connor moorman senior project poster final.pdf

1
What Is a High Entropy Alloy (HEA)? An Alloy composed of at least five base elements. Gibbs free energy of mixing [1] Energy of forming solid solu>ons is lower than that of forming intermetallic compounds Does not for intermetallic compounds Forms simple FCC and BCC solid solu>ons Characteriza>on of the High Entropy Alloy TiFeCrNiX Connor Moorman 1 , Brian Welk 2 , Hamish Fraser 2 1 Department of Materials Science and Engineering 2 Center for the Accelerated Matura>on of Materials The Ohio State University MSE CAMM Center for the Accelerated Maturation of Materials Figure 1: (a) Normal BCC crystal structure composed of only one element and (b) an HEA BCC crystal structure. The atomic size difference of each element creates strains in the laUce [1]. Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Ni Ni N i Cr Cr Cr Al Al Ti Ti Ti Base Alloy TiFeCrNi Base Alloy Plus Al TiFeCrNiAl Base Alloy Plus Cu TiFeCrNiCu Base Alloy Plus Mo TiFeCrNiMo Average Hardness Values (HV) TiFeCrNi 844.0 TiFeCrNiAl 677.1 TiFeCrNiCu 538.1 TiFeCrNiMo 901.5 Goals Characterize and determine the mechanical proper>es of the base alloy TiFeCrNi Determine the effects of Al, Mo, and Cu on the microstructure and mechanical proper>es of the base alloy Alloy Predicted (HV) Measured (HV) Difference (%) TiFeCrNi 814.5 844.0 3.62 TiFeCrNiAl 666.1 677.1 1.66 TiFeCrNiCu 729.0 538.1 26.19 TiFeCrNiMo 925.7 901.5 2.61 Effects on Hardness Hardness values for each HEA found to be related to the hardness values of the component elements. Base alloy, base plus Al, and base plus Mo followed this behavior Base plus Cu alloy did not This result was seen in other HEA’s with Cu Hardness rela>onship not observed in HEA’s with unequal atomic ra>os that had been worked hardened or heat treated The base alloy was bri‘le Cracking around indents Addi>on of Al eliminated cracks from around indents Addi>on of Cu reduced the cracks found around indents and reduced overall bri‘leness Addi>on of Mo produced cracks at some indents and reduced the bri‘leness Effects on ComposiKon Base Alloy Cr rich regions contained mostly Fe Ti and Fe found in near equal amounts Ni rich regions mostly with Ti and lower amounts of Fe Cr behavior does not follow enthalpy of mixing behavior Ti, Fe, and Al follow to a higher degree Base Alloy Plus Al Ni and Al found together in higher amounts Cr and Al concentra>ons change with one another Cr concentra>on inversely related to Ni concentra>on Ti and Fe display interac>ve behavior Fe has even distribu>on in matrix Elements do not behave as expected from enthalpy of forma>on Base Alloy Plus Cu Almost no Cu found in α or β phases Cu found between α and β phases with Ni Ni found in high concentra>ons in eutec>c phase Ti has even distribu>on in eutec>c phase Cr found predominately with Fe No strong connec>on to enthalpy of forma>on Base Alloy Plus Mo Mo formed dendrites with Cr Cr also found with Fe Ti and Ni were found predominantly together Small correla>on to enthalpy of forma>on Element (atm%) Phase Ti Cr Fe Ni α 3.78 68.98 21.59 05.65 β 26.68 17.68 26.95 28.69 δ 22.33 11.83 15.79 50.05 θ 24.54 15.92 20.50 39.05 Element (atm%) Phase Ti Cr Fe Ni Al α 20.66 7.02 14.90 30.21 27.20 β 26.41 22.87 29.32 6.67 14.63 δ 14.67 31.93 20.54 12.75 20.10 θ 20.10 11.52 19.33 24.34 24.71 Element (atm%) Phase Ti Cr Fe Ni Mo α 10.47 33.19 10.39 03.44 42.51 β 15.09 26.88 26.78 14.42 16.83 γ 21.81 20.83 25.91 22.87 8.59 σ 40.12 4.27 8.32 46.65 0.65 δ 24.94 3.92 7.21 63.15 0.78 θ 27.29 11.12 15.64 43.61 2.35 λ 26.65 13.22 18.13 38.67 3.33 Effects to Microstructure Base Alloy Primary dendri>c α phase with eutec>c interdendri>c phase Secondary β phase Base Alloy Plus Al Primary dendri>c α phase Nonequiaxed interdendri>c phase Secondary β phase Base Alloy Plus Cu Primary dendri>c α phase with eutec>c interdendri>c phase Cu rich interdendri>c regions Secondary β phase Base Alloy Plus Mo Primary dendri>c phase with varying composi>on Eutec>c interdendri>c phase References [1] B.A. Welk, H.L. Fraser, P.K. Liaw, M.A. Gibson, “Evalua>on of composi>on gradients via LENS for the transi>on from bulk metallic glass to high entropy alloys”, CSIRO., (2013) Acknowledgements Hamish Fraser, Brian Welk, Michael Presley, and CAMM for project concept and support. Conclusions Bri‘leness of base alloy reduced with each alloying element Addi>on of Al reduced bri‘leness the most Hardness for base alloy, +Al, and +Mo related to composi>on and hardness of elements. Base alloy with Cu did not follow this rela>onship Microstructures varied greatly between alloys Possible intermetallic phases formed Most of the phases formed did not follow behavior expected from enthalpy of forma>on. Ti mostly had an even distribu>on and was commonly found with Fe and Ni. Fe found with Ti. Very even distribu>on through phases. Cr oqen found with Fe. Also found with Mo and Al. Did not form phases with other elements very oqen. Ni found mostly with Ti and Al. Not found in high concentra>ons with Cr. Al found with Ni in high concentra>ons. Also found with Ti and Cr. Cu segregated out from Fe and Cr. Found mostly inbetween α and β phases, with high concentra>ons of Ni. Mo found Predominantly in dendrites. Produced very dis>nct concentra>on gradient decreasing in concentra>on as distance from center increased. Found with Cr as well as Fe and even less Ni and Ti. Typically not found outside of dendrite. Element (atm%) phase Ti Cr Fe Ni Cu α 27.53 18.85 35.06 15.82 02.74 β 3.38 70.62 22.09 2.88 1.04 γ 24.18 8.29 13.48 33.72 20.32 δ 24.83 9.69 17.03 33.51 14.93 θ 24.23 6.33 11.64 38.95 18.86 λ 23.85 6.16 11.54 41.72 16.73 α θ δ β α θ δ β 0 10 20 30 40 50 60 70 80 0 2 4 6 8 10 12 14 16 Atm % Distance (µm) 0 5 10 15 20 25 30 35 40 0 2 4 6 8 10 12 14 16 18 Atm % Distance (µm) α θ δ β γ λ α θ δ β γ λ σ 0 10 20 30 40 50 60 70 80 0 2 4 6 8 10 12 14 16 18 20 Atm % Distance (µm) 0 10 20 30 40 50 60 70 0 2 4 6 8 10 12 14 16 18 Atm % Distance (µm) Comparison of the predicted hardness values using equa>on 1 and the average hardness value found, in Vickers. MoKvaKon HEA’s are a rela>vely new alloy system HEA’s exhibit good mechanical proper>es [1] High strength even at high temperature Good duc>lity Corrosion resistance Wear resistance Currently, not much is known why HEA’s behave the way they do, due to their inherent complexity Improve our understanding of how elements effect the overall performance of HEA’s Allow for the development of HEA’s with more desirable proper>es Equa>on 1: relates the hardness of the HEA’s found in this experiment, in Vickers (HV HEA ) to the atomic percent (AP) of each element (E) and its hardness value (HV E ). Enthalpy of FormaKon Elements (KJ/gat) Elements (KJ/gat) TiFe 82 AlNi 81 TiCr 38 CuTi 78 TiNi 140 CuFe 60 FeCr 6 CuCr 52 FeNi 6 CuNi 26 CrNi 26 MoTi 16 AlTi 135 MoFe 9 AlFe 41 MoCr 2 AlCr 36 MoNi 27

Upload: cm

Post on 08-Dec-2015

17 views

Category:

Documents


0 download

TRANSCRIPT

What  Is  a  High  Entropy  Alloy  (HEA)?  §  An  Alloy  composed  of  at  least  five  base  elements.  §  Gibbs  free  energy  of  mixing  [1]  

•  Energy  of  forming  solid  solu>ons  is  lower  than  that  of  forming  intermetallic  compounds  

§  Does  not  for  intermetallic  compounds  §  Forms  simple  FCC  and  BCC  solid  solu>ons    

Characteriza>on  of  the  High  Entropy  Alloy  TiFeCrNiX  Connor  Moorman1,  Brian  Welk2,  Hamish  Fraser2  

1Department  of  Materials  Science  and  Engineering  2Center  for  the  Accelerated  Matura>on  of  Materials  The  Ohio  State  University   MSE

CAMM Center for the Accelerated Maturation of Materials

Figure  1:  (a)  Normal  BCC  crystal  structure  composed  of  only  one  element  and  (b)  an  HEA  BCC  crystal  structure.  The  atomic  size  difference  of  each  element  creates  strains  in  the  laUce  [1].  

Fe  

Fe  

Fe  

Fe  

Fe  

Fe  

Fe  

Fe  

Fe  

Fe  

Fe  

Fe  

Fe  

Fe  

Fe  

Fe  

Fe  

Ni  

Ni  

Ni  

Cr  

Cr  

Cr  

Al  

Al  

Ti  

Ti  

Ti  

Base  Alloy  -­‐  TiFeCrNi   Base  Alloy  Plus  Al  -­‐  TiFeCrNiAl  

Base  Alloy  Plus  Cu  -­‐  TiFeCrNiCu   Base  Alloy  Plus  Mo  -­‐  TiFeCrNiMo  

Average  Hardness  Values  (HV)  TiFeCrNi   844.0  TiFeCrNiAl   677.1  TiFeCrNiCu   538.1  TiFeCrNiMo   901.5  

Goals  §  Characterize  and  determine  the  mechanical  

proper>es  of  the  base  alloy  TiFeCrNi  §  Determine  the  effects  of  Al,  Mo,  and  Cu  on  the  

microstructure  and  mechanical  proper>es  of  the  base  alloy  

Alloy  Predicted    

(HV)  Measured  

(HV)  Difference  

(%)  TiFeCrNi   814.5   844.0   3.62  TiFeCrNiAl   666.1   677.1   1.66  TiFeCrNiCu   729.0   538.1   26.19  TiFeCrNiMo   925.7   901.5   2.61  

Effects  on  Hardness  §  Hardness  values  for  each  HEA  found  to  be  related  

to  the  hardness  values  of  the  component  elements.  •  Base  alloy,  base  plus  Al,  and  base  plus  Mo  

followed  this  behavior    •  Base  plus  Cu  alloy  did  not  

•  This  result  was  seen  in  other  HEA’s  with  Cu  §  Hardness  rela>onship  not  observed  in  HEA’s  with  

unequal  atomic  ra>os  that  had  been  worked  hardened  or  heat  treated      

§  The  base  alloy  was  bri`le  •   Cracking  around  indents  

§  Addi>on  of  Al  eliminated  cracks  from  around  indents  

§  Addi>on  of  Cu    reduced  the  cracks  found  around  indents  and  reduced  overall  bri`leness  

§  Addi>on  of  Mo  produced  cracks  at  some  indents  and    reduced  the  bri`leness  

Effects  on  ComposiKon  §  Base  Alloy  

•  Cr  rich  regions  contained  mostly  Fe  •  Ti  and  Fe  found  in  near  equal  amounts  •  Ni  rich  regions  mostly  with  Ti  and  lower  amounts  

of  Fe  •  Cr  behavior  does  not  follow  enthalpy  of  mixing  

behavior  •  Ti,  Fe,  and  Al  follow  to  a  higher  degree  

§  Base  Alloy  Plus  Al    •  Ni  and  Al  found  together  in  higher  amounts  •  Cr  and  Al  concentra>ons  change  with  one  

another  •  Cr  concentra>on  inversely  related  to  Ni  

concentra>on  •  Ti  and  Fe  display  interac>ve  behavior  •  Fe  has  even  distribu>on  in  matrix  •  Elements  do  not  behave  as  expected  from  

enthalpy  of  forma>on  §  Base  Alloy  Plus  Cu    

•  Almost  no  Cu  found  in  α  or  β  phases  •  Cu  found  between  α  and  β  phases  with  Ni  •  Ni  found  in  high  concentra>ons  in  eutec>c  phase  •  Ti  has  even  distribu>on  in  eutec>c  phase  •  Cr  found  predominately  with  Fe  •  No  strong  connec>on  to  enthalpy  of  forma>on  

§  Base  Alloy  Plus  Mo    •  Mo  formed  dendrites  with  Cr  •  Cr  also  found  with  Fe  •  Ti  and  Ni  were  found  predominantly  together  •  Small  correla>on  to  enthalpy  of  forma>on  

Element  (atm%)  Phase   Ti   Cr   Fe   Ni  α   3.78   68.98   21.59   05.65  β   26.68   17.68   26.95   28.69  δ   22.33   11.83   15.79   50.05  θ   24.54   15.92   20.50   39.05  

Element  (atm%)  Phase   Ti   Cr   Fe   Ni   Al  α   20.66   7.02   14.90   30.21   27.20  β   26.41   22.87   29.32   6.67   14.63  δ   14.67   31.93   20.54   12.75   20.10  θ   20.10   11.52   19.33   24.34   24.71  

Element  (atm%)  Phase   Ti   Cr   Fe   Ni   Mo  α   10.47   33.19   10.39   03.44   42.51  β   15.09   26.88   26.78   14.42   16.83  γ   21.81   20.83   25.91   22.87   8.59  σ   40.12   4.27   8.32   46.65   0.65  δ   24.94   3.92   7.21   63.15   0.78  θ   27.29   11.12   15.64   43.61   2.35  λ   26.65   13.22   18.13   38.67   3.33  

Effects  to  Microstructure  §  Base  Alloy    

•  Primary  dendri>c  α  phase  with  eutec>c  interdendri>c  phase  

•  Secondary  β  phase  §  Base  Alloy  Plus  Al    

•  Primary  dendri>c  α  phase  •  Non-­‐equiaxed  interdendri>c  phase  •  Secondary  β  phase  

§  Base  Alloy  Plus  Cu    •  Primary  dendri>c  α  phase  with  eutec>c  

interdendri>c  phase  •  Cu  rich  interdendri>c  regions  •  Secondary  β  phase  

§  Base  Alloy  Plus  Mo    •  Primary  dendri>c  phase  with  varying  composi>on  •  Eutec>c  interdendri>c  phase  

References  [1]  B.A.  Welk,  H.L.  Fraser,  P.K.  Liaw,  M.A.  Gibson,  “Evalua>on  of  composi>on  gradients  via  LENS  for  the  transi>on  from  bulk  metallic  glass  to  high  entropy  alloys”,  CSIRO.,  (2013)  

Acknowledgements    Hamish  Fraser,  Brian  Welk,  Michael  Presley,  and  CAMM  for  project  concept  and  support.    

Conclusions  §  Bri`leness  of  base  alloy  reduced  with  each  alloying  

element  §  Addi>on  of  Al  reduced  bri`leness  the  most      §  Hardness  for  base  alloy,  +Al,  and  +Mo  related  to  

composi>on  and  hardness  of  elements.    §  Base  alloy  with  Cu  did  not  follow  this  rela>onship  §  Microstructures  varied  greatly  between  alloys  §  Possible  intermetallic  phases  formed  §  Most  of  the  phases  formed  did  not  follow  behavior  

expected  from  enthalpy  of  forma>on.    •  Ti  mostly  had  an  even  distribu>on  and  was  

commonly  found  with  Fe  and  Ni.  •  Fe  found  with  Ti.  Very  even  distribu>on  through  

phases.  •  Cr  oqen  found  with  Fe.  Also  found  with  Mo  and  

Al.  Did  not  form  phases  with  other  elements  very  oqen.    

•  Ni  found  mostly  with  Ti  and  Al.  Not  found  in  high  concentra>ons  with  Cr.      

•  Al  found  with  Ni  in  high  concentra>ons.  Also  found  with  Ti  and  Cr.  

•  Cu  segregated  out  from  Fe  and  Cr.  Found  mostly  in-­‐between  α  and  β  phases,  with  high  concentra>ons  of  Ni.  

•  Mo  found  Predominantly  in  dendrites.  Produced  very  dis>nct  concentra>on  gradient  decreasing  in  concentra>on  as  distance  from  center  increased.  Found  with  Cr  as  well  as  Fe  and  even  less  Ni  and  Ti.  Typically  not  found  outside  of  dendrite.    

Element  (atm%)  phase   Ti   Cr   Fe   Ni   Cu  α   27.53   18.85   35.06   15.82   02.74  β   3.38   70.62   22.09   2.88   1.04  γ   24.18   8.29   13.48   33.72   20.32  δ   24.83   9.69   17.03   33.51   14.93  θ   24.23   6.33   11.64   38.95   18.86  λ   23.85   6.16   11.54   41.72   16.73  

α

θ δ

β

α

θ

δ

β

0  

10  

20  

30  

40  

50  

60  

70  

80  

0   2   4   6   8   10   12   14   16  

Atm  %  

Distance  (µm)  

0  

5  

10  

15  

20  

25  

30  

35  

40  

0   2   4   6   8   10   12   14   16   18  

Atm  %  

Distance  (µm)  

α

θδ

βγ

λ

α

θδ

β

γ

λ σ

0  

10  

20  

30  

40  

50  

60  

70  

80  

0   2   4   6   8   10   12   14   16   18   20  

Atm  %  

Distance  (µm)  

0  

10  

20  

30  

40  

50  

60  

70  

0   2   4   6   8   10   12   14   16   18  

Atm  %  

Distance  (µm)  

Comparison  of  the  predicted  hardness  values  using  equa>on  1  and  the  average  hardness  value  found,  in  Vickers.    

MoKvaKon  §  HEA’s  are  a  rela>vely  new  alloy  system  §  HEA’s  exhibit  good  mechanical  proper>es  [1]  

•  High  strength  even  at  high  temperature  •  Good  duc>lity  •  Corrosion  resistance  •  Wear  resistance  

§  Currently,  not  much  is  known  why  HEA’s  behave  the  way  they  do,  due  to  their  inherent  complexity  

§  Improve  our  understanding  of  how  elements  effect  the  overall  performance  of  HEA’s  

§  Allow  for  the  development  of  HEA’s  with  more  desirable  proper>es  

Equa>on  1:  relates  the  hardness  of  the  HEA’s  found  in  this  experiment,  in  Vickers  (HVHEA)  to  the  atomic  percent  (AP)  of  each  element  (E)  and  its  hardness  value  (HVE).    

Enthalpy  of  FormaKon  Elements   (KJ/g-­‐at)   Elements   (KJ/g-­‐at)  Ti-­‐Fe   -­‐82   Al-­‐Ni   -­‐81  Ti-­‐Cr   -­‐38   Cu-­‐Ti   -­‐78  Ti-­‐Ni   -­‐140   Cu-­‐Fe   60  Fe-­‐Cr   -­‐6   Cu-­‐Cr   52  Fe-­‐Ni   -­‐6   Cu-­‐Ni   26  Cr-­‐Ni   -­‐26   Mo-­‐Ti   -­‐16  Al-­‐Ti   -­‐135   Mo-­‐Fe   -­‐9  Al-­‐Fe   -­‐41   Mo-­‐Cr   2  Al-­‐Cr   -­‐36   Mo-­‐Ni   -­‐27