constitutive modeling - mit - massachusetts institute...

18
4/29/2009 1 Constitutive Modeling Total Stress Analysis vs. Effective Stress Analysis Difference on how to approximate liquid face of soil Effective Stress Analysis is more precise VELACS project

Upload: lycong

Post on 25-May-2018

224 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Constitutive Modeling - MIT - Massachusetts Institute …web.mit.edu/avytin/www/site_files/Constitutive Modeling.pdf4/29/2009 1 Constitutive Modeling Total Stress Analysis vs. Effective

4/29/2009

1

Constitutive Modeling

Total Stress Analysis vs. Effective Stress

Analysis

• Difference on how to approximate liquid face

of soil

• Effective Stress Analysis is more precise

• VELACS project

Page 2: Constitutive Modeling - MIT - Massachusetts Institute …web.mit.edu/avytin/www/site_files/Constitutive Modeling.pdf4/29/2009 1 Constitutive Modeling Total Stress Analysis vs. Effective

4/29/2009

2

Total Stress Analysis

• Modulus Reduction Curves

• Ramberg Osgood

Effective Stress

• Elastic (linear/ non-linear/ visco-elastic)

• Perfectly plastic

• Mohr Coulomb (Elastic/ Perfectly plastic)

• Cam Clay

• Multi Yield Surface Models

• Bounding Surface Plasticity

Page 3: Constitutive Modeling - MIT - Massachusetts Institute …web.mit.edu/avytin/www/site_files/Constitutive Modeling.pdf4/29/2009 1 Constitutive Modeling Total Stress Analysis vs. Effective

4/29/2009

3

Elasto-Plasticity: Useful Readings

• Computational Inelasticity, Simo and Hughes

• Computational Geomechanics notes, Boris

Jeremic

Perfectly Plastic Models

• No deformation Before Yielding

• Successfully utilized for Static Foundation

problems

• Obviously not good for Wave propagation

analyses

σ

ε

Page 4: Constitutive Modeling - MIT - Massachusetts Institute …web.mit.edu/avytin/www/site_files/Constitutive Modeling.pdf4/29/2009 1 Constitutive Modeling Total Stress Analysis vs. Effective

4/29/2009

4

Elasto Plasticity

Elastic-Friction Model

σ

ε

σ

Deformation ε

Yield Surface

• σ=Ε(ε-εp)

• Yield funtion:

– f=|σ|-σγ<0

• dεp=γsign(σ)

• Loading/ Unloading

• Consistency

– Upon loading, df=0

σ

ε

εp

Page 5: Constitutive Modeling - MIT - Massachusetts Institute …web.mit.edu/avytin/www/site_files/Constitutive Modeling.pdf4/29/2009 1 Constitutive Modeling Total Stress Analysis vs. Effective

4/29/2009

5

Hardening

σ

ε

σy

2σy

σ

ε

σyn

2σyn

Kinematic Hardening Isotropic Hardening

Yield Surfaces, 2D

p

q

Mohr Coulomb

Page 6: Constitutive Modeling - MIT - Massachusetts Institute …web.mit.edu/avytin/www/site_files/Constitutive Modeling.pdf4/29/2009 1 Constitutive Modeling Total Stress Analysis vs. Effective

4/29/2009

6

Yield Surfaces

p, εv

q,

εs

Mohr Coulomb

Associative vs non-associative plastic flow rule

Yield Surface

Dilation Surface

Mohr Coulomb

• Statically great for a variety of problems

– Foundations

– Slope Stability

– Gravity Walls

• Dynamically not good: excessive strains after

yielding

Page 7: Constitutive Modeling - MIT - Massachusetts Institute …web.mit.edu/avytin/www/site_files/Constitutive Modeling.pdf4/29/2009 1 Constitutive Modeling Total Stress Analysis vs. Effective

4/29/2009

7

Yield Surfaces

3D Principal Space

Matsuoka Nakai Yield Surface

Loading-Unloading

• Stress paths moving away from the yield

surface are in general defined as loading

Page 8: Constitutive Modeling - MIT - Massachusetts Institute …web.mit.edu/avytin/www/site_files/Constitutive Modeling.pdf4/29/2009 1 Constitutive Modeling Total Stress Analysis vs. Effective

4/29/2009

8

Neutral Loading

Rotation of principal stresses

Problems with Traditional Plasticity

• Neutral loading paths are not always observed

in nature

Page 9: Constitutive Modeling - MIT - Massachusetts Institute …web.mit.edu/avytin/www/site_files/Constitutive Modeling.pdf4/29/2009 1 Constitutive Modeling Total Stress Analysis vs. Effective

4/29/2009

9

Problems with Traditional Plasticity

• Elastic Region Very small

Drained Triaxial Test (Nevada Sand Dr=63.9%)

Problems with Traditional Plasticity

• Unloading introduced plasticity

Undrained Triaxial Test (Nevada Sand Dr=63.9%)

Page 10: Constitutive Modeling - MIT - Massachusetts Institute …web.mit.edu/avytin/www/site_files/Constitutive Modeling.pdf4/29/2009 1 Constitutive Modeling Total Stress Analysis vs. Effective

4/29/2009

10

“Ingredients” of Constitutive Soil

Models for Cyclic Behavior of Sands

• Monotonic Response

– Large Deformations post-seismic event

• Excess pore pressure accumulation (shear

induced contraction and dilation)

• Phase Transformation

“Ingredients” of Constitutive Soil

Models for Cyclic Behavior of Sands

• Dependence of Peak and Phase Tranformation

stress-ratios on the state parameter (void ratio

& stress)

• Dependence of Plastic Modulus and the

Dilatancy on the inherent anisotropy

• Dependence of Plastic Modulus and the

Dilatancy on the evolving anisotropy

Page 11: Constitutive Modeling - MIT - Massachusetts Institute …web.mit.edu/avytin/www/site_files/Constitutive Modeling.pdf4/29/2009 1 Constitutive Modeling Total Stress Analysis vs. Effective

4/29/2009

11

Bounding Surface Plasticity

• Originally formulated from Dafalias, 1987

Dafalias – Manzari, 2004

Page 12: Constitutive Modeling - MIT - Massachusetts Institute …web.mit.edu/avytin/www/site_files/Constitutive Modeling.pdf4/29/2009 1 Constitutive Modeling Total Stress Analysis vs. Effective

4/29/2009

12

Dafalias Manzari

Bounding Surface Plasticity

Success

• Excellent Simplicity

• Same parameters for various stress levels and

voids ratio

• Critical State Soil mechanics concepts

implemented

Page 13: Constitutive Modeling - MIT - Massachusetts Institute …web.mit.edu/avytin/www/site_files/Constitutive Modeling.pdf4/29/2009 1 Constitutive Modeling Total Stress Analysis vs. Effective

4/29/2009

13

Dafalias Manzari - Simulations

-50

-40

-30

-20

-10

0

10

20

30

40

50

0 20 40 60 80 100

τ (k

Pa

)

σv (kPa)

Dr: 50%

-50

-40

-30

-20

-10

0

10

20

30

40

50

-0.04 -0.02 0 0.02 0.04

τ (k

Pa

Dr: 50%

-50

-40

-30

-20

-10

0

10

20

30

40

50

-0.04 -0.02 0 0.02 0.04

τ (k

Pa

Dr: 50%

Undrained Simple Shear Test (Toyoura Sand)

Dafalias Manzari - Simulations

0

0.05

0.1

0.15

0.2

0.25

1 10 100

τ/σ

v0

N

Dr=50%

γ=1%

γ=2.5%

Undrained Simple Shear Test (Toyoura Sand)

Page 14: Constitutive Modeling - MIT - Massachusetts Institute …web.mit.edu/avytin/www/site_files/Constitutive Modeling.pdf4/29/2009 1 Constitutive Modeling Total Stress Analysis vs. Effective

4/29/2009

14

Dafalias Manzari

Pitfalls

• The model does not predict cycle to cycle

evolving damage (changes in the stress strain

properties are mainly attributed to the

increase of excess pore pressure)

• Critical State is unique

Multi-Yield-Surface

Yield Surface

Yang et al

Page 15: Constitutive Modeling - MIT - Massachusetts Institute …web.mit.edu/avytin/www/site_files/Constitutive Modeling.pdf4/29/2009 1 Constitutive Modeling Total Stress Analysis vs. Effective

4/29/2009

15

Multi-Yield-Surface

Yield Surface

Yang et al

Model Hardening

Yang et al

Page 16: Constitutive Modeling - MIT - Massachusetts Institute …web.mit.edu/avytin/www/site_files/Constitutive Modeling.pdf4/29/2009 1 Constitutive Modeling Total Stress Analysis vs. Effective

4/29/2009

16

Multi-Yield-Surface:

Success

Undrained Simple Shear Test (Medium-Loose Nevada Sand)

Yang et al

Multi-Yield-Surface:

Success

• Relatively Simple

• Can model Excess Pore Pressure Accumulation

• Can model accumulative Damage Effects

• Can model stress level dependence

Page 17: Constitutive Modeling - MIT - Massachusetts Institute …web.mit.edu/avytin/www/site_files/Constitutive Modeling.pdf4/29/2009 1 Constitutive Modeling Total Stress Analysis vs. Effective

4/29/2009

17

Multi-Yield-Surface: Pitfalls

• Properties have to be calculated at every void

ratio

• Phase transformation angle is a property for a

specific voids ratio (we know that it depends

on stress level)

History

Mohr Coulomb (1776)

Von Mises (1913)

Perfect Plasticity

Cam Clay

MIT-E1

MIT-E3

MIT-S1

Multi Yield Surface

Plasticity(MYSP), Prevost

Bounding Surface

Plasticity (BSP), Dafalias

MYSP, Elgamal

MYSP, Yang

BSP, Manzari Dafalias

BSP, Papadimitriou et al

BSP, Dafalias Manzari

Hypoplasticity

Micromechanics

Statistical Mechanics,

Thermodynamics

Page 18: Constitutive Modeling - MIT - Massachusetts Institute …web.mit.edu/avytin/www/site_files/Constitutive Modeling.pdf4/29/2009 1 Constitutive Modeling Total Stress Analysis vs. Effective

4/29/2009

18

Future

• A lot of improvements on the current models.

• Shear banding, localization. Monte Carlo

simulations.

• Multi-axial Conditions