment to adjoining elements Thus by creating a thin shell

coating on the surface of the structure I am allowing the surface elements to receive force

and moment reactions which are in tum transmitted to all the elements in the structure

However there is one precaution that must be mentioned

6

Precaution

The constraint elements used to constrain the lumped mass to the elements on the

surface of the structure create a dissimilar mesh between This occurs because the

geometry of the elements on the surface of the structure are different fonn the geometry

of the constraint elements According to I-DEAS Creating Elements with Special

TechniQues the precaution for joining dissimilar meshes is that the results for any

elements near [this] mesh interface should be suspect In order to avoid suspect results

for elements near the mesh interface these elements are not selected for display during

post processing

7

CANTILEVER BEAM ANALYSIS

In order to validate the lumped mass method results I created several cantilever

beam models First I modeled a cantilever beam as seen below in Fig 1 The cantilever

beam is 10 x 2 x I and is made of steel The left end of the beam is held rigid while a

10000 in-lb moment is applied to the other end acting in the z-direction The resulting

bending stress should be a maximum at 15 ksi based on static calculations where the

moment is the force multiplied by the distance and the bending stress is the moment

multiplied by the distance from the neutral axis to the outer most fiber divided by the

moment of inertia COb - ~c) The results from the ftnite element analysis (FEA) are

15 ksi which agrees with the calculated bending stress of 15 ksi

M

Fig 1 Cantilever Beam 1 0x2x 1 Fig 2 Cantilever Beam lOx2xl with 1 0000 in-lb Moment Applied with Extension and Lumped

Mass Applied

The second cantilever beam model Fig 2 begins with the same dimensions used

in Fig 1 but now there is an additional beam section which extends off the end of the

cantilever beam The additional material allows me to (1) avoid suspect results near the

mesh interface and (2) post process the original cantilever beam section Now I can

constrain the lumped mass where the 10000 in-lb moment in the z-direction is applied

to the surface of the additional material Thus when I post process my model to

determine the maximum stress I can chose to post process only a portion of the extended

8

material This allows me to avoid the suspect results completely while still incorporating

the effects of the moment applied to the lumped mass

The results from the lumped mass method as applied to the cantilever beam are

shown in Table 1 The first maximum Von Mises stress for the cantilever beam 15 ksi

is the theoretical stress which all the models should predict I used this theoretical stress

as comparison for all the cantilever beam models tested

I post processed the second model of the cantilever beam which includes the

extended beam section and the lumped mass interface Figure I-B in Appendix B shows

that this maximum Von Mises stress is 29 ksi a stress that is 9333 higher than the

theoretical stress This result is precaution mentioned early stating that the results for

any elements near a mesh interface should be suspect II And as cautioned the high

stresses occur at the mesh interface

For the third model I post processed only a portion of the extended beam section

and excluded the lumped mass interface as seen in Fig 2-B The maximum Von Mises

stress dropped to 24 ksi With this post processing method I have been able to minimize

the suspect results near the mesh interface and the maximum Von Mises stress is now

only 60 higher than the theoretical stress However the true shape of the cantilever

beam must be analyzed as closely as possible Thus I post processed a fourth model

The fourth model eliminates the entire extended beam section on the side of the

applied moment as seen in Fig 3-B The result is a maximum Von Mises stress of 176

ksi This maximum Von Mises stress is only 1733 higher than the theoretical

maximum stress of 15 ksi

I used a fifth model to determine whether or not the extended beam section on the

opposite side of the lumped mass affects the results Figure 4-B shows the maximum

Von Mises stress for the fifth post processed model which post processes only the

original cantilever beam The stress remained the same at a maximum at 176 ksi

TABLE 1 Moment Resuhs for all Cantilever Beam Lumped Mass Models

PART CONDITION MAX VON MISES STRESS (ksi)

DIFFERENCE FROM THEORETICAL

Cantilever Beam 1 0 000 in-Ib moment applied to end of beam 15 0 With lumped Mass and Extensions 29 9333 Without lumped Mass 24 6000 Without Elements on lumped Mass Side 176 1733 Without lumped Mass and Extensions 176 1733

0

10

CANTILEVER BEAM RESULTS

From the cantilever beam models I found that the lumped mass model produces a

stress that is conservatively higher than that of the theoretical stress value Therefore this

method will only increase the factor of safety in my design Thus I will proceed with the

method of adding material to the original design then applying a lumped mass to the

additional material and fmally post processing only the original shape of the platform

connections

11

PLATFORM CONNECTION DESIGN

The design of all four platfonn connections begins by following the method used

for the cantilever beam The connections are drawn flfSt and then the additional material

is added I followed the procedure How to Create Moments on a Solid and applied the

reaction moments to the lumped mass corresponding to each of the four connections The

connections at nodes 1 and 288 are the plate connections for the platfonn and nodes 313

and 26 are the bracket connections for the platfonn

Boundruy Conditions

The boundary conditions are comprised of three parts The fIrst boundary

condition applied to the connections is the reaction forces The reaction forces at the

connections are shown in a previous analysis by Russ Rucinski in Appendix A Page A6

shows a summary of all the reaction forces and moments as they pertain to each node

connection

The second boundary condition specilles which surfaces will be held rigid The

rigid surfaces chosen are the surfaces of the plates and brackets which are in contact with

the cryobridge These surfaces will have no rotation or translation

The third boundary condition is the application of the 28000 lb minimum fastener

tension which is applied to all bolt holes as pertaining to the requirements of the

American Institute of Steel Construction (AlSC)

Case Scenarios

The analysis for the four node connections begins with three different case

scenarios for each connection The flISt case scenario presents the post processing of

each connection design including the extended material and the lumped mass The

12

extended material is the rectangular 8 x 4 x114 steel tubing known as a boom The

addition of the boom not only provides a surface to constrain the lumped mass but is also

a true representation of the assembled platfonn The second case scenario post processes

the connections excluding the lumped mass and a partial section of the boom The fmal

case presented post processes the connection excluding the lumped mass a partial section

of the boom and the fastener tension All three case scenarios post processed follow the

same case scenarios used to test the cantilever beam discussed previously Table 2

presents the results of these cases for all four connections and Appendix B presents the

stress plots for all the models Once a maximum Von Mises stress is found the material

selection process can begin

13

TABLE 2 Comparison of Moment Results for all Lumped Mass Models

PART CONDITION MAX VON MISES STRESS

Lumped Mass Partial Boom and Fastner Tension Excluded

14

Node Connection 288

The plate connection at node 288 is modeled ftrst Fig 5-B shows the Von Mises

stress results for the ftrst scenario the post processing of the plate including the boom

section and the lumped mass With a maximum Von Mises stress of 4860 ksi this model

is clearly beyond the acceptable stress range since the targeted maximum stress should be

less than 36 ksi At a maximum stress less than 36 ksi I can utilize ASTM A36 steel

which is abundantly available

The second scenario results plotted in Fig 6-B show a dramatic decrease in the

maximum Von Mises stress The second scenario post processes the plate excluding a

portion of the boom and the lumped mass and should be in agreement with the results

from the cantilever beam analysis The stress level dropped as expected from 4860 ksi to

811 ksi However the high stress concentration area changed from the mesh interface

between the lumped mass and the boom to the fastener tension area around the bolt holes

Since these stresses are compressive stresses and not bending stresses I can neglect their

presence when determining the maximum bending stress Also if the plate connection

was to fail at the bolts the bolts would fail ftrst during the pre-tension installation period

Therefore one more scenario must be presented to better approximate the stresses acting

on the plate

The ftnal scenario is the post processing of the plate excluding the boom section

on the applied moment side the lumped mass interface and the fastener tension applied

around the bolt holes Fig 7-B shows that the maximum Von Mises stress is now only

257 ksi

Node Connection 1

The results presented for node connection 1 are very similar to those for node

connection 288 since their geometry is exactly the same However due to the locations

of the plate connections on the platform node 1 has a lower maximum Von Mises stress

All three scenario results for node 1 follow the same trends as the scenario results for

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 7: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

2

INITIAL CONDITONS

The platfonn design begins with a load analysis which is based on the

components mounted on the platfonn as seen in Appendix A This section of the

analysis specifies the platfonn dimensions and the type of structural material chosen

Page A3 is the dimensional outline of the platfonn structure consisting of 2x 4x 316

and 4x 8x 114 rectangular tubing After these types of tubing were chosen the loads

were distributed as seen on page A4 This model is then entered into the computer and a

fmite element analysis (PEA) is perfonned A fmite element analysis is an approximate

method for calculating the behavior of the real structure Points A B C and D on the

model are considered the connection points of the platfonn The results from the FEA are

shown on page AS where the reaction forces and moments are drawn at all four

connection points In order to maintain continuity with the FEA model the connection

points will no longer be labeled A B C D but will rather be designated as nodes 1 26

313 and 288 due to the meshing process generated by the computer Page A6 shows the

assigned nodes in a simple wireframe sketch and presents the reaction forces and

moments in table fonn at the top of the page

I Appendix A authored by Russell Rucinski Mechanical Engineer

3

METHOD OF ANALYSIS

The analysis required for the four connections involves analyzing the forces acting

on the connections as well as the moments acting on those connections Therefore the

correct analysis must include both reactions SORC I-DEAS 3-D modeling has been

chosen to perform the fmite element analysis However a limitation arises in that this

software does not allow for a direct application of a moment onto a solid part Since I am

modeling all four connections as solid parts I must devise a method that allows me to

completely and correctly model my connections I experimented with numerous elements

and meshing techniques in order to fmd the best analysis method I also consulted with

SORe After trying various techniques I found a method that yielded acceptable

solutions This method will be called the lumped mass model The lumped mass model

allows for a moment to be applied to solid and the creation of this lumped mass model is

outlined in How to Create Moments on a Solid The outline is written in SORe 1shy

OEAS commands and is presented on the following page

Lumped Mass Model

The lumped mass model begins by creating a structure which is also referred to as

a solid part The structure is then meshed where the meshing process involves

subdividing the structure into nodes and finite elements in order to perform fmite element

analysis A fmite element is a discrete entity used to subdivide the geometry of the

structure and each element is a simple shape such as rectangle or a triangle The number

of fmite elements created is determined by the shape and size of the elements This in

tum determines the number and location of the nodes In a fmite element model nodes

are the points where the elements are connected The nodes are what is needed to

continue the development of the lumped mass model

The moment application process begins by choosing a node on the surface of the

structure near the location where the moment is to be applied The selected node is then

copied at some distance away from the structures surface The distance chosen is

irrelevant since the lumped mass model translates the forces directly to the surface and

4

does not require a moment arm length This new node is designated as the lumped mass

and allows for six degrees of freedom(OOF)

5

Constraint Elements

Now that the lumped mass is created it must be constrained to the surface of the

structure Constraining the lumped mass to the structure allows the moment which is

applied to the lumped mass to translate to the structure The leading candidate for

constraint is a constraint element A constraint element connects a single node to a set of

nodes and transmits all translational and rotational forces from the single node to the set

of nodes chosen Thus the constraint element originates from the lumped mass and

connects to the elements on the surface of structure thereby translating the moment

acting on the lumped mass to the elements on the surface of the structure However in

order to transmit the moment from the elements on the surface of the structure to the

elements making up the entire structure the elements on the surface must have six

degrees of freedom as well

Thin Shell Coating

Thin shell coating has been chosen to transmit the moment from the elements on

the surface of the structure to the elements making up the entire structure The thin shell

coating perfonned on the surface of the structure is done for two reasons First it is used

to change the elements on the specified surface from three DOF elements to six DOF

elements This allows for the transmission of the moment from the lumped mass through

the constraint elements to the elements on the surface where the elements on the surface

can now accept rotational degrees of freedom as well as translational degrees of freedom

Second the thin shell coating method provides for the transmission of the moment

throughout the entire structure Since the structure already consists of elements that are

similar in size and shape any force or moment applied to one element will automatically

transmit that same force or moment to adjoining elements Thus by creating a thin shell

coating on the surface of the structure I am allowing the surface elements to receive force

and moment reactions which are in tum transmitted to all the elements in the structure

However there is one precaution that must be mentioned

6

Precaution

The constraint elements used to constrain the lumped mass to the elements on the

surface of the structure create a dissimilar mesh between This occurs because the

geometry of the elements on the surface of the structure are different fonn the geometry

of the constraint elements According to I-DEAS Creating Elements with Special

TechniQues the precaution for joining dissimilar meshes is that the results for any

elements near [this] mesh interface should be suspect In order to avoid suspect results

for elements near the mesh interface these elements are not selected for display during

post processing

7

CANTILEVER BEAM ANALYSIS

In order to validate the lumped mass method results I created several cantilever

beam models First I modeled a cantilever beam as seen below in Fig 1 The cantilever

beam is 10 x 2 x I and is made of steel The left end of the beam is held rigid while a

10000 in-lb moment is applied to the other end acting in the z-direction The resulting

bending stress should be a maximum at 15 ksi based on static calculations where the

moment is the force multiplied by the distance and the bending stress is the moment

multiplied by the distance from the neutral axis to the outer most fiber divided by the

moment of inertia COb - ~c) The results from the ftnite element analysis (FEA) are

15 ksi which agrees with the calculated bending stress of 15 ksi

M

Fig 1 Cantilever Beam 1 0x2x 1 Fig 2 Cantilever Beam lOx2xl with 1 0000 in-lb Moment Applied with Extension and Lumped

Mass Applied

The second cantilever beam model Fig 2 begins with the same dimensions used

in Fig 1 but now there is an additional beam section which extends off the end of the

cantilever beam The additional material allows me to (1) avoid suspect results near the

mesh interface and (2) post process the original cantilever beam section Now I can

constrain the lumped mass where the 10000 in-lb moment in the z-direction is applied

to the surface of the additional material Thus when I post process my model to

determine the maximum stress I can chose to post process only a portion of the extended

8

material This allows me to avoid the suspect results completely while still incorporating

the effects of the moment applied to the lumped mass

The results from the lumped mass method as applied to the cantilever beam are

shown in Table 1 The first maximum Von Mises stress for the cantilever beam 15 ksi

is the theoretical stress which all the models should predict I used this theoretical stress

as comparison for all the cantilever beam models tested

I post processed the second model of the cantilever beam which includes the

extended beam section and the lumped mass interface Figure I-B in Appendix B shows

that this maximum Von Mises stress is 29 ksi a stress that is 9333 higher than the

theoretical stress This result is precaution mentioned early stating that the results for

any elements near a mesh interface should be suspect II And as cautioned the high

stresses occur at the mesh interface

For the third model I post processed only a portion of the extended beam section

and excluded the lumped mass interface as seen in Fig 2-B The maximum Von Mises

stress dropped to 24 ksi With this post processing method I have been able to minimize

the suspect results near the mesh interface and the maximum Von Mises stress is now

only 60 higher than the theoretical stress However the true shape of the cantilever

beam must be analyzed as closely as possible Thus I post processed a fourth model

The fourth model eliminates the entire extended beam section on the side of the

applied moment as seen in Fig 3-B The result is a maximum Von Mises stress of 176

ksi This maximum Von Mises stress is only 1733 higher than the theoretical

maximum stress of 15 ksi

I used a fifth model to determine whether or not the extended beam section on the

opposite side of the lumped mass affects the results Figure 4-B shows the maximum

Von Mises stress for the fifth post processed model which post processes only the

original cantilever beam The stress remained the same at a maximum at 176 ksi

TABLE 1 Moment Resuhs for all Cantilever Beam Lumped Mass Models

PART CONDITION MAX VON MISES STRESS (ksi)

DIFFERENCE FROM THEORETICAL

Cantilever Beam 1 0 000 in-Ib moment applied to end of beam 15 0 With lumped Mass and Extensions 29 9333 Without lumped Mass 24 6000 Without Elements on lumped Mass Side 176 1733 Without lumped Mass and Extensions 176 1733

0

10

CANTILEVER BEAM RESULTS

From the cantilever beam models I found that the lumped mass model produces a

stress that is conservatively higher than that of the theoretical stress value Therefore this

method will only increase the factor of safety in my design Thus I will proceed with the

method of adding material to the original design then applying a lumped mass to the

additional material and fmally post processing only the original shape of the platform

connections

11

PLATFORM CONNECTION DESIGN

The design of all four platfonn connections begins by following the method used

for the cantilever beam The connections are drawn flfSt and then the additional material

is added I followed the procedure How to Create Moments on a Solid and applied the

reaction moments to the lumped mass corresponding to each of the four connections The

connections at nodes 1 and 288 are the plate connections for the platfonn and nodes 313

and 26 are the bracket connections for the platfonn

Boundruy Conditions

The boundary conditions are comprised of three parts The fIrst boundary

condition applied to the connections is the reaction forces The reaction forces at the

connections are shown in a previous analysis by Russ Rucinski in Appendix A Page A6

shows a summary of all the reaction forces and moments as they pertain to each node

connection

The second boundary condition specilles which surfaces will be held rigid The

rigid surfaces chosen are the surfaces of the plates and brackets which are in contact with

the cryobridge These surfaces will have no rotation or translation

The third boundary condition is the application of the 28000 lb minimum fastener

tension which is applied to all bolt holes as pertaining to the requirements of the

American Institute of Steel Construction (AlSC)

Case Scenarios

The analysis for the four node connections begins with three different case

scenarios for each connection The flISt case scenario presents the post processing of

each connection design including the extended material and the lumped mass The

12

extended material is the rectangular 8 x 4 x114 steel tubing known as a boom The

addition of the boom not only provides a surface to constrain the lumped mass but is also

a true representation of the assembled platfonn The second case scenario post processes

the connections excluding the lumped mass and a partial section of the boom The fmal

case presented post processes the connection excluding the lumped mass a partial section

of the boom and the fastener tension All three case scenarios post processed follow the

same case scenarios used to test the cantilever beam discussed previously Table 2

presents the results of these cases for all four connections and Appendix B presents the

stress plots for all the models Once a maximum Von Mises stress is found the material

selection process can begin

13

TABLE 2 Comparison of Moment Results for all Lumped Mass Models

PART CONDITION MAX VON MISES STRESS

Lumped Mass Partial Boom and Fastner Tension Excluded

14

Node Connection 288

The plate connection at node 288 is modeled ftrst Fig 5-B shows the Von Mises

stress results for the ftrst scenario the post processing of the plate including the boom

section and the lumped mass With a maximum Von Mises stress of 4860 ksi this model

is clearly beyond the acceptable stress range since the targeted maximum stress should be

less than 36 ksi At a maximum stress less than 36 ksi I can utilize ASTM A36 steel

which is abundantly available

The second scenario results plotted in Fig 6-B show a dramatic decrease in the

maximum Von Mises stress The second scenario post processes the plate excluding a

portion of the boom and the lumped mass and should be in agreement with the results

from the cantilever beam analysis The stress level dropped as expected from 4860 ksi to

811 ksi However the high stress concentration area changed from the mesh interface

between the lumped mass and the boom to the fastener tension area around the bolt holes

Since these stresses are compressive stresses and not bending stresses I can neglect their

presence when determining the maximum bending stress Also if the plate connection

was to fail at the bolts the bolts would fail ftrst during the pre-tension installation period

Therefore one more scenario must be presented to better approximate the stresses acting

on the plate

The ftnal scenario is the post processing of the plate excluding the boom section

on the applied moment side the lumped mass interface and the fastener tension applied

around the bolt holes Fig 7-B shows that the maximum Von Mises stress is now only

257 ksi

Node Connection 1

The results presented for node connection 1 are very similar to those for node

connection 288 since their geometry is exactly the same However due to the locations

of the plate connections on the platform node 1 has a lower maximum Von Mises stress

All three scenario results for node 1 follow the same trends as the scenario results for

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 8: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

3

METHOD OF ANALYSIS

The analysis required for the four connections involves analyzing the forces acting

on the connections as well as the moments acting on those connections Therefore the

correct analysis must include both reactions SORC I-DEAS 3-D modeling has been

chosen to perform the fmite element analysis However a limitation arises in that this

software does not allow for a direct application of a moment onto a solid part Since I am

modeling all four connections as solid parts I must devise a method that allows me to

completely and correctly model my connections I experimented with numerous elements

and meshing techniques in order to fmd the best analysis method I also consulted with

SORe After trying various techniques I found a method that yielded acceptable

solutions This method will be called the lumped mass model The lumped mass model

allows for a moment to be applied to solid and the creation of this lumped mass model is

outlined in How to Create Moments on a Solid The outline is written in SORe 1shy

OEAS commands and is presented on the following page

Lumped Mass Model

The lumped mass model begins by creating a structure which is also referred to as

a solid part The structure is then meshed where the meshing process involves

subdividing the structure into nodes and finite elements in order to perform fmite element

analysis A fmite element is a discrete entity used to subdivide the geometry of the

structure and each element is a simple shape such as rectangle or a triangle The number

of fmite elements created is determined by the shape and size of the elements This in

tum determines the number and location of the nodes In a fmite element model nodes

are the points where the elements are connected The nodes are what is needed to

continue the development of the lumped mass model

The moment application process begins by choosing a node on the surface of the

structure near the location where the moment is to be applied The selected node is then

copied at some distance away from the structures surface The distance chosen is

irrelevant since the lumped mass model translates the forces directly to the surface and

4

does not require a moment arm length This new node is designated as the lumped mass

and allows for six degrees of freedom(OOF)

5

Constraint Elements

Now that the lumped mass is created it must be constrained to the surface of the

structure Constraining the lumped mass to the structure allows the moment which is

applied to the lumped mass to translate to the structure The leading candidate for

constraint is a constraint element A constraint element connects a single node to a set of

nodes and transmits all translational and rotational forces from the single node to the set

of nodes chosen Thus the constraint element originates from the lumped mass and

connects to the elements on the surface of structure thereby translating the moment

acting on the lumped mass to the elements on the surface of the structure However in

order to transmit the moment from the elements on the surface of the structure to the

elements making up the entire structure the elements on the surface must have six

degrees of freedom as well

Thin Shell Coating

Thin shell coating has been chosen to transmit the moment from the elements on

the surface of the structure to the elements making up the entire structure The thin shell

coating perfonned on the surface of the structure is done for two reasons First it is used

to change the elements on the specified surface from three DOF elements to six DOF

elements This allows for the transmission of the moment from the lumped mass through

the constraint elements to the elements on the surface where the elements on the surface

can now accept rotational degrees of freedom as well as translational degrees of freedom

Second the thin shell coating method provides for the transmission of the moment

throughout the entire structure Since the structure already consists of elements that are

similar in size and shape any force or moment applied to one element will automatically

transmit that same force or moment to adjoining elements Thus by creating a thin shell

coating on the surface of the structure I am allowing the surface elements to receive force

and moment reactions which are in tum transmitted to all the elements in the structure

However there is one precaution that must be mentioned

6

Precaution

The constraint elements used to constrain the lumped mass to the elements on the

surface of the structure create a dissimilar mesh between This occurs because the

geometry of the elements on the surface of the structure are different fonn the geometry

of the constraint elements According to I-DEAS Creating Elements with Special

TechniQues the precaution for joining dissimilar meshes is that the results for any

elements near [this] mesh interface should be suspect In order to avoid suspect results

for elements near the mesh interface these elements are not selected for display during

post processing

7

CANTILEVER BEAM ANALYSIS

In order to validate the lumped mass method results I created several cantilever

beam models First I modeled a cantilever beam as seen below in Fig 1 The cantilever

beam is 10 x 2 x I and is made of steel The left end of the beam is held rigid while a

10000 in-lb moment is applied to the other end acting in the z-direction The resulting

bending stress should be a maximum at 15 ksi based on static calculations where the

moment is the force multiplied by the distance and the bending stress is the moment

multiplied by the distance from the neutral axis to the outer most fiber divided by the

moment of inertia COb - ~c) The results from the ftnite element analysis (FEA) are

15 ksi which agrees with the calculated bending stress of 15 ksi

M

Fig 1 Cantilever Beam 1 0x2x 1 Fig 2 Cantilever Beam lOx2xl with 1 0000 in-lb Moment Applied with Extension and Lumped

Mass Applied

The second cantilever beam model Fig 2 begins with the same dimensions used

in Fig 1 but now there is an additional beam section which extends off the end of the

cantilever beam The additional material allows me to (1) avoid suspect results near the

mesh interface and (2) post process the original cantilever beam section Now I can

constrain the lumped mass where the 10000 in-lb moment in the z-direction is applied

to the surface of the additional material Thus when I post process my model to

determine the maximum stress I can chose to post process only a portion of the extended

8

material This allows me to avoid the suspect results completely while still incorporating

the effects of the moment applied to the lumped mass

The results from the lumped mass method as applied to the cantilever beam are

shown in Table 1 The first maximum Von Mises stress for the cantilever beam 15 ksi

is the theoretical stress which all the models should predict I used this theoretical stress

as comparison for all the cantilever beam models tested

I post processed the second model of the cantilever beam which includes the

extended beam section and the lumped mass interface Figure I-B in Appendix B shows

that this maximum Von Mises stress is 29 ksi a stress that is 9333 higher than the

theoretical stress This result is precaution mentioned early stating that the results for

any elements near a mesh interface should be suspect II And as cautioned the high

stresses occur at the mesh interface

For the third model I post processed only a portion of the extended beam section

and excluded the lumped mass interface as seen in Fig 2-B The maximum Von Mises

stress dropped to 24 ksi With this post processing method I have been able to minimize

the suspect results near the mesh interface and the maximum Von Mises stress is now

only 60 higher than the theoretical stress However the true shape of the cantilever

beam must be analyzed as closely as possible Thus I post processed a fourth model

The fourth model eliminates the entire extended beam section on the side of the

applied moment as seen in Fig 3-B The result is a maximum Von Mises stress of 176

ksi This maximum Von Mises stress is only 1733 higher than the theoretical

maximum stress of 15 ksi

I used a fifth model to determine whether or not the extended beam section on the

opposite side of the lumped mass affects the results Figure 4-B shows the maximum

Von Mises stress for the fifth post processed model which post processes only the

original cantilever beam The stress remained the same at a maximum at 176 ksi

TABLE 1 Moment Resuhs for all Cantilever Beam Lumped Mass Models

PART CONDITION MAX VON MISES STRESS (ksi)

DIFFERENCE FROM THEORETICAL

Cantilever Beam 1 0 000 in-Ib moment applied to end of beam 15 0 With lumped Mass and Extensions 29 9333 Without lumped Mass 24 6000 Without Elements on lumped Mass Side 176 1733 Without lumped Mass and Extensions 176 1733

0

10

CANTILEVER BEAM RESULTS

From the cantilever beam models I found that the lumped mass model produces a

stress that is conservatively higher than that of the theoretical stress value Therefore this

method will only increase the factor of safety in my design Thus I will proceed with the

method of adding material to the original design then applying a lumped mass to the

additional material and fmally post processing only the original shape of the platform

connections

11

PLATFORM CONNECTION DESIGN

The design of all four platfonn connections begins by following the method used

for the cantilever beam The connections are drawn flfSt and then the additional material

is added I followed the procedure How to Create Moments on a Solid and applied the

reaction moments to the lumped mass corresponding to each of the four connections The

connections at nodes 1 and 288 are the plate connections for the platfonn and nodes 313

and 26 are the bracket connections for the platfonn

Boundruy Conditions

The boundary conditions are comprised of three parts The fIrst boundary

condition applied to the connections is the reaction forces The reaction forces at the

connections are shown in a previous analysis by Russ Rucinski in Appendix A Page A6

shows a summary of all the reaction forces and moments as they pertain to each node

connection

The second boundary condition specilles which surfaces will be held rigid The

rigid surfaces chosen are the surfaces of the plates and brackets which are in contact with

the cryobridge These surfaces will have no rotation or translation

The third boundary condition is the application of the 28000 lb minimum fastener

tension which is applied to all bolt holes as pertaining to the requirements of the

American Institute of Steel Construction (AlSC)

Case Scenarios

The analysis for the four node connections begins with three different case

scenarios for each connection The flISt case scenario presents the post processing of

each connection design including the extended material and the lumped mass The

12

extended material is the rectangular 8 x 4 x114 steel tubing known as a boom The

addition of the boom not only provides a surface to constrain the lumped mass but is also

a true representation of the assembled platfonn The second case scenario post processes

the connections excluding the lumped mass and a partial section of the boom The fmal

case presented post processes the connection excluding the lumped mass a partial section

of the boom and the fastener tension All three case scenarios post processed follow the

same case scenarios used to test the cantilever beam discussed previously Table 2

presents the results of these cases for all four connections and Appendix B presents the

stress plots for all the models Once a maximum Von Mises stress is found the material

selection process can begin

13

TABLE 2 Comparison of Moment Results for all Lumped Mass Models

PART CONDITION MAX VON MISES STRESS

Lumped Mass Partial Boom and Fastner Tension Excluded

14

Node Connection 288

The plate connection at node 288 is modeled ftrst Fig 5-B shows the Von Mises

stress results for the ftrst scenario the post processing of the plate including the boom

section and the lumped mass With a maximum Von Mises stress of 4860 ksi this model

is clearly beyond the acceptable stress range since the targeted maximum stress should be

less than 36 ksi At a maximum stress less than 36 ksi I can utilize ASTM A36 steel

which is abundantly available

The second scenario results plotted in Fig 6-B show a dramatic decrease in the

maximum Von Mises stress The second scenario post processes the plate excluding a

portion of the boom and the lumped mass and should be in agreement with the results

from the cantilever beam analysis The stress level dropped as expected from 4860 ksi to

811 ksi However the high stress concentration area changed from the mesh interface

between the lumped mass and the boom to the fastener tension area around the bolt holes

Since these stresses are compressive stresses and not bending stresses I can neglect their

presence when determining the maximum bending stress Also if the plate connection

was to fail at the bolts the bolts would fail ftrst during the pre-tension installation period

Therefore one more scenario must be presented to better approximate the stresses acting

on the plate

The ftnal scenario is the post processing of the plate excluding the boom section

on the applied moment side the lumped mass interface and the fastener tension applied

around the bolt holes Fig 7-B shows that the maximum Von Mises stress is now only

257 ksi

Node Connection 1

The results presented for node connection 1 are very similar to those for node

connection 288 since their geometry is exactly the same However due to the locations

of the plate connections on the platform node 1 has a lower maximum Von Mises stress

All three scenario results for node 1 follow the same trends as the scenario results for

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 9: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

4

does not require a moment arm length This new node is designated as the lumped mass

and allows for six degrees of freedom(OOF)

5

Constraint Elements

Now that the lumped mass is created it must be constrained to the surface of the

structure Constraining the lumped mass to the structure allows the moment which is

applied to the lumped mass to translate to the structure The leading candidate for

constraint is a constraint element A constraint element connects a single node to a set of

nodes and transmits all translational and rotational forces from the single node to the set

of nodes chosen Thus the constraint element originates from the lumped mass and

connects to the elements on the surface of structure thereby translating the moment

acting on the lumped mass to the elements on the surface of the structure However in

order to transmit the moment from the elements on the surface of the structure to the

elements making up the entire structure the elements on the surface must have six

degrees of freedom as well

Thin Shell Coating

Thin shell coating has been chosen to transmit the moment from the elements on

the surface of the structure to the elements making up the entire structure The thin shell

coating perfonned on the surface of the structure is done for two reasons First it is used

to change the elements on the specified surface from three DOF elements to six DOF

elements This allows for the transmission of the moment from the lumped mass through

the constraint elements to the elements on the surface where the elements on the surface

can now accept rotational degrees of freedom as well as translational degrees of freedom

Second the thin shell coating method provides for the transmission of the moment

throughout the entire structure Since the structure already consists of elements that are

similar in size and shape any force or moment applied to one element will automatically

transmit that same force or moment to adjoining elements Thus by creating a thin shell

coating on the surface of the structure I am allowing the surface elements to receive force

and moment reactions which are in tum transmitted to all the elements in the structure

However there is one precaution that must be mentioned

6

Precaution

The constraint elements used to constrain the lumped mass to the elements on the

surface of the structure create a dissimilar mesh between This occurs because the

geometry of the elements on the surface of the structure are different fonn the geometry

of the constraint elements According to I-DEAS Creating Elements with Special

TechniQues the precaution for joining dissimilar meshes is that the results for any

elements near [this] mesh interface should be suspect In order to avoid suspect results

for elements near the mesh interface these elements are not selected for display during

post processing

7

CANTILEVER BEAM ANALYSIS

In order to validate the lumped mass method results I created several cantilever

beam models First I modeled a cantilever beam as seen below in Fig 1 The cantilever

beam is 10 x 2 x I and is made of steel The left end of the beam is held rigid while a

10000 in-lb moment is applied to the other end acting in the z-direction The resulting

bending stress should be a maximum at 15 ksi based on static calculations where the

moment is the force multiplied by the distance and the bending stress is the moment

multiplied by the distance from the neutral axis to the outer most fiber divided by the

moment of inertia COb - ~c) The results from the ftnite element analysis (FEA) are

15 ksi which agrees with the calculated bending stress of 15 ksi

M

Fig 1 Cantilever Beam 1 0x2x 1 Fig 2 Cantilever Beam lOx2xl with 1 0000 in-lb Moment Applied with Extension and Lumped

Mass Applied

The second cantilever beam model Fig 2 begins with the same dimensions used

in Fig 1 but now there is an additional beam section which extends off the end of the

cantilever beam The additional material allows me to (1) avoid suspect results near the

mesh interface and (2) post process the original cantilever beam section Now I can

constrain the lumped mass where the 10000 in-lb moment in the z-direction is applied

to the surface of the additional material Thus when I post process my model to

determine the maximum stress I can chose to post process only a portion of the extended

8

material This allows me to avoid the suspect results completely while still incorporating

the effects of the moment applied to the lumped mass

The results from the lumped mass method as applied to the cantilever beam are

shown in Table 1 The first maximum Von Mises stress for the cantilever beam 15 ksi

is the theoretical stress which all the models should predict I used this theoretical stress

as comparison for all the cantilever beam models tested

I post processed the second model of the cantilever beam which includes the

extended beam section and the lumped mass interface Figure I-B in Appendix B shows

that this maximum Von Mises stress is 29 ksi a stress that is 9333 higher than the

theoretical stress This result is precaution mentioned early stating that the results for

any elements near a mesh interface should be suspect II And as cautioned the high

stresses occur at the mesh interface

For the third model I post processed only a portion of the extended beam section

and excluded the lumped mass interface as seen in Fig 2-B The maximum Von Mises

stress dropped to 24 ksi With this post processing method I have been able to minimize

the suspect results near the mesh interface and the maximum Von Mises stress is now

only 60 higher than the theoretical stress However the true shape of the cantilever

beam must be analyzed as closely as possible Thus I post processed a fourth model

The fourth model eliminates the entire extended beam section on the side of the

applied moment as seen in Fig 3-B The result is a maximum Von Mises stress of 176

ksi This maximum Von Mises stress is only 1733 higher than the theoretical

maximum stress of 15 ksi

I used a fifth model to determine whether or not the extended beam section on the

opposite side of the lumped mass affects the results Figure 4-B shows the maximum

Von Mises stress for the fifth post processed model which post processes only the

original cantilever beam The stress remained the same at a maximum at 176 ksi

TABLE 1 Moment Resuhs for all Cantilever Beam Lumped Mass Models

PART CONDITION MAX VON MISES STRESS (ksi)

DIFFERENCE FROM THEORETICAL

Cantilever Beam 1 0 000 in-Ib moment applied to end of beam 15 0 With lumped Mass and Extensions 29 9333 Without lumped Mass 24 6000 Without Elements on lumped Mass Side 176 1733 Without lumped Mass and Extensions 176 1733

0

10

CANTILEVER BEAM RESULTS

From the cantilever beam models I found that the lumped mass model produces a

stress that is conservatively higher than that of the theoretical stress value Therefore this

method will only increase the factor of safety in my design Thus I will proceed with the

method of adding material to the original design then applying a lumped mass to the

additional material and fmally post processing only the original shape of the platform

connections

11

PLATFORM CONNECTION DESIGN

The design of all four platfonn connections begins by following the method used

for the cantilever beam The connections are drawn flfSt and then the additional material

is added I followed the procedure How to Create Moments on a Solid and applied the

reaction moments to the lumped mass corresponding to each of the four connections The

connections at nodes 1 and 288 are the plate connections for the platfonn and nodes 313

and 26 are the bracket connections for the platfonn

Boundruy Conditions

The boundary conditions are comprised of three parts The fIrst boundary

condition applied to the connections is the reaction forces The reaction forces at the

connections are shown in a previous analysis by Russ Rucinski in Appendix A Page A6

shows a summary of all the reaction forces and moments as they pertain to each node

connection

The second boundary condition specilles which surfaces will be held rigid The

rigid surfaces chosen are the surfaces of the plates and brackets which are in contact with

the cryobridge These surfaces will have no rotation or translation

The third boundary condition is the application of the 28000 lb minimum fastener

tension which is applied to all bolt holes as pertaining to the requirements of the

American Institute of Steel Construction (AlSC)

Case Scenarios

The analysis for the four node connections begins with three different case

scenarios for each connection The flISt case scenario presents the post processing of

each connection design including the extended material and the lumped mass The

12

extended material is the rectangular 8 x 4 x114 steel tubing known as a boom The

addition of the boom not only provides a surface to constrain the lumped mass but is also

a true representation of the assembled platfonn The second case scenario post processes

the connections excluding the lumped mass and a partial section of the boom The fmal

case presented post processes the connection excluding the lumped mass a partial section

of the boom and the fastener tension All three case scenarios post processed follow the

same case scenarios used to test the cantilever beam discussed previously Table 2

presents the results of these cases for all four connections and Appendix B presents the

stress plots for all the models Once a maximum Von Mises stress is found the material

selection process can begin

13

TABLE 2 Comparison of Moment Results for all Lumped Mass Models

PART CONDITION MAX VON MISES STRESS

Lumped Mass Partial Boom and Fastner Tension Excluded

14

Node Connection 288

The plate connection at node 288 is modeled ftrst Fig 5-B shows the Von Mises

stress results for the ftrst scenario the post processing of the plate including the boom

section and the lumped mass With a maximum Von Mises stress of 4860 ksi this model

is clearly beyond the acceptable stress range since the targeted maximum stress should be

less than 36 ksi At a maximum stress less than 36 ksi I can utilize ASTM A36 steel

which is abundantly available

The second scenario results plotted in Fig 6-B show a dramatic decrease in the

maximum Von Mises stress The second scenario post processes the plate excluding a

portion of the boom and the lumped mass and should be in agreement with the results

from the cantilever beam analysis The stress level dropped as expected from 4860 ksi to

811 ksi However the high stress concentration area changed from the mesh interface

between the lumped mass and the boom to the fastener tension area around the bolt holes

Since these stresses are compressive stresses and not bending stresses I can neglect their

presence when determining the maximum bending stress Also if the plate connection

was to fail at the bolts the bolts would fail ftrst during the pre-tension installation period

Therefore one more scenario must be presented to better approximate the stresses acting

on the plate

The ftnal scenario is the post processing of the plate excluding the boom section

on the applied moment side the lumped mass interface and the fastener tension applied

around the bolt holes Fig 7-B shows that the maximum Von Mises stress is now only

257 ksi

Node Connection 1

The results presented for node connection 1 are very similar to those for node

connection 288 since their geometry is exactly the same However due to the locations

of the plate connections on the platform node 1 has a lower maximum Von Mises stress

All three scenario results for node 1 follow the same trends as the scenario results for

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 10: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

5

Constraint Elements

Now that the lumped mass is created it must be constrained to the surface of the

structure Constraining the lumped mass to the structure allows the moment which is

applied to the lumped mass to translate to the structure The leading candidate for

constraint is a constraint element A constraint element connects a single node to a set of

nodes and transmits all translational and rotational forces from the single node to the set

of nodes chosen Thus the constraint element originates from the lumped mass and

connects to the elements on the surface of structure thereby translating the moment

acting on the lumped mass to the elements on the surface of the structure However in

order to transmit the moment from the elements on the surface of the structure to the

elements making up the entire structure the elements on the surface must have six

degrees of freedom as well

Thin Shell Coating

Thin shell coating has been chosen to transmit the moment from the elements on

the surface of the structure to the elements making up the entire structure The thin shell

coating perfonned on the surface of the structure is done for two reasons First it is used

to change the elements on the specified surface from three DOF elements to six DOF

elements This allows for the transmission of the moment from the lumped mass through

the constraint elements to the elements on the surface where the elements on the surface

can now accept rotational degrees of freedom as well as translational degrees of freedom

Second the thin shell coating method provides for the transmission of the moment

throughout the entire structure Since the structure already consists of elements that are

similar in size and shape any force or moment applied to one element will automatically

transmit that same force or moment to adjoining elements Thus by creating a thin shell

coating on the surface of the structure I am allowing the surface elements to receive force

and moment reactions which are in tum transmitted to all the elements in the structure

However there is one precaution that must be mentioned

6

Precaution

The constraint elements used to constrain the lumped mass to the elements on the

surface of the structure create a dissimilar mesh between This occurs because the

geometry of the elements on the surface of the structure are different fonn the geometry

of the constraint elements According to I-DEAS Creating Elements with Special

TechniQues the precaution for joining dissimilar meshes is that the results for any

elements near [this] mesh interface should be suspect In order to avoid suspect results

for elements near the mesh interface these elements are not selected for display during

post processing

7

CANTILEVER BEAM ANALYSIS

In order to validate the lumped mass method results I created several cantilever

beam models First I modeled a cantilever beam as seen below in Fig 1 The cantilever

beam is 10 x 2 x I and is made of steel The left end of the beam is held rigid while a

10000 in-lb moment is applied to the other end acting in the z-direction The resulting

bending stress should be a maximum at 15 ksi based on static calculations where the

moment is the force multiplied by the distance and the bending stress is the moment

multiplied by the distance from the neutral axis to the outer most fiber divided by the

moment of inertia COb - ~c) The results from the ftnite element analysis (FEA) are

15 ksi which agrees with the calculated bending stress of 15 ksi

M

Fig 1 Cantilever Beam 1 0x2x 1 Fig 2 Cantilever Beam lOx2xl with 1 0000 in-lb Moment Applied with Extension and Lumped

Mass Applied

The second cantilever beam model Fig 2 begins with the same dimensions used

in Fig 1 but now there is an additional beam section which extends off the end of the

cantilever beam The additional material allows me to (1) avoid suspect results near the

mesh interface and (2) post process the original cantilever beam section Now I can

constrain the lumped mass where the 10000 in-lb moment in the z-direction is applied

to the surface of the additional material Thus when I post process my model to

determine the maximum stress I can chose to post process only a portion of the extended

8

material This allows me to avoid the suspect results completely while still incorporating

the effects of the moment applied to the lumped mass

The results from the lumped mass method as applied to the cantilever beam are

shown in Table 1 The first maximum Von Mises stress for the cantilever beam 15 ksi

is the theoretical stress which all the models should predict I used this theoretical stress

as comparison for all the cantilever beam models tested

I post processed the second model of the cantilever beam which includes the

extended beam section and the lumped mass interface Figure I-B in Appendix B shows

that this maximum Von Mises stress is 29 ksi a stress that is 9333 higher than the

theoretical stress This result is precaution mentioned early stating that the results for

any elements near a mesh interface should be suspect II And as cautioned the high

stresses occur at the mesh interface

For the third model I post processed only a portion of the extended beam section

and excluded the lumped mass interface as seen in Fig 2-B The maximum Von Mises

stress dropped to 24 ksi With this post processing method I have been able to minimize

the suspect results near the mesh interface and the maximum Von Mises stress is now

only 60 higher than the theoretical stress However the true shape of the cantilever

beam must be analyzed as closely as possible Thus I post processed a fourth model

The fourth model eliminates the entire extended beam section on the side of the

applied moment as seen in Fig 3-B The result is a maximum Von Mises stress of 176

ksi This maximum Von Mises stress is only 1733 higher than the theoretical

maximum stress of 15 ksi

I used a fifth model to determine whether or not the extended beam section on the

opposite side of the lumped mass affects the results Figure 4-B shows the maximum

Von Mises stress for the fifth post processed model which post processes only the

original cantilever beam The stress remained the same at a maximum at 176 ksi

TABLE 1 Moment Resuhs for all Cantilever Beam Lumped Mass Models

PART CONDITION MAX VON MISES STRESS (ksi)

DIFFERENCE FROM THEORETICAL

Cantilever Beam 1 0 000 in-Ib moment applied to end of beam 15 0 With lumped Mass and Extensions 29 9333 Without lumped Mass 24 6000 Without Elements on lumped Mass Side 176 1733 Without lumped Mass and Extensions 176 1733

0

10

CANTILEVER BEAM RESULTS

From the cantilever beam models I found that the lumped mass model produces a

stress that is conservatively higher than that of the theoretical stress value Therefore this

method will only increase the factor of safety in my design Thus I will proceed with the

method of adding material to the original design then applying a lumped mass to the

additional material and fmally post processing only the original shape of the platform

connections

11

PLATFORM CONNECTION DESIGN

The design of all four platfonn connections begins by following the method used

for the cantilever beam The connections are drawn flfSt and then the additional material

is added I followed the procedure How to Create Moments on a Solid and applied the

reaction moments to the lumped mass corresponding to each of the four connections The

connections at nodes 1 and 288 are the plate connections for the platfonn and nodes 313

and 26 are the bracket connections for the platfonn

Boundruy Conditions

The boundary conditions are comprised of three parts The fIrst boundary

condition applied to the connections is the reaction forces The reaction forces at the

connections are shown in a previous analysis by Russ Rucinski in Appendix A Page A6

shows a summary of all the reaction forces and moments as they pertain to each node

connection

The second boundary condition specilles which surfaces will be held rigid The

rigid surfaces chosen are the surfaces of the plates and brackets which are in contact with

the cryobridge These surfaces will have no rotation or translation

The third boundary condition is the application of the 28000 lb minimum fastener

tension which is applied to all bolt holes as pertaining to the requirements of the

American Institute of Steel Construction (AlSC)

Case Scenarios

The analysis for the four node connections begins with three different case

scenarios for each connection The flISt case scenario presents the post processing of

each connection design including the extended material and the lumped mass The

12

extended material is the rectangular 8 x 4 x114 steel tubing known as a boom The

addition of the boom not only provides a surface to constrain the lumped mass but is also

a true representation of the assembled platfonn The second case scenario post processes

the connections excluding the lumped mass and a partial section of the boom The fmal

case presented post processes the connection excluding the lumped mass a partial section

of the boom and the fastener tension All three case scenarios post processed follow the

same case scenarios used to test the cantilever beam discussed previously Table 2

presents the results of these cases for all four connections and Appendix B presents the

stress plots for all the models Once a maximum Von Mises stress is found the material

selection process can begin

13

TABLE 2 Comparison of Moment Results for all Lumped Mass Models

PART CONDITION MAX VON MISES STRESS

Lumped Mass Partial Boom and Fastner Tension Excluded

14

Node Connection 288

The plate connection at node 288 is modeled ftrst Fig 5-B shows the Von Mises

stress results for the ftrst scenario the post processing of the plate including the boom

section and the lumped mass With a maximum Von Mises stress of 4860 ksi this model

is clearly beyond the acceptable stress range since the targeted maximum stress should be

less than 36 ksi At a maximum stress less than 36 ksi I can utilize ASTM A36 steel

which is abundantly available

The second scenario results plotted in Fig 6-B show a dramatic decrease in the

maximum Von Mises stress The second scenario post processes the plate excluding a

portion of the boom and the lumped mass and should be in agreement with the results

from the cantilever beam analysis The stress level dropped as expected from 4860 ksi to

811 ksi However the high stress concentration area changed from the mesh interface

between the lumped mass and the boom to the fastener tension area around the bolt holes

Since these stresses are compressive stresses and not bending stresses I can neglect their

presence when determining the maximum bending stress Also if the plate connection

was to fail at the bolts the bolts would fail ftrst during the pre-tension installation period

Therefore one more scenario must be presented to better approximate the stresses acting

on the plate

The ftnal scenario is the post processing of the plate excluding the boom section

on the applied moment side the lumped mass interface and the fastener tension applied

around the bolt holes Fig 7-B shows that the maximum Von Mises stress is now only

257 ksi

Node Connection 1

The results presented for node connection 1 are very similar to those for node

connection 288 since their geometry is exactly the same However due to the locations

of the plate connections on the platform node 1 has a lower maximum Von Mises stress

All three scenario results for node 1 follow the same trends as the scenario results for

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 11: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

6

Precaution

The constraint elements used to constrain the lumped mass to the elements on the

surface of the structure create a dissimilar mesh between This occurs because the

geometry of the elements on the surface of the structure are different fonn the geometry

of the constraint elements According to I-DEAS Creating Elements with Special

TechniQues the precaution for joining dissimilar meshes is that the results for any

elements near [this] mesh interface should be suspect In order to avoid suspect results

for elements near the mesh interface these elements are not selected for display during

post processing

7

CANTILEVER BEAM ANALYSIS

In order to validate the lumped mass method results I created several cantilever

beam models First I modeled a cantilever beam as seen below in Fig 1 The cantilever

beam is 10 x 2 x I and is made of steel The left end of the beam is held rigid while a

10000 in-lb moment is applied to the other end acting in the z-direction The resulting

bending stress should be a maximum at 15 ksi based on static calculations where the

moment is the force multiplied by the distance and the bending stress is the moment

multiplied by the distance from the neutral axis to the outer most fiber divided by the

moment of inertia COb - ~c) The results from the ftnite element analysis (FEA) are

15 ksi which agrees with the calculated bending stress of 15 ksi

M

Fig 1 Cantilever Beam 1 0x2x 1 Fig 2 Cantilever Beam lOx2xl with 1 0000 in-lb Moment Applied with Extension and Lumped

Mass Applied

The second cantilever beam model Fig 2 begins with the same dimensions used

in Fig 1 but now there is an additional beam section which extends off the end of the

cantilever beam The additional material allows me to (1) avoid suspect results near the

mesh interface and (2) post process the original cantilever beam section Now I can

constrain the lumped mass where the 10000 in-lb moment in the z-direction is applied

to the surface of the additional material Thus when I post process my model to

determine the maximum stress I can chose to post process only a portion of the extended

8

material This allows me to avoid the suspect results completely while still incorporating

the effects of the moment applied to the lumped mass

The results from the lumped mass method as applied to the cantilever beam are

shown in Table 1 The first maximum Von Mises stress for the cantilever beam 15 ksi

is the theoretical stress which all the models should predict I used this theoretical stress

as comparison for all the cantilever beam models tested

I post processed the second model of the cantilever beam which includes the

extended beam section and the lumped mass interface Figure I-B in Appendix B shows

that this maximum Von Mises stress is 29 ksi a stress that is 9333 higher than the

theoretical stress This result is precaution mentioned early stating that the results for

any elements near a mesh interface should be suspect II And as cautioned the high

stresses occur at the mesh interface

For the third model I post processed only a portion of the extended beam section

and excluded the lumped mass interface as seen in Fig 2-B The maximum Von Mises

stress dropped to 24 ksi With this post processing method I have been able to minimize

the suspect results near the mesh interface and the maximum Von Mises stress is now

only 60 higher than the theoretical stress However the true shape of the cantilever

beam must be analyzed as closely as possible Thus I post processed a fourth model

The fourth model eliminates the entire extended beam section on the side of the

applied moment as seen in Fig 3-B The result is a maximum Von Mises stress of 176

ksi This maximum Von Mises stress is only 1733 higher than the theoretical

maximum stress of 15 ksi

I used a fifth model to determine whether or not the extended beam section on the

opposite side of the lumped mass affects the results Figure 4-B shows the maximum

Von Mises stress for the fifth post processed model which post processes only the

original cantilever beam The stress remained the same at a maximum at 176 ksi

TABLE 1 Moment Resuhs for all Cantilever Beam Lumped Mass Models

PART CONDITION MAX VON MISES STRESS (ksi)

DIFFERENCE FROM THEORETICAL

Cantilever Beam 1 0 000 in-Ib moment applied to end of beam 15 0 With lumped Mass and Extensions 29 9333 Without lumped Mass 24 6000 Without Elements on lumped Mass Side 176 1733 Without lumped Mass and Extensions 176 1733

0

10

CANTILEVER BEAM RESULTS

From the cantilever beam models I found that the lumped mass model produces a

stress that is conservatively higher than that of the theoretical stress value Therefore this

method will only increase the factor of safety in my design Thus I will proceed with the

method of adding material to the original design then applying a lumped mass to the

additional material and fmally post processing only the original shape of the platform

connections

11

PLATFORM CONNECTION DESIGN

The design of all four platfonn connections begins by following the method used

for the cantilever beam The connections are drawn flfSt and then the additional material

is added I followed the procedure How to Create Moments on a Solid and applied the

reaction moments to the lumped mass corresponding to each of the four connections The

connections at nodes 1 and 288 are the plate connections for the platfonn and nodes 313

and 26 are the bracket connections for the platfonn

Boundruy Conditions

The boundary conditions are comprised of three parts The fIrst boundary

condition applied to the connections is the reaction forces The reaction forces at the

connections are shown in a previous analysis by Russ Rucinski in Appendix A Page A6

shows a summary of all the reaction forces and moments as they pertain to each node

connection

The second boundary condition specilles which surfaces will be held rigid The

rigid surfaces chosen are the surfaces of the plates and brackets which are in contact with

the cryobridge These surfaces will have no rotation or translation

The third boundary condition is the application of the 28000 lb minimum fastener

tension which is applied to all bolt holes as pertaining to the requirements of the

American Institute of Steel Construction (AlSC)

Case Scenarios

The analysis for the four node connections begins with three different case

scenarios for each connection The flISt case scenario presents the post processing of

each connection design including the extended material and the lumped mass The

12

extended material is the rectangular 8 x 4 x114 steel tubing known as a boom The

addition of the boom not only provides a surface to constrain the lumped mass but is also

a true representation of the assembled platfonn The second case scenario post processes

the connections excluding the lumped mass and a partial section of the boom The fmal

case presented post processes the connection excluding the lumped mass a partial section

of the boom and the fastener tension All three case scenarios post processed follow the

same case scenarios used to test the cantilever beam discussed previously Table 2

presents the results of these cases for all four connections and Appendix B presents the

stress plots for all the models Once a maximum Von Mises stress is found the material

selection process can begin

13

TABLE 2 Comparison of Moment Results for all Lumped Mass Models

PART CONDITION MAX VON MISES STRESS

Lumped Mass Partial Boom and Fastner Tension Excluded

14

Node Connection 288

The plate connection at node 288 is modeled ftrst Fig 5-B shows the Von Mises

stress results for the ftrst scenario the post processing of the plate including the boom

section and the lumped mass With a maximum Von Mises stress of 4860 ksi this model

is clearly beyond the acceptable stress range since the targeted maximum stress should be

less than 36 ksi At a maximum stress less than 36 ksi I can utilize ASTM A36 steel

which is abundantly available

The second scenario results plotted in Fig 6-B show a dramatic decrease in the

maximum Von Mises stress The second scenario post processes the plate excluding a

portion of the boom and the lumped mass and should be in agreement with the results

from the cantilever beam analysis The stress level dropped as expected from 4860 ksi to

811 ksi However the high stress concentration area changed from the mesh interface

between the lumped mass and the boom to the fastener tension area around the bolt holes

Since these stresses are compressive stresses and not bending stresses I can neglect their

presence when determining the maximum bending stress Also if the plate connection

was to fail at the bolts the bolts would fail ftrst during the pre-tension installation period

Therefore one more scenario must be presented to better approximate the stresses acting

on the plate

The ftnal scenario is the post processing of the plate excluding the boom section

on the applied moment side the lumped mass interface and the fastener tension applied

around the bolt holes Fig 7-B shows that the maximum Von Mises stress is now only

257 ksi

Node Connection 1

The results presented for node connection 1 are very similar to those for node

connection 288 since their geometry is exactly the same However due to the locations

of the plate connections on the platform node 1 has a lower maximum Von Mises stress

All three scenario results for node 1 follow the same trends as the scenario results for

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 12: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

7

CANTILEVER BEAM ANALYSIS

In order to validate the lumped mass method results I created several cantilever

beam models First I modeled a cantilever beam as seen below in Fig 1 The cantilever

beam is 10 x 2 x I and is made of steel The left end of the beam is held rigid while a

10000 in-lb moment is applied to the other end acting in the z-direction The resulting

bending stress should be a maximum at 15 ksi based on static calculations where the

moment is the force multiplied by the distance and the bending stress is the moment

multiplied by the distance from the neutral axis to the outer most fiber divided by the

moment of inertia COb - ~c) The results from the ftnite element analysis (FEA) are

15 ksi which agrees with the calculated bending stress of 15 ksi

M

Fig 1 Cantilever Beam 1 0x2x 1 Fig 2 Cantilever Beam lOx2xl with 1 0000 in-lb Moment Applied with Extension and Lumped

Mass Applied

The second cantilever beam model Fig 2 begins with the same dimensions used

in Fig 1 but now there is an additional beam section which extends off the end of the

cantilever beam The additional material allows me to (1) avoid suspect results near the

mesh interface and (2) post process the original cantilever beam section Now I can

constrain the lumped mass where the 10000 in-lb moment in the z-direction is applied

to the surface of the additional material Thus when I post process my model to

determine the maximum stress I can chose to post process only a portion of the extended

8

material This allows me to avoid the suspect results completely while still incorporating

the effects of the moment applied to the lumped mass

The results from the lumped mass method as applied to the cantilever beam are

shown in Table 1 The first maximum Von Mises stress for the cantilever beam 15 ksi

is the theoretical stress which all the models should predict I used this theoretical stress

as comparison for all the cantilever beam models tested

I post processed the second model of the cantilever beam which includes the

extended beam section and the lumped mass interface Figure I-B in Appendix B shows

that this maximum Von Mises stress is 29 ksi a stress that is 9333 higher than the

theoretical stress This result is precaution mentioned early stating that the results for

any elements near a mesh interface should be suspect II And as cautioned the high

stresses occur at the mesh interface

For the third model I post processed only a portion of the extended beam section

and excluded the lumped mass interface as seen in Fig 2-B The maximum Von Mises

stress dropped to 24 ksi With this post processing method I have been able to minimize

the suspect results near the mesh interface and the maximum Von Mises stress is now

only 60 higher than the theoretical stress However the true shape of the cantilever

beam must be analyzed as closely as possible Thus I post processed a fourth model

The fourth model eliminates the entire extended beam section on the side of the

applied moment as seen in Fig 3-B The result is a maximum Von Mises stress of 176

ksi This maximum Von Mises stress is only 1733 higher than the theoretical

maximum stress of 15 ksi

I used a fifth model to determine whether or not the extended beam section on the

opposite side of the lumped mass affects the results Figure 4-B shows the maximum

Von Mises stress for the fifth post processed model which post processes only the

original cantilever beam The stress remained the same at a maximum at 176 ksi

TABLE 1 Moment Resuhs for all Cantilever Beam Lumped Mass Models

PART CONDITION MAX VON MISES STRESS (ksi)

DIFFERENCE FROM THEORETICAL

Cantilever Beam 1 0 000 in-Ib moment applied to end of beam 15 0 With lumped Mass and Extensions 29 9333 Without lumped Mass 24 6000 Without Elements on lumped Mass Side 176 1733 Without lumped Mass and Extensions 176 1733

0

10

CANTILEVER BEAM RESULTS

From the cantilever beam models I found that the lumped mass model produces a

stress that is conservatively higher than that of the theoretical stress value Therefore this

method will only increase the factor of safety in my design Thus I will proceed with the

method of adding material to the original design then applying a lumped mass to the

additional material and fmally post processing only the original shape of the platform

connections

11

PLATFORM CONNECTION DESIGN

The design of all four platfonn connections begins by following the method used

for the cantilever beam The connections are drawn flfSt and then the additional material

is added I followed the procedure How to Create Moments on a Solid and applied the

reaction moments to the lumped mass corresponding to each of the four connections The

connections at nodes 1 and 288 are the plate connections for the platfonn and nodes 313

and 26 are the bracket connections for the platfonn

Boundruy Conditions

The boundary conditions are comprised of three parts The fIrst boundary

condition applied to the connections is the reaction forces The reaction forces at the

connections are shown in a previous analysis by Russ Rucinski in Appendix A Page A6

shows a summary of all the reaction forces and moments as they pertain to each node

connection

The second boundary condition specilles which surfaces will be held rigid The

rigid surfaces chosen are the surfaces of the plates and brackets which are in contact with

the cryobridge These surfaces will have no rotation or translation

The third boundary condition is the application of the 28000 lb minimum fastener

tension which is applied to all bolt holes as pertaining to the requirements of the

American Institute of Steel Construction (AlSC)

Case Scenarios

The analysis for the four node connections begins with three different case

scenarios for each connection The flISt case scenario presents the post processing of

each connection design including the extended material and the lumped mass The

12

extended material is the rectangular 8 x 4 x114 steel tubing known as a boom The

addition of the boom not only provides a surface to constrain the lumped mass but is also

a true representation of the assembled platfonn The second case scenario post processes

the connections excluding the lumped mass and a partial section of the boom The fmal

case presented post processes the connection excluding the lumped mass a partial section

of the boom and the fastener tension All three case scenarios post processed follow the

same case scenarios used to test the cantilever beam discussed previously Table 2

presents the results of these cases for all four connections and Appendix B presents the

stress plots for all the models Once a maximum Von Mises stress is found the material

selection process can begin

13

TABLE 2 Comparison of Moment Results for all Lumped Mass Models

PART CONDITION MAX VON MISES STRESS

Lumped Mass Partial Boom and Fastner Tension Excluded

14

Node Connection 288

The plate connection at node 288 is modeled ftrst Fig 5-B shows the Von Mises

stress results for the ftrst scenario the post processing of the plate including the boom

section and the lumped mass With a maximum Von Mises stress of 4860 ksi this model

is clearly beyond the acceptable stress range since the targeted maximum stress should be

less than 36 ksi At a maximum stress less than 36 ksi I can utilize ASTM A36 steel

which is abundantly available

The second scenario results plotted in Fig 6-B show a dramatic decrease in the

maximum Von Mises stress The second scenario post processes the plate excluding a

portion of the boom and the lumped mass and should be in agreement with the results

from the cantilever beam analysis The stress level dropped as expected from 4860 ksi to

811 ksi However the high stress concentration area changed from the mesh interface

between the lumped mass and the boom to the fastener tension area around the bolt holes

Since these stresses are compressive stresses and not bending stresses I can neglect their

presence when determining the maximum bending stress Also if the plate connection

was to fail at the bolts the bolts would fail ftrst during the pre-tension installation period

Therefore one more scenario must be presented to better approximate the stresses acting

on the plate

The ftnal scenario is the post processing of the plate excluding the boom section

on the applied moment side the lumped mass interface and the fastener tension applied

around the bolt holes Fig 7-B shows that the maximum Von Mises stress is now only

257 ksi

Node Connection 1

The results presented for node connection 1 are very similar to those for node

connection 288 since their geometry is exactly the same However due to the locations

of the plate connections on the platform node 1 has a lower maximum Von Mises stress

All three scenario results for node 1 follow the same trends as the scenario results for

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 13: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

8

material This allows me to avoid the suspect results completely while still incorporating

the effects of the moment applied to the lumped mass

The results from the lumped mass method as applied to the cantilever beam are

shown in Table 1 The first maximum Von Mises stress for the cantilever beam 15 ksi

is the theoretical stress which all the models should predict I used this theoretical stress

as comparison for all the cantilever beam models tested

I post processed the second model of the cantilever beam which includes the

extended beam section and the lumped mass interface Figure I-B in Appendix B shows

that this maximum Von Mises stress is 29 ksi a stress that is 9333 higher than the

theoretical stress This result is precaution mentioned early stating that the results for

any elements near a mesh interface should be suspect II And as cautioned the high

stresses occur at the mesh interface

For the third model I post processed only a portion of the extended beam section

and excluded the lumped mass interface as seen in Fig 2-B The maximum Von Mises

stress dropped to 24 ksi With this post processing method I have been able to minimize

the suspect results near the mesh interface and the maximum Von Mises stress is now

only 60 higher than the theoretical stress However the true shape of the cantilever

beam must be analyzed as closely as possible Thus I post processed a fourth model

The fourth model eliminates the entire extended beam section on the side of the

applied moment as seen in Fig 3-B The result is a maximum Von Mises stress of 176

ksi This maximum Von Mises stress is only 1733 higher than the theoretical

maximum stress of 15 ksi

I used a fifth model to determine whether or not the extended beam section on the

opposite side of the lumped mass affects the results Figure 4-B shows the maximum

Von Mises stress for the fifth post processed model which post processes only the

original cantilever beam The stress remained the same at a maximum at 176 ksi

TABLE 1 Moment Resuhs for all Cantilever Beam Lumped Mass Models

PART CONDITION MAX VON MISES STRESS (ksi)

DIFFERENCE FROM THEORETICAL

Cantilever Beam 1 0 000 in-Ib moment applied to end of beam 15 0 With lumped Mass and Extensions 29 9333 Without lumped Mass 24 6000 Without Elements on lumped Mass Side 176 1733 Without lumped Mass and Extensions 176 1733

0

10

CANTILEVER BEAM RESULTS

From the cantilever beam models I found that the lumped mass model produces a

stress that is conservatively higher than that of the theoretical stress value Therefore this

method will only increase the factor of safety in my design Thus I will proceed with the

method of adding material to the original design then applying a lumped mass to the

additional material and fmally post processing only the original shape of the platform

connections

11

PLATFORM CONNECTION DESIGN

The design of all four platfonn connections begins by following the method used

for the cantilever beam The connections are drawn flfSt and then the additional material

is added I followed the procedure How to Create Moments on a Solid and applied the

reaction moments to the lumped mass corresponding to each of the four connections The

connections at nodes 1 and 288 are the plate connections for the platfonn and nodes 313

and 26 are the bracket connections for the platfonn

Boundruy Conditions

The boundary conditions are comprised of three parts The fIrst boundary

condition applied to the connections is the reaction forces The reaction forces at the

connections are shown in a previous analysis by Russ Rucinski in Appendix A Page A6

shows a summary of all the reaction forces and moments as they pertain to each node

connection

The second boundary condition specilles which surfaces will be held rigid The

rigid surfaces chosen are the surfaces of the plates and brackets which are in contact with

the cryobridge These surfaces will have no rotation or translation

The third boundary condition is the application of the 28000 lb minimum fastener

tension which is applied to all bolt holes as pertaining to the requirements of the

American Institute of Steel Construction (AlSC)

Case Scenarios

The analysis for the four node connections begins with three different case

scenarios for each connection The flISt case scenario presents the post processing of

each connection design including the extended material and the lumped mass The

12

extended material is the rectangular 8 x 4 x114 steel tubing known as a boom The

addition of the boom not only provides a surface to constrain the lumped mass but is also

a true representation of the assembled platfonn The second case scenario post processes

the connections excluding the lumped mass and a partial section of the boom The fmal

case presented post processes the connection excluding the lumped mass a partial section

of the boom and the fastener tension All three case scenarios post processed follow the

same case scenarios used to test the cantilever beam discussed previously Table 2

presents the results of these cases for all four connections and Appendix B presents the

stress plots for all the models Once a maximum Von Mises stress is found the material

selection process can begin

13

TABLE 2 Comparison of Moment Results for all Lumped Mass Models

PART CONDITION MAX VON MISES STRESS

Lumped Mass Partial Boom and Fastner Tension Excluded

14

Node Connection 288

The plate connection at node 288 is modeled ftrst Fig 5-B shows the Von Mises

stress results for the ftrst scenario the post processing of the plate including the boom

section and the lumped mass With a maximum Von Mises stress of 4860 ksi this model

is clearly beyond the acceptable stress range since the targeted maximum stress should be

less than 36 ksi At a maximum stress less than 36 ksi I can utilize ASTM A36 steel

which is abundantly available

The second scenario results plotted in Fig 6-B show a dramatic decrease in the

maximum Von Mises stress The second scenario post processes the plate excluding a

portion of the boom and the lumped mass and should be in agreement with the results

from the cantilever beam analysis The stress level dropped as expected from 4860 ksi to

811 ksi However the high stress concentration area changed from the mesh interface

between the lumped mass and the boom to the fastener tension area around the bolt holes

Since these stresses are compressive stresses and not bending stresses I can neglect their

presence when determining the maximum bending stress Also if the plate connection

was to fail at the bolts the bolts would fail ftrst during the pre-tension installation period

Therefore one more scenario must be presented to better approximate the stresses acting

on the plate

The ftnal scenario is the post processing of the plate excluding the boom section

on the applied moment side the lumped mass interface and the fastener tension applied

around the bolt holes Fig 7-B shows that the maximum Von Mises stress is now only

257 ksi

Node Connection 1

The results presented for node connection 1 are very similar to those for node

connection 288 since their geometry is exactly the same However due to the locations

of the plate connections on the platform node 1 has a lower maximum Von Mises stress

All three scenario results for node 1 follow the same trends as the scenario results for

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 14: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

TABLE 1 Moment Resuhs for all Cantilever Beam Lumped Mass Models

PART CONDITION MAX VON MISES STRESS (ksi)

DIFFERENCE FROM THEORETICAL

Cantilever Beam 1 0 000 in-Ib moment applied to end of beam 15 0 With lumped Mass and Extensions 29 9333 Without lumped Mass 24 6000 Without Elements on lumped Mass Side 176 1733 Without lumped Mass and Extensions 176 1733

0

10

CANTILEVER BEAM RESULTS

From the cantilever beam models I found that the lumped mass model produces a

stress that is conservatively higher than that of the theoretical stress value Therefore this

method will only increase the factor of safety in my design Thus I will proceed with the

method of adding material to the original design then applying a lumped mass to the

additional material and fmally post processing only the original shape of the platform

connections

11

PLATFORM CONNECTION DESIGN

The design of all four platfonn connections begins by following the method used

for the cantilever beam The connections are drawn flfSt and then the additional material

is added I followed the procedure How to Create Moments on a Solid and applied the

reaction moments to the lumped mass corresponding to each of the four connections The

connections at nodes 1 and 288 are the plate connections for the platfonn and nodes 313

and 26 are the bracket connections for the platfonn

Boundruy Conditions

The boundary conditions are comprised of three parts The fIrst boundary

condition applied to the connections is the reaction forces The reaction forces at the

connections are shown in a previous analysis by Russ Rucinski in Appendix A Page A6

shows a summary of all the reaction forces and moments as they pertain to each node

connection

The second boundary condition specilles which surfaces will be held rigid The

rigid surfaces chosen are the surfaces of the plates and brackets which are in contact with

the cryobridge These surfaces will have no rotation or translation

The third boundary condition is the application of the 28000 lb minimum fastener

tension which is applied to all bolt holes as pertaining to the requirements of the

American Institute of Steel Construction (AlSC)

Case Scenarios

The analysis for the four node connections begins with three different case

scenarios for each connection The flISt case scenario presents the post processing of

each connection design including the extended material and the lumped mass The

12

extended material is the rectangular 8 x 4 x114 steel tubing known as a boom The

addition of the boom not only provides a surface to constrain the lumped mass but is also

a true representation of the assembled platfonn The second case scenario post processes

the connections excluding the lumped mass and a partial section of the boom The fmal

case presented post processes the connection excluding the lumped mass a partial section

of the boom and the fastener tension All three case scenarios post processed follow the

same case scenarios used to test the cantilever beam discussed previously Table 2

presents the results of these cases for all four connections and Appendix B presents the

stress plots for all the models Once a maximum Von Mises stress is found the material

selection process can begin

13

TABLE 2 Comparison of Moment Results for all Lumped Mass Models

PART CONDITION MAX VON MISES STRESS

Lumped Mass Partial Boom and Fastner Tension Excluded

14

Node Connection 288

The plate connection at node 288 is modeled ftrst Fig 5-B shows the Von Mises

stress results for the ftrst scenario the post processing of the plate including the boom

section and the lumped mass With a maximum Von Mises stress of 4860 ksi this model

is clearly beyond the acceptable stress range since the targeted maximum stress should be

less than 36 ksi At a maximum stress less than 36 ksi I can utilize ASTM A36 steel

which is abundantly available

The second scenario results plotted in Fig 6-B show a dramatic decrease in the

maximum Von Mises stress The second scenario post processes the plate excluding a

portion of the boom and the lumped mass and should be in agreement with the results

from the cantilever beam analysis The stress level dropped as expected from 4860 ksi to

811 ksi However the high stress concentration area changed from the mesh interface

between the lumped mass and the boom to the fastener tension area around the bolt holes

Since these stresses are compressive stresses and not bending stresses I can neglect their

presence when determining the maximum bending stress Also if the plate connection

was to fail at the bolts the bolts would fail ftrst during the pre-tension installation period

Therefore one more scenario must be presented to better approximate the stresses acting

on the plate

The ftnal scenario is the post processing of the plate excluding the boom section

on the applied moment side the lumped mass interface and the fastener tension applied

around the bolt holes Fig 7-B shows that the maximum Von Mises stress is now only

257 ksi

Node Connection 1

The results presented for node connection 1 are very similar to those for node

connection 288 since their geometry is exactly the same However due to the locations

of the plate connections on the platform node 1 has a lower maximum Von Mises stress

All three scenario results for node 1 follow the same trends as the scenario results for

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 15: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

10

CANTILEVER BEAM RESULTS

From the cantilever beam models I found that the lumped mass model produces a

stress that is conservatively higher than that of the theoretical stress value Therefore this

method will only increase the factor of safety in my design Thus I will proceed with the

method of adding material to the original design then applying a lumped mass to the

additional material and fmally post processing only the original shape of the platform

connections

11

PLATFORM CONNECTION DESIGN

The design of all four platfonn connections begins by following the method used

for the cantilever beam The connections are drawn flfSt and then the additional material

is added I followed the procedure How to Create Moments on a Solid and applied the

reaction moments to the lumped mass corresponding to each of the four connections The

connections at nodes 1 and 288 are the plate connections for the platfonn and nodes 313

and 26 are the bracket connections for the platfonn

Boundruy Conditions

The boundary conditions are comprised of three parts The fIrst boundary

condition applied to the connections is the reaction forces The reaction forces at the

connections are shown in a previous analysis by Russ Rucinski in Appendix A Page A6

shows a summary of all the reaction forces and moments as they pertain to each node

connection

The second boundary condition specilles which surfaces will be held rigid The

rigid surfaces chosen are the surfaces of the plates and brackets which are in contact with

the cryobridge These surfaces will have no rotation or translation

The third boundary condition is the application of the 28000 lb minimum fastener

tension which is applied to all bolt holes as pertaining to the requirements of the

American Institute of Steel Construction (AlSC)

Case Scenarios

The analysis for the four node connections begins with three different case

scenarios for each connection The flISt case scenario presents the post processing of

each connection design including the extended material and the lumped mass The

12

extended material is the rectangular 8 x 4 x114 steel tubing known as a boom The

addition of the boom not only provides a surface to constrain the lumped mass but is also

a true representation of the assembled platfonn The second case scenario post processes

the connections excluding the lumped mass and a partial section of the boom The fmal

case presented post processes the connection excluding the lumped mass a partial section

of the boom and the fastener tension All three case scenarios post processed follow the

same case scenarios used to test the cantilever beam discussed previously Table 2

presents the results of these cases for all four connections and Appendix B presents the

stress plots for all the models Once a maximum Von Mises stress is found the material

selection process can begin

13

TABLE 2 Comparison of Moment Results for all Lumped Mass Models

PART CONDITION MAX VON MISES STRESS

Lumped Mass Partial Boom and Fastner Tension Excluded

14

Node Connection 288

The plate connection at node 288 is modeled ftrst Fig 5-B shows the Von Mises

stress results for the ftrst scenario the post processing of the plate including the boom

section and the lumped mass With a maximum Von Mises stress of 4860 ksi this model

is clearly beyond the acceptable stress range since the targeted maximum stress should be

less than 36 ksi At a maximum stress less than 36 ksi I can utilize ASTM A36 steel

which is abundantly available

The second scenario results plotted in Fig 6-B show a dramatic decrease in the

maximum Von Mises stress The second scenario post processes the plate excluding a

portion of the boom and the lumped mass and should be in agreement with the results

from the cantilever beam analysis The stress level dropped as expected from 4860 ksi to

811 ksi However the high stress concentration area changed from the mesh interface

between the lumped mass and the boom to the fastener tension area around the bolt holes

Since these stresses are compressive stresses and not bending stresses I can neglect their

presence when determining the maximum bending stress Also if the plate connection

was to fail at the bolts the bolts would fail ftrst during the pre-tension installation period

Therefore one more scenario must be presented to better approximate the stresses acting

on the plate

The ftnal scenario is the post processing of the plate excluding the boom section

on the applied moment side the lumped mass interface and the fastener tension applied

around the bolt holes Fig 7-B shows that the maximum Von Mises stress is now only

257 ksi

Node Connection 1

The results presented for node connection 1 are very similar to those for node

connection 288 since their geometry is exactly the same However due to the locations

of the plate connections on the platform node 1 has a lower maximum Von Mises stress

All three scenario results for node 1 follow the same trends as the scenario results for

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 16: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

11

PLATFORM CONNECTION DESIGN

The design of all four platfonn connections begins by following the method used

for the cantilever beam The connections are drawn flfSt and then the additional material

is added I followed the procedure How to Create Moments on a Solid and applied the

reaction moments to the lumped mass corresponding to each of the four connections The

connections at nodes 1 and 288 are the plate connections for the platfonn and nodes 313

and 26 are the bracket connections for the platfonn

Boundruy Conditions

The boundary conditions are comprised of three parts The fIrst boundary

condition applied to the connections is the reaction forces The reaction forces at the

connections are shown in a previous analysis by Russ Rucinski in Appendix A Page A6

shows a summary of all the reaction forces and moments as they pertain to each node

connection

The second boundary condition specilles which surfaces will be held rigid The

rigid surfaces chosen are the surfaces of the plates and brackets which are in contact with

the cryobridge These surfaces will have no rotation or translation

The third boundary condition is the application of the 28000 lb minimum fastener

tension which is applied to all bolt holes as pertaining to the requirements of the

American Institute of Steel Construction (AlSC)

Case Scenarios

The analysis for the four node connections begins with three different case

scenarios for each connection The flISt case scenario presents the post processing of

each connection design including the extended material and the lumped mass The

12

extended material is the rectangular 8 x 4 x114 steel tubing known as a boom The

addition of the boom not only provides a surface to constrain the lumped mass but is also

a true representation of the assembled platfonn The second case scenario post processes

the connections excluding the lumped mass and a partial section of the boom The fmal

case presented post processes the connection excluding the lumped mass a partial section

of the boom and the fastener tension All three case scenarios post processed follow the

same case scenarios used to test the cantilever beam discussed previously Table 2

presents the results of these cases for all four connections and Appendix B presents the

stress plots for all the models Once a maximum Von Mises stress is found the material

selection process can begin

13

TABLE 2 Comparison of Moment Results for all Lumped Mass Models

PART CONDITION MAX VON MISES STRESS

Lumped Mass Partial Boom and Fastner Tension Excluded

14

Node Connection 288

The plate connection at node 288 is modeled ftrst Fig 5-B shows the Von Mises

stress results for the ftrst scenario the post processing of the plate including the boom

section and the lumped mass With a maximum Von Mises stress of 4860 ksi this model

is clearly beyond the acceptable stress range since the targeted maximum stress should be

less than 36 ksi At a maximum stress less than 36 ksi I can utilize ASTM A36 steel

which is abundantly available

The second scenario results plotted in Fig 6-B show a dramatic decrease in the

maximum Von Mises stress The second scenario post processes the plate excluding a

portion of the boom and the lumped mass and should be in agreement with the results

from the cantilever beam analysis The stress level dropped as expected from 4860 ksi to

811 ksi However the high stress concentration area changed from the mesh interface

between the lumped mass and the boom to the fastener tension area around the bolt holes

Since these stresses are compressive stresses and not bending stresses I can neglect their

presence when determining the maximum bending stress Also if the plate connection

was to fail at the bolts the bolts would fail ftrst during the pre-tension installation period

Therefore one more scenario must be presented to better approximate the stresses acting

on the plate

The ftnal scenario is the post processing of the plate excluding the boom section

on the applied moment side the lumped mass interface and the fastener tension applied

around the bolt holes Fig 7-B shows that the maximum Von Mises stress is now only

257 ksi

Node Connection 1

The results presented for node connection 1 are very similar to those for node

connection 288 since their geometry is exactly the same However due to the locations

of the plate connections on the platform node 1 has a lower maximum Von Mises stress

All three scenario results for node 1 follow the same trends as the scenario results for

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 17: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

12

extended material is the rectangular 8 x 4 x114 steel tubing known as a boom The

addition of the boom not only provides a surface to constrain the lumped mass but is also

a true representation of the assembled platfonn The second case scenario post processes

the connections excluding the lumped mass and a partial section of the boom The fmal

case presented post processes the connection excluding the lumped mass a partial section

of the boom and the fastener tension All three case scenarios post processed follow the

same case scenarios used to test the cantilever beam discussed previously Table 2

presents the results of these cases for all four connections and Appendix B presents the

stress plots for all the models Once a maximum Von Mises stress is found the material

selection process can begin

13

TABLE 2 Comparison of Moment Results for all Lumped Mass Models

PART CONDITION MAX VON MISES STRESS

Lumped Mass Partial Boom and Fastner Tension Excluded

14

Node Connection 288

The plate connection at node 288 is modeled ftrst Fig 5-B shows the Von Mises

stress results for the ftrst scenario the post processing of the plate including the boom

section and the lumped mass With a maximum Von Mises stress of 4860 ksi this model

is clearly beyond the acceptable stress range since the targeted maximum stress should be

less than 36 ksi At a maximum stress less than 36 ksi I can utilize ASTM A36 steel

which is abundantly available

The second scenario results plotted in Fig 6-B show a dramatic decrease in the

maximum Von Mises stress The second scenario post processes the plate excluding a

portion of the boom and the lumped mass and should be in agreement with the results

from the cantilever beam analysis The stress level dropped as expected from 4860 ksi to

811 ksi However the high stress concentration area changed from the mesh interface

between the lumped mass and the boom to the fastener tension area around the bolt holes

Since these stresses are compressive stresses and not bending stresses I can neglect their

presence when determining the maximum bending stress Also if the plate connection

was to fail at the bolts the bolts would fail ftrst during the pre-tension installation period

Therefore one more scenario must be presented to better approximate the stresses acting

on the plate

The ftnal scenario is the post processing of the plate excluding the boom section

on the applied moment side the lumped mass interface and the fastener tension applied

around the bolt holes Fig 7-B shows that the maximum Von Mises stress is now only

257 ksi

Node Connection 1

The results presented for node connection 1 are very similar to those for node

connection 288 since their geometry is exactly the same However due to the locations

of the plate connections on the platform node 1 has a lower maximum Von Mises stress

All three scenario results for node 1 follow the same trends as the scenario results for

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 18: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

13

TABLE 2 Comparison of Moment Results for all Lumped Mass Models

PART CONDITION MAX VON MISES STRESS

Lumped Mass Partial Boom and Fastner Tension Excluded

14

Node Connection 288

The plate connection at node 288 is modeled ftrst Fig 5-B shows the Von Mises

stress results for the ftrst scenario the post processing of the plate including the boom

section and the lumped mass With a maximum Von Mises stress of 4860 ksi this model

is clearly beyond the acceptable stress range since the targeted maximum stress should be

less than 36 ksi At a maximum stress less than 36 ksi I can utilize ASTM A36 steel

which is abundantly available

The second scenario results plotted in Fig 6-B show a dramatic decrease in the

maximum Von Mises stress The second scenario post processes the plate excluding a

portion of the boom and the lumped mass and should be in agreement with the results

from the cantilever beam analysis The stress level dropped as expected from 4860 ksi to

811 ksi However the high stress concentration area changed from the mesh interface

between the lumped mass and the boom to the fastener tension area around the bolt holes

Since these stresses are compressive stresses and not bending stresses I can neglect their

presence when determining the maximum bending stress Also if the plate connection

was to fail at the bolts the bolts would fail ftrst during the pre-tension installation period

Therefore one more scenario must be presented to better approximate the stresses acting

on the plate

The ftnal scenario is the post processing of the plate excluding the boom section

on the applied moment side the lumped mass interface and the fastener tension applied

around the bolt holes Fig 7-B shows that the maximum Von Mises stress is now only

257 ksi

Node Connection 1

The results presented for node connection 1 are very similar to those for node

connection 288 since their geometry is exactly the same However due to the locations

of the plate connections on the platform node 1 has a lower maximum Von Mises stress

All three scenario results for node 1 follow the same trends as the scenario results for

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 19: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

14

Node Connection 288

The plate connection at node 288 is modeled ftrst Fig 5-B shows the Von Mises

stress results for the ftrst scenario the post processing of the plate including the boom

section and the lumped mass With a maximum Von Mises stress of 4860 ksi this model

is clearly beyond the acceptable stress range since the targeted maximum stress should be

less than 36 ksi At a maximum stress less than 36 ksi I can utilize ASTM A36 steel

which is abundantly available

The second scenario results plotted in Fig 6-B show a dramatic decrease in the

maximum Von Mises stress The second scenario post processes the plate excluding a

portion of the boom and the lumped mass and should be in agreement with the results

from the cantilever beam analysis The stress level dropped as expected from 4860 ksi to

811 ksi However the high stress concentration area changed from the mesh interface

between the lumped mass and the boom to the fastener tension area around the bolt holes

Since these stresses are compressive stresses and not bending stresses I can neglect their

presence when determining the maximum bending stress Also if the plate connection

was to fail at the bolts the bolts would fail ftrst during the pre-tension installation period

Therefore one more scenario must be presented to better approximate the stresses acting

on the plate

The ftnal scenario is the post processing of the plate excluding the boom section

on the applied moment side the lumped mass interface and the fastener tension applied

around the bolt holes Fig 7-B shows that the maximum Von Mises stress is now only

257 ksi

Node Connection 1

The results presented for node connection 1 are very similar to those for node

connection 288 since their geometry is exactly the same However due to the locations

of the plate connections on the platform node 1 has a lower maximum Von Mises stress

All three scenario results for node 1 follow the same trends as the scenario results for

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 20: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

IS

node 288 and the cantilever beam The maximum Von Mises stresses are 422081 and

178 ksi as seen in Figures 8-B 9-B and IO-B respectively

In order to verify the results found for node 1 I calcu1ated the stress in the plate

and compared it to the FEA results The stress in the plate is mostly due to bending

caused by the 16320 in-lb moment acting in the y-direction The calculation for the

stress in the plate can be followed below

l ~

T ~

1_

2 24 KSl

1)--

0 (C A~

0 0 v

(lb3l0 -Ib)( S ~) _

Bt~(II~) 12

The maximum calculated bending stress for the 8 wide I thick plate is 1224

ksi The PEA model result as seen in Fig IO-B for case scenario three shows a

maximum Von Mises stress of 178 ksi Both results closely agree however the stress

comparisons also show that the stresses produced by the FEA will be conservatively high

via the lumped mass method

Node Connection 313 and 26

Node connections 313 and 26 show similar results to those of node connections

288 and 1 in that the stresses on the bracket are best approximated when post processing

the model excludes the lumped mass interface and the additional material For the third

case scenario the brackets maximum Von Mises stresses are near 10 ksi

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 21: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

16

RECOMMENDATIONS

The plate and bracket connections are best approximated by the lumped mass

method and the material selection is based on the FEA results presented in Table 2 The

maximum Von Mises stress for the four connections excluding the fastener tension is

257 ksi for node 288 The maximum allowable stress is a combination of bending stress

and tensile stress and is 066 of the yield strength for a given material per AISC 1514

ASTM A572-Grade 42 steel or a grade of steel with a higher yield strength is

recommended The yield stress for this steel is 42 ksi and according the AISC standard

for tension and compression on extreme fibers the maximum allowable bending stress is

277 ksi Therefore the stresses in all four connections are below the allowable when

using ASTM A572-Grade 42 steel or greater

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 22: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

17

BOLT PATTERN DESIGN

The bolt patterns are chosen in accordance with American Institute of Steel

Construction standards for minimum spacing and minimum center-to-center distance for

each hole AISC specifies for minimum spacing in 11641 that the minimum distance

between the centers of holes shall not be less than 2-213d where d is the nominal

diameter of the fastener In this design the nominal diameter is 75 inches Therefore

the minimum allowable distance is 2 inches I chose to use 25 inches as my minimum

distance for the design of the 1 plates(nodes 1 and 288) Also the minimum allowable

edge distance is 1-114 according to AISC Table 11651 However in my design I will

use an edge distance of 1S inches Both the center spacing distance and the edge distance

are chosen to be larger than the allowable minimums in order to increase the reliability of

the design

After choosing the bolt spacing I analyzed the fastener group using the elastic

method2 Each fastener group is made up of 34 bolts A325 Grade Here the allowable

tension stress due to bending is 44 ksi and the allowable shear stress is 175 ksi The

detailed calculations in Appendix C show that the maximum tensile and shear loading

will be less than the allowables For the node 1 and 288 connection the tension due to

bending is 87 ksi and the shear stress is 0213 ksi For node 26 and 313 connection the

tension due to bending is 272 ksi and the shear stress is 20 hi The results of these

calculations show that the fastener groups can withstand the reaction forces and moments

caused by the loads acting on the platform Therefore the fastener groups shall be

manufactured as designed in Figures 3 and 4 using 34 bolts grade A325

1 AlSC page 4-58 and Steel Structures Design and Behavior 2rr4 Edition Section 4-8 by Cbarles Salmon and John E Johnson 1980

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 23: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

) ) )

8- 14- BOOM

THICK PLATE

875 INI

38shyREINFORCEMENT MATERIAL

I

x 4- x

1 -

THICK

1--- 23 50

I 224 TYP ~ 250

I~r Itl 800 I I 1

LLI II

5 50 TYP --t--

88shy OIA THRU

1 50

TYP 1 00 -f[J~ 1 00

250 TYP 5[ rID J47

TYP 300~ 6 HOLES

Figure 3 Assembly of Plate Connection at Nodes 1 and 288

00

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 24: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

BB

I I middot --- I I I I I I

I

I I

j i D (- TYP (__________________l~==_L_________________l Ii) I

i ~

I

middot I

I

bullI I middotbullbull bull

iI I

t-------------fr-----------middot---shy I

middotmiddot middot

middot I

bull I -A shy I

I middot IL_ -fI

~-----------------i t-

I bull

DETAIL 1

DD 1-----60-----1

~~~E 1l c

bull-Jt J SECTION A-A DETAIL 1

bull

~ NOTE

bull 1 INTERMEDIATE WELDS 12 LONG FROM EDGES

L 7 bull 0 ( Armiddot 0 ~ bull

t -~ ~~--

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 25: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

20

WELD SPECIFICATIONS

PJate Connection Nodes 1 and 288

The two 1 plates for the connections at nodes 1 and 288 are identical in size and

shape Each plate shall follow the dimensions as shown in Fig 3 According to AISC

the criterion for a fillet weld between two materials is based on the material thickness of

the thicker material However there appears to be no preference for welding thick

material to very thin material But there may be limitations for a fillet weld between a I

thick plate and the 11411 thick boom

Charles G Salmon and John E Johnson in Steel Structures speak of size

limitations which could apply to a weld between 1 II thick and 114 thick material The

size limitations apply to the welding process Since the welding process produces heat

energy the heat energy is mostly absorbed by the thicker of two plates being joined

Therefore one can see that the thicker material allows for more heat energy dissipation

vertically as well as horizontally Thus the thicker the plate the faster the heat energy

will be removed from the welding area This in tum produces lower temperatures at the

region of the weld Since a minimum temperature is required to provide a cohesive

connection between the two plates a weld of sufficient size is needed In other words

the thickness of the two plates needs to be comparable in size because lIunless a proper

temperature is maintained in the area being welded a lack of fusion will result

Due to possible limitations of a fillet weld based on the ratio of material

thickness a solution would be to weld a 38 thick material to the 114 thick boom and

then weld the 38 thick material to the 1 thick plate This approach is beneficial for two

reasons First this approach provides a reasonable material thickness ratio and thus more

adequately provides for the minimum temperature requirements for proper fusion By

welding an intermediate material thickness to the 11411 thick boom and to the I thick

plate we avoid the issue of excessive heat dissipation Secondly this approach provides

reinforcement for the 11411 thick boom at the point where the plate is welded to the boom

The detail of the 3811 thick reinforcement material as welded to the boom is seen in

Figure 4

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 26: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

21

Bracket Connection Nodes 26 and 313

The two brackets for the connections at nodes 26 and 313 are identical in size and

shape Each bracket will be made of a 1 thick base plate with the dimensions as shown

in Fig 5 Four individual 34 plates or webs with dimensions shown in Fig 5 will be

welded to the 1 thick plates as designed The fillet welds shall be at least 516

according to AISC Table 1172A pertaining to the material thickness of the thicker part

joined The fillet welds lengths shall include the complete contact surface between the

34 webs and the 1 plate

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 27: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

) ) )

34- PLATES -1 395 l-i I I

I - 1 98 TYP

150 TYP

1400 8-x4middotxl4- BOOM

88- DIA THRU 4 HOLES

I

-Ep-

200 TYP

~

8 00 TYP --l

[ 500 TYP

320middot

bull Figure 5 Assembly of Bracket Connection at Nodes 26 and 313

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 28: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

23

WELD RECOMl1ENDATIONS

The fillet welds between the 34 base plate of the brackets and the 34 webs at

nodes 26 and 313 shall be at least 38 inches The weld shall run around the entire

connecting surfaces The fillet welds concerning nodes 1 and 288 are as follows The

fillet weld between the 114 thick boom and the 38 thick steel material shall be a 316

weld And the fillet weld between the 38 thick steel material and the 1 thick plate shall

be a 38 weld

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 29: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

o FERMI lAB

ENGINEERING NOTE

PLAFOIt~ D es I CltfJ

OA() k~~f(

~F ntS~amp4 o~

IltNDOO 0 Ii 21 Lv A

3 AlVA-OL~ J ~AH~(sJ () T4IfiES) VlIPott Cvt6Q c~ tpoundkO$ C+-c-_

S-i ~ Gltx) 10 A 00 IT il t-J bull

VAtshy vUSC - 631+lshy20 ~ bullis Pt 30

(Ioaamp~)

(Zo)L ~ )~ Z + (75 + 11 (Ugt 30)(106

=- ~ 2 + 3 Cj t i IAIgt 8gt2S tA)

W1 -- 237 ~S 1 ) I

- AoO u-TIJt~ IJJ TIlft~ 9PE~)~ 1IP eELOW- b ~ S 10

CVLf( BON~ Z ~T 500] 14

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 30: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

o FERMILAB PIIQACf IEAIAL-QATEOQIn ~

p~~a8~3 J Amiddot2ENGINEERING NOTE

PLA 4=Q 2vt DeS I 6rJ cA -c~

-OAtgt GS-r H AAte 0011 IAIMSION 011 tl- 2o-~

-

q02bFt 1l 101 Ft(lIrrlrlL) bull 201

71 Fltt (to ec) - I if I 10 fc (PIA~) qO

CL -t 4 Sl~) bull Z C 0 3 3 F~ 2 ltl~s) c ~5

11 111 Fc IC 2 ( ~) 77 8~jII+ 3 lUfl~) = i I

f = B ItS

(Lot 4t) 2 2 3-13 AIJ6C~ p~ OSA Zltf 4FI Z3e i

J

EAIIS ) 1 -f 1C B Su~ - 312shy1

3 3 ~w B ~ ~ 12

3~ Ft bull 6 VLLlI~ ~ u~~ 1Ar~ fNW =- q

10 c r fJampgt S r~

Dec ~ P(A-e Iq IIon 1(1- JI 40 II w 70 Untb-IC

~O lIC 100 It IHlllc-if- foTAC - -I 82 I~

301bS

o [ OTIlt OS I e 8 IbS)

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 31: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

A3 Jultto~ti ~ uJ tl )

~ 2 ~ ~

t

2 J shy J uJ tshy ( tY ~ J J I shyDOClVl

shy L

==============-----========-------------------------------- =

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 32: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

o FEAMILA8

ENGINEERING NOTE PAOJICf SEIIAL(ATEOORY PAQ(

~~~IMS as-z3lIsmiddot 4~

LOADS AItIi PI-AcOcgt A-r ilot APPRoPfLlltrE -OC~Os

0-) THEmiddot__ 5~U(nl~

lIfIU Fu-fo 100 t Io()IIQ

125

c)

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 33: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

) ) )

APPLleD LoADS ~IOACONS lA 1700 middot ll 3115 I~s

5 1(320 1~1bs

r 11 A-shy

Y

173 ls

1451

128(

Non LOADS DIFCpound1a ONLy fbOOO 01 Cu S-l amp1-1-( r=RON LOAD E~ M~-rE VAuJItS

[AI-I- VALuE Ir-J LeS ] E l(CEP A~ -JOEO

raquo lJ

~IU _1 _ -(H t r 3

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 34: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

I-DtAS Master Series 21 Simulation 20-Nov-96 132526 dks4d3s7ms_ruc1nskitrussbase1mf1Z

Group ID None Result Set 2 - BC lLOAD 1 REACTION FORCE_2 Report Type Contour Units IN Result Type REACTION FORCE Frame of Reference Part Data component Norm to Screen

Node Reacti-X React1-Y React1-Z Reacti-RX Reacti-RY Reacti-RZ

1 OOOOE+OO -5655E+02 2844E+03 OOOOE+OO -1632E+04 -3415E+03

26 -2518E+03 1478E+03 -4847E+03 -1 706E+04 OOOOE+OO OOOOE+OO

288 1451E+03 1286E+03 -2831E+03 4784E+02 1600pound+04 7227E+03

313 1067E+03 3372E+03 4835E+03 -1966E+04 OOOOE+OO OOOOE+OO

1ota1 OOOOE+OO 5570E+03 -4883E-04 -3624E+04 -3194pound+02 3811E+03

288 313 313 288 288 288 Maximum 1 451E+03 3372E+03 4835E+03 4784E+02 1600pound+04 7227E+03

26 1 26 313 1 1 Minimum -2518E+03 -5655pound+02 -4847E+03 -1966E+04 -1632pound+04 -3415E+03

Average OOOOE+OO 9237E+00 -8098E-07 -6010E+01 -5298E-01 6320E+00

2 ~ 0lt oJ ~ aoE 1shy

)t

286

A ~

tJOD~~ 2h t1 ~ 16) )( f 1 11tpr-JSIAfIO~ ~lkED

X eono t-JS F I X E Cgt

Y ~ K t) iA 11 0 ~ S ~ R EE J I

CON t-JEc oJRES~r-JT SPpound(FCATIO~S 8ASeD oJ 4 BOL-T

AT ~ D DES i ~ 2 ~ ~ ) 2 f3oI-TS P-lokJ( --1 A IS e 2~ f 313

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 35: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

))--lff yDlX B

Fi ~ uN j-B CIvJTLEvee BEAM sTReSgtSgtpound5 V 171+ LUt1fcb MAsgt AND El(TENOItlS ( M l 10000 - I~

dks4d3s7ms_rucinskiakuwazaki2mfl

RESULTS 2shy BC 1LOAD lSTRESS_2 STRESS - VON MISES MIN 226E-01 MAX 2908+04 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

290E+04

261E+04

232E+04

2038+04

1748+04

1458+04

16EI04

8698+03

5BOE+03

2908+03

416801

(A)

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 36: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

1=i Civre z-B CA-tJTlLevef BEAM STRffSses WrHi)uT i-U1fIl(EO Mttss ( ~nA-L j)lX)If1 eXCLUDeD

jdks4d3s7jms_rucinskijakuwazaki2mfl RESULTS 2- BC ILOAD ISTRESS_2

STRESS - VON MISES MIN 22GE-OI MAX 240E+04 VALUE OPTIONACTUAL FRAME OF REF PART

240E+04

216E+04

19lE+04

168E+04

144E+04

120E+04

f5 fHmiddotOJ

719E+OJ

479E+03

240E+03

2l6E 01

v

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 37: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

) ) )

Fi4tJre 3-amp (JtNIILeveR BeJtM Snampsst5 JTltDvr ~1IIT1U VO-VIle ()N LuMfeD MAs5 SJ1gte

dks4d3s7ms_rucinskiakuwazaki2mf1

RESULTS 2- BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 226E-Ol MAX 176E+04 VALUE OPTIONACTUAL

FRAME OF REF PART

176E+04

lS8E+04

141E+04

123E+04

106E+04

881E+03

704E+03

S28E+03

3S2E+03

176E+03

226E-Ol

()

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 38: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

-i-i 4v(t laquo -B LAtJTILeuli 6liiHvj SreeraquoES tJtTtfWT Lu~fii) 1155 4 E~TcItISlONs

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS - VON MISES MIN 226E-OI MAX 176E+04 VALUE OPTIONACTUAL FRAME OF REF PART

176E+04

15BE+04

141E+04

123E+04

l06E+04

ILBIE+03

704E+03

S2BE+03

3S2E+03

176E+03

226E-Ol

tiJ

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 39: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

) ) )

l==iQlIre 5-8 NODe Co~Nec TlOAl 299 L tJIII~e]) JvLtss ( Bcxgt11

dks4dls7ms rucinskiakuwazak12mtl

RESULTS 2shy BC ILOAb lSTRESS_l STRESS - VON HISES MIN 1S9E+Ol MAX 486E+06 VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

4S6E+06

437E+06

3BSE+06

340E+06

291E+06

24lE+06

I 94 E+06

146E+06

971E+05

486E+05

189E+Ol

0)

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 40: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

+=i~ureuro 6-B JOJ)E LtgtA1IVECTIOIll 298 L- UMPlJD vIt1-s5 1 PMrO~L amp011 poundXC-LtlPpoundl)

jdks4d3s7ms_rucinskiakuwazak12mf1 RESULTS 2- BC lLOAD 1STRESS_2

STRESS - VON MISES MIN 189E+01 MAX 611E+04 VALUE OPTIONACTUAL FRAME OF REF PART

811E+04

730E+04

649E+04

566E+04

487E+04

405E+04

324E+04

243E+04

162E+04

612E+03

169E+01

( ( ~

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 41: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

) ) )

t=i S1V~ 7-8 tJD])E JJII(lie ~TIO IV 289 LvlMpound) l4-1Ss P~1IA-L eco~ ~ FrJ-STElVet- TEtJSlotJ EXLLtJDED

dks4dJs7ms_ruclnskiakuwazaki2mfl RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES HIN 789E-02 MAX 257E+04 VALUE OPTIONACTOAL FRAME OF REF PART

257E+04

2JIE+04

205E+04

laOE+04

1 54 E+ 0 4

128E+04

10H04

770E+OJ

513E+OJ

257E+03

789E-02

QJ

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 42: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

shy1-1 ~vf1 ltg B NfYf)o (OflcnOfll 1 LUiVtPCD IA5 ( Boo

dks4d3s7ms rucinskiakuwazaki2mfl

RESULTS 2- BC ILOAD lSTR8SS_4

STRESS - VON HISBS MIN 358E+00 MAX 422E+01gt VALUE OPTIONACTUAL

FRAME OF REF PART SHELL SURFACE TOP

422E+06

380E+06

338E+06

495E+06

253E+06

211E+06

169E+06

17E+06

844E+05

42E+05

3588+00

V)

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 43: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

) ) )

t=i VfVl 9-B NODe (oAlIJECPON 1- LUf1P13b M~s lt -4-JtT711 t BlgtOM cxC-LvJ)eb

dks4d3s7ms_rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2

STRESS - VON MISES MIN 3588+00 HAX 810E+04 VALUE OPTIONACTUAL FRAME OF REF PART

810E+04

729E+04

648E+04

567E+04

486E+04

4058+04

J 24 E+04

243E+04

1 62E+04

811E+03

358E+00

OJ

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 44: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

- hQvrt 0- B NODeuro- (i)lNECnOAJ i LtJ~PBf) MAs~_ Y-4-ttTlltL BooM ~ i=tSTcv6e TElliSON Ex ct-vD E i)

dks4d3s7ms_rucinskiakuwazaki2rnfl

RESULTS 2shy BC 1LOAD 1STRESS_2

STRESS - VON MISES MIN 934E-02 MAX 178E+04 VALUE OPTIONACTUAL

~RAME OF REF PART

178E+04

160E+04

142E+04

1 25E+04

107E+04

890E+03

712E+03

5 HE+03

356E+03

178E+03

934E-02

I

VJ

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 45: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

) ) )

F1fiUre 11- B tJOIpound CJ)IJ1VEC70tJ 33 STfl15seS lrJITH- l-UMPe]) ~5 ~ BOOM

60SE+06

dks4d3s7ms rucinskiakuwazaki2mfl RESULTS 2- BC ILOAD 1STRESS_2 STRESS VON HISES MIN 6B2E+Ol MAX 60SE+06 DEFORMATION 1- BC 1LOAD 1DISPLACEMENT_I DISPLACEMENT MAG MIN OOOE+OO MAX 10BE-OI VALUE OPTIONACTUAL FRAME OF REF PART SBELL SURFACE TOP

S4SE+06

494E+06

424E+06

363E+06

IOJIHOb

l4lE+06

182E+06

1 21E+06

605E+05

68lE+Ol

VJ

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 46: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

t=itivre IZamp NO])E (OtJlJ8CTloN 33 STi2es) WI LtJMPreg J11~ ( Ptt-fimA-L BOoM poundXcuJDpoundfJ

dks4dls7ms_rucinsklakuwazaki2mfl RESULTS 2shy BC ILOAD 1STRESS_2 STRESS VON HISES MIN 687E+Ol MAX 814E+04 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_l DISPLACEMENT - MAG HIN OOOE+OO MAX aaIE-OJ VALUE OPTIONACTUAL FRAME OF REF PART

a14E+04

712E+04

6SIE+04

570E+04

4 89E+04

407E+04

126E+04

24SE+04

16JE+04

a20E+Ol

687E+Ol

l cP t

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 47: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

) ) )

Fi~u~ I~- B NoW C()AJtJBc no) 33gt S2c55 pounds ItJITft t=ttsTEvpoundf TEIJSIOIVpoundvPED AooIAS~ ( P1fjTIApound (3Q ampltLvj)EiJ

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2- BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 161E+Ol MAX 109E+04 VALUE OPTIONACTUAL FRAME OF REF PART

109E+04

962E+03

673E+03

764E+03

655E+03

546E+03

4378+03

329E+03

2208+03

111E+03

161E+01

CN

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 48: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

Fi Ufeuro 4-B POPE COfJltlecn()fv U ~TRes55 W IrH UJMPeJgt 11~ ~ Pfl-iTllfL ampoM CxCL-vi)6[)

dks4d3s7ms cucinskiakuwazaki2mfl RESULTS 2 BC ILOAD ISTRESS_2 STRESS - VON MISES MIN 53BE+Ol MAX B07E+04 DEFORMATION 1- BC ILOAD 1DISPLACEMENT_l DISPLACEMENT - MAG MIN OOOE+OO MAX 751E-03 VALUE OPTIONACTUAL FRAME OF REF PART

B07E+04

727E+04

646E+04

5fgt5E+04

46SE+04

404E+04

323E+04

243E+04

162E+04

B12E+03

53BE+Ol

lt l [jJ

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 49: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

) ) )

Hqure 15- B iVOJgtE COtJlfGltw 26 5reesses J17JI FASTlJIVGI r8IJSIDtv LtJMP6tgt 11~gt E PJHiTIAL Bi)()1 ampcL-VDED

dks4d3s7ms_rucinskiakuwazaki2mf1 RESULTS 2shy BC 1LOAD 1STRESS_2 STRESS - VON MISES MIN 155E+01 MAX 951E+03 DEFORMATION 1shy BC ILOAD IDISPLACEMENT_1 DISPLACEMENT - MAG MIN OOOE+OO FRAME OF REF PART

VALUE OPTIONACTUAL

951E+03

856E+03

761E+03

666amp+03

571amp+03

476E+03

381E+03

286E+03

191amp+-03

965amp+02

1 55amp+01

MAX 751E-03

01

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 50: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

3j1 DcgtLlS A3ZS G~De

F=~M A-1Sc PA-RT 1 4BlE I-AI

ILl )(SIFe ALlD1J ~B f-e LbAtgt

-An ciA-3re -c Q(G ) - D FYS 9 Z -os s II S +v~ I-zO 1(7 1fJA wM) 77

~ tp40- 8S j(S

NODE 1

l A-UtJW II $IN S7~~~ ( I) UA7iNfr -1YPE C~ J

+ j-shy ~x f2r ZJfNI Ii~ 311$ ~ 5 it - ----+ ~1pound= 5l$s -

1lt 163ZO

4AIY~ 111 -rkc ~7CI-E~ r ii) ~ ~ AS ( Mt -rmiddotc~O

l12eF AISC ltVCr ltI-Sf) AIJ~S7C6( S~JCTzeS )lt9(1 ~~VlQte

L z~ lbT70N Stt -rION c - f1 r C1IUS SA-uwt t SOI4W E

l i)INSOH IljSIJ )

01 Z75 J

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 51: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

C1

~ellcT70tJ iy (DIU Slf~~r) ~ I

r 9Vl~ Ib565middot 5 Ib ~IMl Ir _znBlbull 1V1SI

bullbull

6

-rENSlo ( (gt V ) I[

I

b PLA-E JlbTH- lti d PtA-1T ~FIII(r7)llaquo (

~ Ie (6 bblr) 2 2S ~Illt I IV )( 11 )

~ 16 320 I - I (~ 0

l~ XII ~~

ct~ stftlvL-tgt NtJr poundXCEcb ~i 11= ClJ(yenP2euroSS~ atT~N 7~

PIeCES IS TO IEMr4N IJr -rilE raP

~t gt 8 7 t=S1 lt ~ - 4 ttl o~

- ~I-Ie

-

+ f Zl a laquo ~ ~ 17I )$ 01( v

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 52: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

r ~l

d Z75

Jl 3 7zmiddotmiddot

Imiddotrn -I -~ ltamp _u = ~

b

Ll + Cd) A(

c ~ ~o - 11 S 4 Ib

Idl 1(371) +1 -s tS 3 8 ~Igt

Ii VALUAI f

2 -3 (JJ= ~x

f3r - ~ jtl- lb bull 115 Ih Z 07S)

2

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 53: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

C Lj

euro64cnow Ry

+1 ~ 128amp lb- Z ~ Ib

b

MAx SIIeAfl- LO) SgtC~ ~STEf~

+sIIt4Q ~ (fl~)~ (poundy -t -Cl)~ 2171b

Oi

ZZ1b

bull

~ 7lZ7 -1 (lt6 i f Iy-

No Jt~~ CAtU A~E AJ66DEllmiddot IJoDt 288 Q)NAlUTIOiJ

S-etS6tgt ~ LOweR ~1lJ NoDE J COIJ CrlOlIS --~t2Cr-epound~

tVbDC 288 CONNEt1 K)I1S A~c GX)lgt

middot-shy

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 54: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

--

) 47Y Ib Zgt ~Ip J8centlr

b

$N(6 TttE C4wvLA-7euroD LOAlgt IS Less jltHf ritE

A-LLlWABlpound I 3y aoi~ 4~E Ot

INeuro ~ 3~ COfJN6cTlON geAcrolS Oa~tf-rc

Olle-I Tile I)QL)~ 2b 1Ce- ~CT70us

28COo Ib (tI) Zii shy-- 2 I O~S ~I bd (3 51 II ~J

6 - ~ ( I t bO - Ibs) 15 Z- PSI

bel (395 11) ()I-I )

Ole

120 I Ib

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 55: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

-1115)97

jtt 1 I ~) ~7Ib - 267b~ -If -c __ + 4 v(1

C -Jlf +2 ~~ 337lb 8vJ Ib- f- i(I

J [( 10amp7)70 4- ($37i r

9

20DI ~

(t = 27~ tS lt ~ ~ vq tS) ot

SHe Aii

-J Z Q u lt ~ - 17 S ~SI 0

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980

Page 56: CONTROL DEWAR AND VLPC BAYONET CAN PLATFORM CONNECTION

24

BIBLIOGRAPHY

1 American Institute of Steel Construction Steel Construction Manual American

Institute of Steel Construction illinois 1980

2 Salmon G Charles and Johnson E John Steel Structures Design and Behavior 2ad

Edition Harper and Row Publishers New York 1980