constructions and properties of finite-row (t,s) … and properties of nite-row (t;s)-sequences1...

25
Constructions and properties of finite-row (t , s )-sequences 1 Roswitha Hofer 2 Institute of Financial Mathematics, University of Linz, Austria June 2012, UDT12, Smolenice, Slovakia 1 Partially joint work with Pirsic and with Larcher 2 supported by the Austrian Science Fund (FWF), Project P21943. Roswitha Hofer (Linz) finite-row (t , s )-sequences UDT12 1 / 16

Upload: dodung

Post on 22-May-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

Constructions and properties of finite-row(t, s)-sequences1

Roswitha Hofer2

Institute of Financial Mathematics, University of Linz, Austria

June 2012, UDT12, Smolenice, Slovakia

1Partially joint work with Pirsic and with Larcher2supported by the Austrian Science Fund (FWF), Project P21943.

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 1 / 16

Topics of the talk

Definition of (finite-row) digital (t, s)-sequences

Constructions/Examples of (finite-row) digital (t, s)-sequences

Some specific properties

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 2 / 16

Definition (digital sequence over Fq by Niederreiter 1987)

s ...dimension, Fq... a finite field, π : {0, 1, . . . , q− 1} → Fq ... a bijection,C1, . . . ,Cs ... (∞×∞)-matrices over Fq, .

x(i)n of the sequence

((x

(1)n , . . . , x

(s)n ))n≥0∈ [0, 1)s is generated as follows.

Let n = n0 + n1q + n2q2 + · · · with nj ∈ {0, 1, . . . , q − 1}. Compute

Ci ·

π(n0)π(n1)

...

=

y(i)0

y(i)1...

∈ F∞q

and set

x(i)n :=

π−1(y(i)0 )

q+π−1(y

(i)1 )

q2+π−1(y

(i)2 )

q3+ · · · .

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 3 / 16

digital (t, s)-sequences ... good distribution properties!Here the generating matrices fulfill for all m > t and alld1 + · · ·+ ds = m − t, (di ≥ 0) that

C1 =

m︷ ︸︸ ︷

gggggg}d1

, . . . ,Cs =

m︷ ︸︸ ︷

gggggg}ds

the matrix

m︷ ︸︸ ︷gggggggggg } d1

...} ds

has rank m − t

finite-row (digital) sequence ... interesting, e.g., for fastcomputation.Here the generating matrices satisfy that each row contains justfinitely many nonzero entries.

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 4 / 16

digital (t, s)-sequences ... good distribution properties!Here the generating matrices fulfill for all m > t and alld1 + · · ·+ ds = m − t, (di ≥ 0) that

C1 =

m︷ ︸︸ ︷

gggggg}d1

, . . . ,Cs =

m︷ ︸︸ ︷

gggggg}ds

the matrix

m︷ ︸︸ ︷gggggggggg } d1

...} ds

has rank m − t

finite-row (digital) sequence ... interesting, e.g., for fastcomputation.Here the generating matrices satisfy that each row contains justfinitely many nonzero entries.

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 4 / 16

Example (van der Corput sequence = finite-row (0, 1)-sequence)

The van der Corput sequence in base q is a digital (0, 1)-sequence, sincefor the generating matrix

1 0 0 0 . . .0 1 0 0 . . .0 0 1 0 . . .0 0 0 1 . . ....

......

.... . .

∈ F∞×∞q

we have(1)

has rank 1,

(1 00 1

)has rank 2,

1 0 00 1 00 0 1

has rank 3, ...

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 5 / 16

Example (digital (0, p)-sequences by Faure 1982)

For prime base p, the Pascal matrices P(a) defined by

P(a) :=

1(1

0

)(−a)1

(20

)(−a)2

(30

)(−a)3 . . .

0 1(2

1

)(−a)1

(31

)(−a)2 . . .

0 0 1(3

2

)(−a)1 . . .

......

.... . .

...

∈ F∞×∞p ,

a ∈ {0, 1 . . . , p − 1} generate a digital (0, p)-sequence over Fp.For p = 2 (Sobol 1967) the matrices are sketched:

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

32

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 6 / 16

Example (classical Niederreiter sequences, 1988)

Take s distinct irreducible polynomials h1, h2, . . . , hs in Fq[x ] of degreese1, e2, . . . , es .

Now the j-th row of the i-th generating matrix, (c(i)j ,r )r≥0, is determined

using the coefficients of the formal Laurent-series of the rationalfunction

xk

(hi (x))l=∞∑r=0

c(i)j ,r x−r−1,

where 0 ≤ k < ei , l ≥ 1 satisfy j + 1 = ei l − k .Then

t =s∑

i=1

(ei − 1).

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 7 / 16

Research Question

Let s > 1. Can finite rows satisfy for all m > t and d1, . . . , ds ≥ 0 withd1 + . . .+ ds = m − t

m︷ ︸︸ ︷· · · · · · · · · · · · } d1

...· · · · · · · · · · · · } ds

has rank m − t?

Do there exist multi-dimensional finite-row (t, s)-sequences?

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 8 / 16

Constructions via Faure and Tezuka Scramblings

Theorem (Faure & Tezuka 2000)

If C1, . . . ,Cs ∈ F∞×∞q generate a digital (t, s)-sequence over Fq and M isa NUT matrix over Fq.Then the matrices C1M, . . . ,CsM generate a digital (t, s)-sequence.

Idea (Construct a proper “scrambling” matrix, H.& Larcher 2010)

1 0 0 0 . . .0 1 0 0 . . .0 0 1 0 . . .0 0 0 1 . . ....

......

.... . .

·

1 x x x x x . . .0 1 x x x x . . .0 0 1 x x x . . ....

......

......

.... . .

=

x 0 0 0 0 0 . . .x x x 0 0 0 . . .x x x x x 0 . . ....

......

......

.... . .

1 1 1 1 . . .0 1 0 1 . . .0 0 1 1 . . .0 0 0 1 . . ....

......

.... . .

·

1 x x x x x . . .0 1 x x x x . . .0 0 1 x x x . . ....

......

......

.... . .

=

x x 0 0 0 0 . . .x x x x 0 0 . . .x x x x x x . . ....

......

......

.... . .

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 9 / 16

Constructions via Faure and Tezuka Scramblings

Theorem (Faure & Tezuka 2000)

If C1, . . . ,Cs ∈ F∞×∞q generate a digital (t, s)-sequence over Fq and M isa NUT matrix over Fq.Then the matrices C1M, . . . ,CsM generate a digital (t, s)-sequence.

Idea (Construct a proper “scrambling” matrix, H.& Larcher 2010)

1 0 0 0 . . .0 1 0 0 . . .0 0 1 0 . . .0 0 0 1 . . ....

......

.... . .

·

1 0 0 0 0 0 . . .0 1 1 0 0 0 . . .0 0 1 1 1 0 . . ....

......

......

.... . .

=

x 0 0 0 0 0 . . .x x x 0 0 0 . . .x x x x x 0 . . ....

......

......

.... . .

1 1 1 1 . . .0 1 0 1 . . .0 0 1 1 . . .0 0 0 1 . . ....

......

.... . .

·

1 0 0 0 0 0 . . .0 1 1 0 0 0 . . .0 0 1 1 1 0 . . ....

......

......

.... . .

=

x x 0 0 0 0 . . .x x x x 0 0 . . .x x x x x x . . ....

......

......

.... . .

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 9 / 16

Constructions via Faure and Tezuka Scramblings

Theorem (Faure & Tezuka 2000)

If C1, . . . ,Cs ∈ F∞×∞q generate a digital (t, s)-sequence over Fq and M isa NUT matrix over Fq.Then the matrices C1M, . . . ,CsM generate a digital (t, s)-sequence.

Idea (Construct a proper “scrambling” matrix, H.& Larcher 2010)

1 0 0 0 . . .0 1 0 0 . . .0 0 1 0 . . .0 0 0 1 . . ....

......

.... . .

·

1 0 0 0 0 0 . . .0 1 1 0 0 0 . . .0 0 1 1 1 0 . . ....

......

......

.... . .

=

1 0 0 0 0 0 . . .0 1 1 0 0 0 . . .0 0 1 1 1 0 . . ....

......

......

.... . .

1 1 1 1 . . .0 1 0 1 . . .0 0 1 1 . . .0 0 0 1 . . ....

......

.... . .

·

1 0 0 0 0 0 . . .0 1 1 0 0 0 . . .0 0 1 1 1 0 . . ....

......

......

.... . .

=

1 1 0 0 0 0 . . .0 1 1 1 0 0 . . .0 0 1 0 1 1 . . ....

......

......

.... . .

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 9 / 16

We see: one can compute for given generating matrices of a digital(t, s)-sequence a proper scrambling NUT matrix that yields finiterows in the resulting matrices ...

BUT a lot of computation must be done ...

Maybe we can find explicit formulas for some examples ...

Figure: The Pascal matrices in base 2 and the modified finite-row matrices.

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

32

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 10 / 16

We see: one can compute for given generating matrices of a digital(t, s)-sequence a proper scrambling NUT matrix that yields finiterows in the resulting matrices ...

BUT a lot of computation must be done ...

Maybe we can find explicit formulas for some examples ...

Figure: The Pascal matrices in base 2 and the modified finite-row matrices.

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

32

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 10 / 16

Figure: The Pascal matrices in base 5:

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

Figure: The scrambled matrices in base 5:

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 11 / 16

A formula for the scrambling matrix?

We have a formula for a scrambling matrix that can be used forthe generating matrices of the Faure sequences.

.... (H. & Pirsic 2011)

We also have a formula for a scrambling matrix that can be usedfor the generating matrices of the classical Niederreiter sequences.

.... (H. & Pirsic 2012)

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 12 / 16

Interesting properties:Faure sequences over Fp is generated by P(0),P(1), . . . ,P(p − 1) with

P(a) =

((r

j

)(−a)r−j

)j≥0,r≥0

(mod p).

A scrambling matrix that yields finite rows is

S =

([r

j

])j≥0,r≥0

(mod p),

where[rj

]denotes the Stirling numbers of the first kind.

Furthermore the new generating matrices satisfy

P(a)S = SQa

or S−1P(a)S = Qa with Q =

1 −1 0 0 0 · · ·0 1 −2 0 0 · · ·0 0 1 −3 0 · · ·...

. . .. . .

. . . · · ·

.... Scrambling to finite-rows here is related to simultaneous

almost diagonalization.

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 13 / 16

Interesting properties:Faure sequences over Fp is generated by P(0),P(1), . . . ,P(p − 1) with

P(a) =

((r

j

)(−a)r−j

)j≥0,r≥0

(mod p).

A scrambling matrix that yields finite rows is

S =

([r

j

])j≥0,r≥0

(mod p),

where[rj

]denotes the Stirling numbers of the first kind.

Furthermore the new generating matrices satisfy

P(a)S = SQa or S−1P(a)S = Qa with Q =

1 −1 0 0 0 · · ·0 1 −2 0 0 · · ·0 0 1 −3 0 · · ·...

. . .. . .

. . . · · ·

.... Scrambling to finite-rows here is related to simultaneous

almost diagonalization.Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 13 / 16

Column-wise construction, H. 2012Take s distinct monic irreducible polynomials h1, . . . , hs in Fq[x ] ofdegrees e1, . . . , es anda sequence (pr )r≥0 in Fq[x ] satisfying deg(pr ) = r .

Now the r-th column of the i-th generating matrix is determined

usingthe representation of pr (x) in terms of powers of hi (x):

pr (x) = ρ0(x) + ρ1(x)hi (x) + ρ2(x)hi (x)2 + · · · =∞∑k=0

ρk(x)hi (x)k

where the ρk(x) have degrees < ei . Now...- the coefficients of ρ0(x) determine the first ei entries of the column,- the coefficients of ρ1(x) determine the next ei entries of the column,- ...This construction yields

t =s∑

i=1

(ei − 1).

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 14 / 16

Column-wise construction, H. 2012Take s distinct monic irreducible polynomials h1, . . . , hs in Fq[x ] ofdegrees e1, . . . , es anda sequence (pr )r≥0 in Fq[x ] satisfying deg(pr ) = r .

Now the r-th column of the i-th generating matrix is determined usingthe representation of pr (x) in terms of powers of hi (x):

pr (x) = ρ0(x) + ρ1(x)hi (x) + ρ2(x)hi (x)2 + · · · =∞∑k=0

ρk(x)hi (x)k

where the ρk(x) have degrees < ei . Now...- the coefficients of ρ0(x) determine the first ei entries of the column,- the coefficients of ρ1(x) determine the next ei entries of the column,- ...This construction yields

t =s∑

i=1

(ei − 1).

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 14 / 16

Example (Faure sequence over Fp)

- h1(x) = x , h2(x) = x + 1, . . . , hp(x) = x + (p − 1) and- pr (x) = x r .Using the binomial theorem we see:

x r = (x + a− a)r =r∑

k=0

(r

k

)(−a)r−k(x + a)k .

Matrix entries are given by such terms

cj ,r (a) =

(r

j

)(−a)r−j .

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 15 / 16

Example (Finite-row (0, p)-sequences over Fp)

- h1(x) = x , h2(x) = x + 1, . . . , hp(x) = x + (p − 1) and- pr (x) = x(x + 1) · · · (x + r − 1) = (x)(r)...rising factorial modulo p.

(I) We see that for r big enough (x)(r) can be divided by (x + a) withresidue 0 several times! THIS YIELDS FINITE ROWS.

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 16 / 16

Example (Finite-row (0, p)-sequences over Fp)

- h1(x) = x , h2(x) = x + 1, . . . , hp(x) = x + (p − 1) and- pr (x) = x(x + 1) · · · (x + r − 1) = (x)(r)...rising factorial modulo p.

(II) Furthermore, the rising factorials are related to the Stirling numbersas follows:

x(x + 1)(x + 2) · · · (x + r − 1) =r∑

k=0

[ r

k

]xk .

The matrix related to h1(x) = x is

S =

([r

j

])j≥0,r≥0

(mod p).

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 16 / 16

Example (Finite-row (0, p)-sequences over Fp)

- h1(x) = x , h2(x) = x + 1, . . . , hp(x) = x + (p − 1) and- pr (x) = x(x + 1) · · · (x + r − 1) = (x)(r)...rising factorial modulo p.

(III) Using that

(x + a)(r) =r∑

k=0

(r

k

)(a)(r−k)(x)(k),

one can see the relations between the generating matrices:

S ,SQ, . . . ,SQp−1 with Q =

1 −1 0 0 0 · · ·0 1 −2 0 0 · · ·0 0 1 −3 0 · · ·...

. . .. . .

. . . · · ·

.

Roswitha Hofer (Linz) finite-row (t, s)-sequences UDT12 16 / 16

References:

Faure H. Discrepance de suites associees a un systeme de numeration (endimension s), Acta Arith. 41 , 337–351, 1982.

Faure H. and Tezuka S. Another Random Scrambling of Digital (t, s)-Sequences,in: K.T. Fang, F.J. Hickernell, H. Niederreiter (Eds.), Monte Carlo andQuasi-Monte Carlo Methods 2000, Springer, Berlin, 2002, pp. 242-256.

Hofer R. A construction of low-discrepancy sequences involving finite-row digital(t, s)-sequences. Submitted.

Hofer R. and Larcher G. On existence and discrepancy of certainNiederreiter-Halton sequences. Acta Arith. 141, 369–394, 2010.

Hofer R. and Pirsic G. An explicit construction of finite-row digital(0, s)-sequences. Uniform Distribution Theory 6, 11-28, 2011.

Hofer R. and Pirsic G. On existence of finite-row digital (t, s)-sequences.Submitted.

Niederreiter H. Point sets and sequences with small discrepancy. Monatsh. Math.104 (1987), no. 4, 273–337.

Sobol’ I.M. On the distribution of points in a cube and approximate evaluation ofintegrals. Z. Vycisl. Mat. i Mat. Fiz. 7 (1967), 784-802.