continuum dislocation theory: size effects and formation of … · 2012-09-11 · continuum...

78
Continuum dislocation theory: size effects and formation of microstructure K.C. Le Lehrstuhl f¨ ur Mechanik - Materialtheorie Ruhr-Universit¨ at Bochum, 44780 Bochum, Germany Workshop on ”Multiscale Material Modeling”, Bad Herrenalb 2012 Collaborators: V. Berdichevsky, D. Kochmann, Q.S. Nguyen, P. Sembiring, B.D. Nguyen K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 1 / 78

Upload: others

Post on 30-Jun-2020

2 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Continuum dislocation theory: size effects andformation of microstructure

K.C. Le

Lehrstuhl fur Mechanik - MaterialtheorieRuhr-Universitat Bochum, 44780 Bochum, Germany

Workshop on ”Multiscale Material Modeling”, Bad Herrenalb 2012

Collaborators: V. Berdichevsky, D. Kochmann, Q.S. Nguyen,P. Sembiring, B.D. Nguyen

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 1 / 78

Page 2: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Outline of my lecture

Size effects in crystal plasticity and formation of microstructure

Why continuum dislocation theory?

Thermodynamic framework of CDT

Antiplane constrained shear

Plane constrained shear

Double slip systems

Mechanism of twin formation

Continuum model of deformation twinning

Bending

Polygonization

Conclusion

Further works

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 2 / 78

Page 3: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Size effects in crystal plasticity and formation ofmicrostructures

Hall-Petch relation

Indentation

Shear, torsion, bending

Deformation twinning

Polygonization

Recrystallization

Grain growth

Texturing

ect.

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 3 / 78

Page 4: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Hall-Petch relation

σY ∝ σY 0 +λ√d

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 4 / 78

Page 5: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Indentation test

H =F

A(Hardness)

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 5 / 78

Page 6: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Twin formation

TEM micrograph of the [111] oriented single crystal under tension. Strain30%, Karaman et al., 2000

Page 7: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Polygonization

Polygonized state of a bent single crystal beam

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 7 / 78

Page 8: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

View along intersections of slip planes with polygon boundaries in apolygonized zinc crystal, Gilman, 1955

Page 9: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Why continuum dislocation theory?

Plastic deformations are due to nucleation, multiplication and motionof dislocations

Dislocations appear to reduce energy of crystals

Motion of dislocations produces energy dissipation which causes theresistance to their motion

Under favorable condition the rearrangement of dislocations bydislocation climbing and gliding may reduce further energy of crystals

Deformation twinning and polygonization are low energy dislocationstructures

Continuum description is dictated by high dislocation densities(108-1014m−2). To compare: dislocation density 4×1011m−2 meansthat the total length of dislocation loops in one cubic meter of crystalequals the distance from the earth to the moon

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 9 / 78

Page 10: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Related literature

Continuum dislocation theory: Kondo,1952; Nye,1953; Bilby etal.,1955; Kroner,1955,1958; Berdichevsky & Sedov,1967; Le &Stumpf,1996a,b,c; Ortiz & Repetto,1999; Ortiz et al.,2000;Acharya,2001; Svendsen,2002; Gurtin,2002,2004; Berdichevsky,2006;Berdichevsky & Le,2007; Le & Sembiring,2008a,b,2009; Kochmann &Le,2008,2009a,b; Le &Nguyen,2010,2011; Le & Nguyen,2012.

Strain gradient plasticity: Fleck et al.,1994; Shu & Fleck,1999; Gao etal.,1999; Acharya & Bassani,2000; Huang et al.,2000,2004; Fleck &Hutchinson,2001; Han et al.,2005; Aifantis & Willis,2005.

Statistical mechanics of dislocations: Le & Berdichevsky,2001,2002;Groma et al.,2003,2005; Berdichevsky,2005,2006.

Discrete dislocation simulations: Needleman & Van der Giessen,2001;Shu et al.,2001; Yefimov et al.,2004.

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 10 / 78

Page 11: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Thermodynamic framework of CDTKinematics

s

m

ep

ee

e e e= +e p

Small strain theory: unknown functions ui (x), βij(x)Plastic distortion: βij =

∑na=1 βa(x)sai m

aj

Total (compatible) strain: εij = 12 (ui ,j + uj ,i )

Plastic (incompatible) strain: εpij = 12 (βij + βji )

Elastic (incompatible) strain: εeij = εij − εpijK.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 11 / 78

Page 12: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Dislocation density

da

Bi=αijnjda

1 2 3 4 5

6

7

89101112

13

1 2 3 4 5

6

7

891011

12

13

14 14

b

a) b)

Dislocation density: αij = εjklβil ,k

Geometrical interpretation: Stokes theorem∫Sαijnj da =

∮Lβijτj ds = Bi

Bi is the resultant Burgers vector of all GND (excess dislocations), whosedislocation lines cuts the area S. For single slip the scalar dislocationdensity is ρ = 1

b |εjklβ,kmlnj |.

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 12 / 78

Page 13: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Energetics

State variables: elastic strain εeij and dislocation density αij (plastic strainand its gradient are history dependent and are not the state variables)

Free energy density (Kroner)

ψ(εij − εpij , αij) = ψ0(εij − εpij) + ψm(αij)

Elastic energy of the crystal lattice

ψ0(εeij) =1

2Cijklε

eijε

ekl

Energy of microstructure (single slip system, Berdichevsky, 2006)

ψm(αij) = µk ln1

1− ρ/ρsSmall up to moderate dislocation density

ψm(αij) ' µk(ρ

ρs+

1

2

ρ2

ρ2s

)K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 13 / 78

Page 14: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Variational principles of CDT

Negligible resistance to dislocation motion: the energy minimization

I (ui , βij) =

∫Ωψ(εij − εpij , αij)dx → min

u,β

Finite resistance to dislocation motion: Variational equation (Sedov,Berdichesky, 1967)

δI +

∫Ω

∂D

∂βijδβij dx = 0

implying the evolution equation (of Biot type) for the plastic distortion

∂D

∂βij= −δεψ

δβij≡ − ∂ψ

∂βij+

∂xk

∂ψ

∂βij ,k

Note that, if the dissipation potential D = D(βij) is a homogeneousfunction of first order (rate-independent theory), the variational equationreduces to the minimization of “relaxed” energy.K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 14 / 78

Page 15: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Antiplane constrained shear

x

y

a

z

hL

A single crystal strip is placed in a “hard” device with the prescribeddisplacements at the boundary

uz = γy

γ overall shear strain (control parameter)Assumption: a h, a LK.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 15 / 78

Page 16: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Single slip system

Plastic distortion

βzy = β(x)

Since dislocation cannot reach the boundary x = 0, a, the plastic distortionβ(y) satisfies the constraints:

β(0) = β(a) = 0

The plastic strains are given by

εpyz = εpzy =1

2β(x).

The only non-zero component of tensor of dislocation density is

αzz = β,x .

The free energy density of the crystal with dislocations takes a simple form

ψ =1

2µ(γ − β)2 + µk(

|β,x |ρsb

+β2,x

ρ2sb

2),

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 16 / 78

Page 17: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Energy minimization

If the resistance to dislocation motion is negligible, the true plasticdistortion minimizes the total energy

I [β(x)] = hL

∫ a

0

[1

2µ(γ − β)2 + µk(

|β,x |ρsb

+β2,x

ρ2sb

2)

]dx

Introducing the dimensionless quantities

x = xbρs , a = abρs , E =bρsµhL

I

to rewrite the energy functional in the form

E [β(x)] =

∫ a

0

[1

2(γ − β)2 + k(|β′|+ 1

2β′2)

]dx

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 17 / 78

Page 18: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Energetic threshold

x

Β

Ε aa-Ε

Β

E =1

2(γ − β0)2a + 2k |β0|

Minimization of this function shows that there exists the threshold value

γen =2k

abρs

Size effect (typical to all gradient theories): the threshold value is inverselyproportional to the size a of the specimen.

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 18 / 78

Page 19: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Minimizer

Ansatz (based on the feature of dislocation pile-up)

β(x) =

β1(x) for x ∈ (0, l),

βm for x ∈ (l , a− l),

β1(a− x) for x ∈ (a− l , a),

Functional

E = 2

∫ l

0

[1

2(γ − β1)2 + k

(β′1 +

1

2β′21

)]dx +

1

2(γ − βm)2(a− 2l).

Function β1(x) is subject to the boundary conditions

β1(0) = 0, β1(l) = βm.

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 19 / 78

Page 20: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Varying this energy functional with respect to β1(x) we obtain the Eulerequation for β1(x) on the interval (0, l)

γ − β1 + kβ′′1 = 0.

The variation of energy functional with respect to βm and l yields the twoadditional boundary conditions at x = l

β′1(l) = 0, 2k = (γ − βm)(a− 2l).

Solution

β1(x) = γ − γ(coshx√k− tanh

l√k

sinhx√k

), 0 ≤ x ≤ l .

Transcendental equation to determine l

f (l) ≡ 2l + 2k

γcosh

l√k

= a.

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 20 / 78

Page 21: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Evolution of plastic distortion

0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.002

0.004

0.006

0.008

x

β

a

b

c

Evolution of β: a)γ = 0.001, b)γ = 0.005, c)γ = 0.01

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 21 / 78

Page 22: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Stress strain curve

0.001 0.002 0.003 0.004 0.005

0.0002

0.0004

0.0006

0.0008

σ/μ

γO

A

B

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 22 / 78

Page 23: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Non-zero dissipation

For the case with dissipation (β > 0) we have to solve the evolutionequation

γ − β + kβ,xx = γc , β(0) = β(a) = 0,

with γc = K/µ. Introduce the deviation of γ(t) from the critical shear, γc ,γr = γ − γc > 0

γr − β + kβ′′ = 0.

Thus, β = γrβ1. Similarly, for β < 0: in all formulas γ must be replacedby γl = γ + γc . For β = 0 the evolution equation need not be satisfied. Itis replaced by β = 0, so the plastic distortion is frozen.

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 23 / 78

Page 24: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Loading program

t

g

g*

-gc

Loading path

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 24 / 78

Page 25: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Hysteresis and Bauschinger effect

-0.0005 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

-0.0004

-0.0002

0.0002

0.0004

O

A

B

C

D

σ/μ

γ

Average shear stress versus shear strain curve

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 25 / 78

Page 26: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Plane strain constrained shear

0

y

x

h

sm

a

L

z

γh

A single crystal strip is placed in a “hard” device with the prescribeddisplacements at the boundary

u = γy , v = 0 at y = 0, h

γ overall shear strain (control parameter)Assumption: h a LK.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 26 / 78

Page 27: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Single slip system

The plastic distortion tensor

βij = β(y)simj

where

s = (cosϕ, sinϕ, 0), m = (− sinϕ, cosϕ, 0)

Since dislocation cannot reach the boundary y = 0, h, the plasticdistortion β(y) satisfies the constraints:

β(0) = β(h) = 0

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 27 / 78

Page 28: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Strain measures

Total strain

εxx = 0, εxy =1

2u,y , εyy = v,y

Plastic strains

εpxx = −1

2β sin 2ϕ, εpxy =

1

2β cos 2ϕ, εpyy =

1

2β sin 2ϕ

Elastic strain

εexx =1

2β sin 2ϕ, εexy =

1

2(u,y − β cos 2ϕ),

εeyy = v,y −1

2β sin 2ϕ

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 28 / 78

Page 29: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Nye’s dislocation density

da

Bi=αijnjda

Non-zero components of dislocation density tensor

αxz = β,y sinϕ cosϕ, αyz = β,y sin2 ϕ

Scalar dislocation density

ρ =1

b

√α2xz + α2

yz =1

b|β,y || sinϕ|

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 29 / 78

Page 30: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Energy density

Energy per unit volume of dislocated crystal

ψ(εeij , αij) =1

2λ (εeii )

2 + µεeijεeij + µk ln

1

1− ρρs

λ, µ - Lame constants, b - magnitude of Burgers’ vector, ρs - saturateddislocation density, k - material constant

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 30 / 78

Page 31: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Energy functional

E = aL

∫ h

0

[1

2λv2

,y +1

2µ(u,y − β cos 2ϕ)2 +

1

4µβ2 sin2 2ϕ

+ µ(v,y −1

2β sin 2ϕ)2 + µk ln

1

1− |β,y || sinϕ|bρs

]dy

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 31 / 78

Page 32: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Reduced energy functional

Minimization with respect to u and v leads to

E (β) =aL

∫ h

[1

2(1− κ)β2 sin2 2ϕ+

1

2κ〈β〉2 sin2 2ϕ

+1

2(γ − 〈β〉 cos 2ϕ)2 + k ln

1

1− |β,y || sinϕ|bρs

]dy

where 〈β〉 = 1h

∫ h0 β(y) dy

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 32 / 78

Page 33: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Energy minimization

If the resistance to dislocation motion is negligible, the true plasticdistortion minimizes the total energy

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 33 / 78

Page 34: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Energetic threshold

γen =2k

hbρs

| sinϕ|| cos 2ϕ|

Size effect: the threshold value is inversely proportional to the size h.

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 34 / 78

Page 35: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Material parameter

Material µ (GPa) ν b (A) ρs (µm−2) k

Aluminum 26.3 0.33 2.5 1.834 103 0.000156

Table: Material characteristics

In all simulations h = 1µm

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 35 / 78

Page 36: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Evolution of plastic distortion

0.1 0.2 0.3 0.4

-0.0075

-0.005

-0.0025

0.0025

0.005

0.0075

a

b

c

d

e

f

y-=30°=60°

Β

Evolution of β: a,d)γ = 0.0068, b,e)γ = 0.0118, c,f)γ = 0.0168

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 36 / 78

Page 37: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Stress strain curve

0.002 0.004 0.006 0.008 0.01

0.002

0.004

0.006

0.008

=30°=60°

O

A

B

Γ

ΤΜ

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 37 / 78

Page 38: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Non-zero dissipation

Non-zero resistance to dislocation motion: energy minimization is replacedby the flow rule

∂D

∂β= −δγψ

δβ

for β 6= 0, where

D = K |β|

κ ≡ −δγψδβ

= −∂ψ∂β

+∂

∂y

∂ψ

∂β,y

Plastic distortion may evolve only if the yield condition |κ| = K is fulfilled.If |κ| < K , then the plastic distortion β is frozen

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 38 / 78

Page 39: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Yield condition

Differential equation

|k β,yy sin2 ϕ

b2ρ2s

− (1− κ)β sin2 2ϕ

− (cos2 2ϕ + κ sin2 2ϕ)〈β〉+ γ cos 2ϕ| = K/µ = γcr cos 2ϕ

Boundary conditions

β(0) = β(h) = 0

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 39 / 78

Page 40: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Evolution of plastic distortion

β(y) = γrβ1(y), where γr = γ − γcr

j=30°j=60°

y

_

b1

Graphs of β1(y)

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 40 / 78

Page 41: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Dislocation density

α(y) = γrα1(y)

j=30°j=60°

y_

a1

Graphs of α1(y)

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 41 / 78

Page 42: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Size effect for hardening rate

It is interesting to calculate the shear stress τ which is a measurablequantity. During the loading, we have for the normalized shear stress

τ

µ= γcr + γr

(1−

(1−

2 tanh ηh2

ηh

)β1p cos 2ϕ

)

where β1p is calculated from the solution. The second term of thisequation causes the hardening due to the dislocations pile-up anddescribes the size effect in this model.

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 42 / 78

Page 43: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Comparison

ΤΤ

h/d=1.15h/d=2.3h/d=80with dissipationenergy minimization

Γ

Shear stress vs. shear strain curve

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 43 / 78

Page 44: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Comparison

y/h

h/d=2.3h/d=80energy minimizationwith dissipation

Γ

Γ

Γ

Γ

u,y

Shear strain profile

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 44 / 78

Page 45: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Loading program

t

ΓΓ

Γ

O

A

B

C

Loading path

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 45 / 78

Page 46: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Bauschinger effect

-0.002 0.002 0.004 0.006 0.008 0.01-0.002

0.002

0.004

0.006

0.008

OA

B

C

ΤΜ

Normalized shear stress versus shear strain curve for ϕ = 60

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 46 / 78

Page 47: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Double slip system

jrjl

y

h

0

z

xa

L

gh

sl

ml

mr

sr

Tensor of plastic distortion

βij(y) = βl(y)s limlj + βr (y)sri m

rj

with βl(y) and βr (y) satisfying

βl(0) = βl(h) = βr (0) = βr (h) = 0

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 47 / 78

Page 48: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Strain measures

Total strain

εxx = 0, εxy =1

2u,y , εyy = v,y

Plastic strains

εpxx = −1

2(βl sin 2ϕl + βr sin 2ϕr ),

εpxy =1

2(βl cos 2ϕl + βr cos 2ϕr ),

εpyy =1

2(βl sin 2ϕl + βr sin 2ϕr )

Elastic strain

εexx =1

2(βl sin 2ϕl + βr sin 2ϕr ),

εexy =1

2(u,y − βl cos 2ϕl − βr cos 2ϕr ),

εeyy = v,y −1

2(βl sin 2ϕl + βr sin 2ϕr )

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 48 / 78

Page 49: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Nye’s dislocation density

Non-zero components of Nye’s dislocation density tensor

αxz = βl ,y sinϕl cosϕl + βr ,y sinϕr cosϕr

αyz = βl ,y sin2 ϕl + βr ,y sin2 ϕr

Scalar dislocation density

ρ = ρl + ρr

=1

b|βl ,y sinϕl |+

1

b|βr ,y sinϕr |

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 49 / 78

Page 50: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Energetic threshold

γen =2k

hbρs

| sinϕ|| cos 2ϕ|

Size effect: the threshold value is inversely proportional to the size h.Mention that the energetic threshold value for the symmetric double slip isequal to that of the single slip found in (Le & Sembiring, 2007).

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 50 / 78

Page 51: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Comparison

h/d=40

h/d=160h/d=80

h/d=240with dissipationenergy minimization

t/t0

g

Shear stress vs. shear strain curve

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 51 / 78

Page 52: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Comparison

g=0.0068

g=0.0118

g=0.0168

g=0.0218

h/d=80energy minimizationwith dissipation

y_

h

u,y

The total shear strain profiles

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 52 / 78

Page 53: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Mechanism of twins formation

TT

T

TT

Tg

x

y

s

m

h

ax

y bt g

x

y

hs

h(1-s)

ju

jl

rotation

shear

TT

TT

TT

TT

The twin phase is formed by a twinning shear produced by the movementof pre-existing dislocations to the boundary followed by a rigid rotation.The described mechanism of twin formation is closely related to that ofBullough (1957). The difference is that dislocations need not to glidethrough each lattice plane.

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 53 / 78

Page 54: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Continuum model of deformation twinning

Tensor of plastic distortion

βij(y) =

βs lim

lj for 0 < y < h(1− s),

βsui muj + βts

lim

lj + ωij for h(1− s) < y < h,

with β(y) satisfying the constraints:

β(0) = β(h) = β (h(1− s)) = 0

The twinning shear is given by βt = −2 cotϕ

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 54 / 78

Page 55: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Plastic strains

The in-plane components of the plastic strain tensor εpij = 12 (βij + βji ) read

εpxx = −1

2β sin 2ϕ− 1

2βT sin 2ϕl ,

εpxy =1

2β cos 2ϕ+

1

2βT cos 2ϕl ,

εpyy =1

2β sin 2ϕ+

1

2βT sin 2ϕl ,

with the following quantities defined in the upper and lower part of thecrystal:

[β(y), ϕ, βT ] =

[βu(y), ϕu, βt ] h(1− s) < y < h,

[βl(y), ϕl , 0] 0 < y < h(1− s).

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 55 / 78

Page 56: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Dislocation density

da

Bi=αijnjda

Non-zero components of dislocation density tensor

αxz = β,y sinϕ cosϕ, αyz = β,y sin2 ϕ

Scalar dislocation density

ρ =1

b

√α2xz + α2

yz =1

b|β,y || sinϕ|

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 56 / 78

Page 57: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Energy density

Free energy per unit volume of dislocated crystal

ψ(εeij , αij) =1

2λ (εeii )

2 + µεeijεeij + µk ln

1

1− ρρs

λ, µ - Lame constants, b - magnitude of Burgers’ vector, ρs - saturateddislocation density, k - material constant

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 57 / 78

Page 58: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Energy functional

E (u, v , β, s) = aL

∫ h

0

[12λv

2,y + 1

4µ(β sin 2ϕ+ βT sin 2ϕl)2

+ 12µ(u,y − β cos 2ϕ− βT cos 2ϕl)

2

+ µ(v,y − 12β sin 2ϕ− 1

2βT sin 2ϕl)2

+ µk ln1

1− |β,y sinϕ|bρs

]dy .

TWIP-alloys have rather low stacking fault energies, so the contribution ofsurface energy to this functional can be neglected.

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 58 / 78

Page 59: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Condensed energy

0.05 0.1 0.15 0.2 0.25

0.0001

0.0002

0.0003

0.0004

0.0005

0.002 0.004 0.006 0.008 0.01

0.00001

0.000012

s = 0

s = 1

s = 0.9

s = 0.7

s = 0.6

s = 0.5

s = 0.8

s = 0.4

s = 0.3

s = 0.2s = 0.1

condE

g

8 -6·10

6 -6·10

4 -6·10

2-6

·10

condE

g

s = 0

s

Condensed energy E cond(s, γ) = minβ E (β, s, γ) versus overall shear strainγ for various volume fractions s (left) with a magnification (right) forsmall values of s and small strains (clearly indicating that s = 0 minimizesthe energy in that region). The actual energy with evolving s follows thepath of least energy

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 59 / 78

Page 60: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

0.05 0.1 0.15 0.2 0.25 0.3

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.05 0.1 0.15 0.2 0.25 0.3

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25 0.3

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0.05 0.1 0.15 0.2 0.25 0.3

-0.2

-0.15

-0.1

-0.05

0.05 0.1 0.15 0.2 0.25 0.3

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25 0.3

0.1

0.2

0.3

0.4

0.5

E

g

s

g

blp

gbup

g

ll

g g

lu

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 60 / 78

Page 61: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Stress-strain curve

0.05 0.1 0.15 0.2 0.25 0.3

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

t/m

g

A

B

C

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 61 / 78

Page 62: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Bending

x

y

r

ja

h sm

A single crystal beam is bent along a rigid cylinder. The displacements ofthe lower face are prescribed

ux(x , 0) = r sin(x/r)− x , uy (x , 0) = r cos(x/r)− r

Assumption: h a

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 62 / 78

Page 63: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Single slip system

Tensor of plastic distortion

βij = β(x , y)simj , s = (cosϕ, sinϕ), m = (− sinϕ, cosϕ)

Plastic strains

εpxx = −1

2β sin 2ϕ, εpyy =

1

2β sin 2ϕ, εpxy =

1

2β cos 2ϕ

Dislocation density

αxz = β,x cos2 ϕ+ β,y cosϕ sinϕ,

αyz = β,x cosϕ sinϕ+ β,y sin2 ϕ

Scalar dislocation density

ρ =1

b

√(αxz)2 + (αyz)2 =

1

b|β,x cosϕ+ β,y sinϕ|

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 63 / 78

Page 64: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Energy density

Free energy per unit volume of dislocated crystal

ψ(εeij , αij) =1

2λ (εeii )

2 + µεeijεeij + µk ln

1

1− ρρs

λ, µ - Lame constants, b - magnitude of Burgers’ vector, ρs - saturateddislocation density, k - material constant

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 64 / 78

Page 65: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Energy functional of the bent beam

I =

∫ a

0

∫ h

0[1

2λ(ux ,x + uy ,y )2 + µ(ux ,x +

1

2β sin 2ϕ)2

+ µ(uy ,y −1

2β sin 2ϕ)2 +

1

2µ(ux ,y + uy ,x − β cos 2ϕ)2

+ µk ln1

1− |β,x cosϕ+β,y sinϕ|bρs

] dxdy

Because of the prescribed displacements at y = 0 dislocations cannotreach the lower face of the beam which is in contact with the bending jigin the deformed state, therefore

β(x , 0) = 0

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 65 / 78

Page 66: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Reduced energy functional

Variational-asymptotic analysis reduces the energy functional containingthe small parameter h/a to

E1 =

∫ a

0

∫ h

0[κ(cos

x

r− 1 +

1

2β′ sin 2ϕ)2 + k|β′,y sinϕ|

+1

2k(β′,y sinϕ)2] dxdy

where κ is given by

κ =1

1− ν,

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 66 / 78

Page 67: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Energy minimization

In the equilibrium state the true plastic distortion minimizes the totalenergy

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 67 / 78

Page 68: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Smooth minimizer

The plastic distortion

β′(x , y) =

β1(x , y) for y ∈ (0, l(x)),

β0(x) for y ∈ (l(x), h)

where

β1(x , y) = β1p(1− coshχy + tanhχl(x) sinhχy)

β1p = − 2

sin 2ϕ(cos

x

r− 1), χ =

√2κ

kcosϕ

Transcendental equation to determine l(x)

k sinϕ+ κ[(cosx

r− 1)

+1

2β1p(1− 1

coshχl(x))] sin 2ϕ) sin 2ϕ(h − l(x)) = 0.

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 68 / 78

Page 69: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Energetic threshold

Size effect: the threshold value depends on a and h

rcr =a

arccos(1− k2κh cosϕ)

Thus, if the radius of the bending jig r > rcr , then l(x) = 0 and β = 0everywhere yielding the purely elastic deformation without dislocations.For r < rcr the dislocations are nucleated and pile-up against the lowerboundary y = 0 with x > x∗ forming there the boundary layer.

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 69 / 78

Page 70: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Material parameter

Material µ (GPa) ν b (A) ρs (µm−2) k

Zinc 43 0.25 2.68 145.4 0.000156

Table: Material characteristics

In all simulations a = 10mm, h = 1.3mm, ϕ = 35.

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 70 / 78

Page 71: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

2 4 6 8 10

0.02

0.04

0.06

0.08

x

l

Function l(x).

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 71 / 78

Page 72: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

x

β0

Function β0(x).

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 72 / 78

Page 73: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Polygonization

During annealing dislocations may climb in the transversal direction andthen glide along the slip direction and be rearranged as shown in thisFigure.K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 73 / 78

Page 74: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

After annealingIn the final polygonized relaxed state the dislocations form low angle tiltboundaries between polygons which are perpendicular to the slip direction,while inside the polygons there are no dislocations. We want to show thatthis rearrangement of dislocations correspond to a sequence of piecewiseconstant β(x , y) reducing energy of the beam. Here and below check isused to denote the polygonized relaxed state after annealing. The jump ofβ means the dislocations concentrated at the surface, therefore we ascribeto each jump point the normalized Read-Shockley surface energy density

γ([[β]]) = γ∗|[[β]]| ln eβ∗

|[[β]]|,

with [[β]](xi ) = β(xi + 0)− β(xi − 0) denoting the jump of β(x),γ∗ = b

4π(1−ν) , and β∗ the saturated misorientation angle.

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 74 / 78

Page 75: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Energy reducing sequence

2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

x

β0

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 75 / 78

Page 76: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Number of polygonsThe number of polygons can be estimated from above by requiring that theincrease of the surface energy is less than the reduction of the bulk energyin gradient terms. For the material parameters of zinc, the estimatedaverage polygon distance (taken as the length of the beam divided by thenumber of polygons) is equal to around 2.7× 10−7 m which is in excellentagreement with the experimental result obtained by Gilman in 1955.

0 2 4 6 8 100

20

40

60

80

100

r

lnN

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 76 / 78

Page 77: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Conclusions

CDT enables ones to model dislocation pile-up and size effects

There exists a threshold value for the dislocation nucleationdepending on the grain size

Work hardening and Bauschinger effect can properly be described

Deformation twins exhibit another type of non-convexity

Existence of distinct thresholds for the onset of deformation twinning

The stress-strain response exhibits a sharp load drop (followed by astress plateau) upon the onset of twinning

Polygonization occurs due to the smallness of the Read-Shockleysurface energy as compared with the bulk energy of distributeddislocations

The rearrangement of dislocations is realized by the dislocation climbwith the subsequent dislocation glide.

High-temperature dislocation climb during annealing is crucial for thekinetics of polygonization

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 77 / 78

Page 78: Continuum dislocation theory: size effects and formation of … · 2012-09-11 · Continuum dislocation theory: size e ects and formation of microstructure K.C. Le Lehrstuhl fur Mechanik

Further works

Indentation

Bending and torsion

Particle strengthening

Multiple slip

CDT for polycrystals

Hall-Petch relation

Plastic zone near the crack tip and ductile fracture

Finite twinning shear and finite rotation

Parameter identification and applications to TWIP-alloys

3-D model

Dislocation climb taking into account the interaction with vacancies

Kinetics of polygonization

Formation of dislocation cell structure

K.C. Le (Mechanik - Materialtheorie) CDT: size effects, microstructure Bad Herrenalb workshop 2012 78 / 78