conformational analysis of 2,5-dialkyl-1,3-oxathianes

188
University of New Hampshire University of New Hampshire University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Summer 1968 CONFORMATIONAL ANALYSIS OF 2,5-DIALKYL-1,3-OXATHIANES CONFORMATIONAL ANALYSIS OF 2,5-DIALKYL-1,3-OXATHIANES PATRICIA ANN WHITE Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Recommended Citation WHITE, PATRICIA ANN, "CONFORMATIONAL ANALYSIS OF 2,5-DIALKYL-1,3-OXATHIANES" (1968). Doctoral Dissertations. 893. https://scholars.unh.edu/dissertation/893 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected].

Upload: others

Post on 18-Feb-2022

15 views

Category:

Documents


0 download

TRANSCRIPT

University of New Hampshire University of New Hampshire

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository

Doctoral Dissertations Student Scholarship

Summer 1968

CONFORMATIONAL ANALYSIS OF 2,5-DIALKYL-1,3-OXATHIANES CONFORMATIONAL ANALYSIS OF 2,5-DIALKYL-1,3-OXATHIANES

PATRICIA ANN WHITE

Follow this and additional works at: https://scholars.unh.edu/dissertation

Recommended Citation Recommended Citation WHITE, PATRICIA ANN, "CONFORMATIONAL ANALYSIS OF 2,5-DIALKYL-1,3-OXATHIANES" (1968). Doctoral Dissertations. 893. https://scholars.unh.edu/dissertation/893

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected].

This dissertation has been microfilmed exactly as received

69- 12,589

WHITE, Patricia Ann, 1941- CONFORMATIONAL ANALYSIS OF2,5-DIALKYL-l,3-OXATHIANES.University of New Hampshire, Ph.D., 1968 Chemistry, organic

University Microfilms, Inc., Ann Arbor, Michigan

CONFORMATIONAL ANALYSIS OF 2,5-DIALKYL-1,3-OXATHIANES

by

PATRICIA ANN WHITE S. B. Massachusetts Institute of Technology, 1963

A THESIS

Submitted to the University of New Hampshire In Partial Fulfillment of

The Requirements for the Degree of

Doctor of Philosophy

Graduate School Department of Chemistry

August, 1968

This thesis has been examined and approved.

Prof. of Chemistry

1'uam> K k\ O aa d — 'Kenneth K. Andersen, Assoc. Prof. of Chemistry

CAojiA ^ k 8sA/fW - - 'Charles V. Bemey, Asst. Prof. of Chemistry/au-kj) vk- _______________________

David W. Ellis, Assoc. Prof. of Chemistry

^ -> _______________Douglas jC.^Routley, Assoc. J2rof. of Plant Science/•

Date

ACKNOWLEDGEMENTS

The author wishes to express her appreciation and thanks to Dr. J. John Uebel, under whose guidance this research was conducted, for his encouragement, advice, and patience. The author also wishes to thank the National Aeronautical and Space Adminstration for providing a Fellow­ship during part of this work.

Appreciation is also due Mrs. Pearl D. Libby for the typing of this thesis and for her frequent assistance over the past four years, to Dr. Larry Keefer for kindly providing the 100 Me nmr spectra, and to Mr. Everett W. Southwick for photographing the 100 Me spectra.

In addition, the author wishes to express her deepest gratitude to Mr. Warren T. Cole for punching computer cards, making ir spectra, and assisting in any manner possible.

Finally, the author is most deeply grateful to her husband, her son, and her parents for the patience and under­standing which has made this work possible.

TABLE OF CONTENTS

Page

LIST OF TABLES........................................ viLIST OF FIGURES....................................... viiABSTRACT.............................................. viiiINTRODUCTION.......................................... 1RING GEOMETRY......................................... 4CIS-TRANS EQUILIBRIA • • 9NMR SPECTRA OF 2,5-DIALKYL-1,3-OXATHIANES............ 17MASS SPECTRA OF 1,3-OXATHIANES....................... 32SYNTHETIC APPROACHES.................................. 34SUMMARY............................................... 45EXPERIMENTAL.......................................... 47

Diethyl t^-butylmalonate (31)....................... 472-Alkyl-2-propene-l-ols........................... 43

2-Methylene-l-butanol (42) • • .......2-Methylene-3-methyl-l-butanol (30^)............ 4y3,3-Dimethyl-2-methylene-l-butanol (41)........ 50

2-Alkyl-3-mercapto-l-propanols..................... 503-Mercapto-2-methyl-l-propanol (28^...........2-Ethyl-3-mercapto-l-propanol (43) ......... 52-Isopropyl-3-mercapto-l-propanol (45)......... 5^2-£-Butyl-3-mercapto-l-propanol (37)...........

1,3-Oxathianes 332 ,2-Dimethyl-l,3-oxathiane (12)................ 545-Ethyl-2-methyl-l,3-oxathiane^ (13) ........ 545-Isopropyl-2-methyl-l,3-oxathiane (.14)....... 555-t>Butyl-2-methyl-l,3-oxathiane (15.)..........2-jt-Butyl-5-methyl-1,3-oxathiane (16)......... 55

Table of Contents continued - Page

2-t-Butyl-5-ethyl-l,3-oxathiane (17).......... 562-£-Butyl-5-isopropyl-l,3-oxathiane (18) ...... 562,5-Di-£-butyl-l,3-oxathiane (19)............. 57

Equilibrations .............................. 57BIBLIOGRAPHY.......................................... 63APPENDIX 1 - Equipment............................... 66APPENDIX 2 - NMR Spectra, Figures 5 - 29............ 67APPENDIX 3 - Theoretical NMR Spectra................ 90APPENDIX 4 - IR Spectra, Figures 30 - 48............. 142APPENDIX 5 - Mass Spectra, Figures 49 - 61........... 163BIOGRAPHICAL DATA..................................... 177

v

LIST OF TABLES

Number Page

I. Chair Deformations.......................... 5II. Bond Angles and Bond Distances.............. 7

III. Equilibria in 2,5-Dialkyl-l,3-oxathianes.... 12IV. Equilibria in 2 ,5-Dialkyl-l,3-dioxanes...... 13V. Equilibria in 2-jt-Butyl-5-alkyl-1,3-

dithianes................................... 1.4VI. Comparisons of AG, AS, and AH for

Di-t^-butyl Compounds........................ 16VII. Chemical Shifts of 2,5-Dialkyl-l,3-oxathianes 18

VIII. Coupling Constants of 2,5-Dialkyl-l,3-oxathianes .................................. 20

IX. NMR Data for 2,5-Dialkyl-l,3-dioxanes and-1,3-dithianes.............................. 31

vi

LIST OF FIGURES

Number Page1. Long Range Coupling Patterns................ 262. Fragmentation Pattern for 2-t^-Butyl-5-

alkyl-1,3-oxathiane......................... 333. Reduction of Malonic Enolates............... 38

vii

ABSTRACT

CONFORMATIONAL ANALYSIS OF 2,5-DIALKYL-1,3-OXATHIANES

by

PATRICIA ANN WHITE

The investigation of the conformational and configu­rational equilibria in 2 ,5-dialkyl-1,3-oxathianes indicates that ring geometry is important in assigning conformational or configurational preferences to six-membered ring hetero­cycles .

Coupling constants between H-5 and H-4a, H-4e, H-6a,c.nd H-6e were extracted from nmr spectra using a computer program. Comparisons of the coupling constants between the1,3-dioxanes, 1,3-dithianes, and 1,3-oxathianes have been made and interpreted in terms of ring geometry. The nmr data were used to make conformational assignments for all cis and trans isomers. On this basis it was concluded that all 1,3-oxathianes exist in a chair conformation except for the cis-5-t-butyl-l,3-oxathianes which exist in twist-boat forms.

Acid catalyzed equilibrations between cis and trans isomers of the 2,5-dialkyl-l,3-oxathianes were performed at 127° and 100°. Equilibrium constants and conformational energies were determined for all compounds at these tempera­tures. On the basis of these conformational energies, the 2-methyl group does not appear to be a holding group as is the case in the dioxanes . In addition, 2,5-di-t>butyl-l,3-

viii

oxathiane was also equilibrated at 80° which permitted the enthropy and enthalpy terms to be calculated. As the enthropy for 2,5-d.i-t^-butyl-l,3-oxathiane is large (4.2 e.u.) the twist-boat assignment made from the nmr data is sub­stantiated.

Mass spectra were obtained on all compounds. Four sets of cis/trans pairs failed to reveal any significant dif­ferences in the mass spectra of cis- and trans-2 ,5-dialky1-1.3-oxathianes. A fragmentation pattern for the 2-t^-butyl-1 .3-oxathianes was obtained. The fragmentation pattern for the 2-methy1-1,3-oxathianes is more complex and was not com­pletely determined.

INTRODUCTION

Although conformational and configurational equilibria have been extensively studied in the cyclohexanes, studies on six-membered rings containing heteroatoms are less common.In the past the assumption was made that six-membered hetero­cycles would behave like the corresponding cyclohexanes. However, that assumption has been shown to be unjustified by studies on heterocyclic systems.'*" The introduction of one or more heteroatoms into a six-membered ring alters the geometry of the ring by introducing different bond angles and different bond lengths. Considering only non-bonded interactions, the change in ring shape and geometry would be expected to have some effect on the conformational preferences of ring substi­tuents. Also the presence of a heteroatom changes torsional interactions, dipolar interactions, and the force constants for bond angle deformation and introduces the possibility of hydrogen bonding to non-bonded electrons on the heteroatom.

The only heterocycles considered in this work are 1,3- dioxanes (.1) , 1,3-dithianes (2 ), and 1,3-oxathianes (3_). Al­though there are investigations into other heterocyclic systems, most of these are not pertinent.

2

Although there is no study available on the ringgeometry of the 1,3-dioxanes, there is an extensive bodyof literature on their nmr s p e c t r a ^ * ^ a n d severalworks have dealt with equilibrations between cis- and 2 /| ^trans-disubstituted-l,3-dioxanes. * * ’ There is very little in the literature about the 1,3-dithianes. An x-ray study has been made on 2-phenyl-l,3-dithiane (4)^, and Eliel and Hutchins presented a brief discussion of the conforma­tional analysis of disubstituted-l,3-dithianes at a recent

gA.C.S. meeting. In contrast very little work has been doneon the oxathianes. The simplest member of the series, 1,3-oxathiane, appears to be unknown. Most of the studies onthis system have been an outgrowth of their use as a block-9ing group in steroid work. Some of the studies have dealt

10 11 12with the removal of sulfur from the ring. ’ ’ Perhapsthe most interesting work with the oxathianes are a series of studies on the lithium aluminum hydride reductions of 2,2- disubstituted-1,3-oxathianes (j>) and -1,3-oxathiolanes (6) in the presence of Lewis acids^^*^^, which permit the assignment of a mechanism to the cis/trans acid catalyzed isomerizations.

R

0-LAH(CH0) — ?; * RR'CHS(CH0) CHo0Hv , 2'n acid v 2yn 2

n = 3 _5n = 2 6

R,R' = alkyl groups, or spiro fusion to cyclohexane or steroid ring

This work was initiated after the accidental isola­tion of methyl 3-mercapto-2-methylpropionate (9) by a co-worker.^

3

Since 9 was an obvious precursor to the 2,5-disubstituted-1,3- oxathianes and since the 1,3-dithianes and 1,3-dioxanes were being studied by other groups, a comparison of the conforma­tional and configurational properties of the three hetero­cycles appeared reasonable. For reasons discussed in the section on Ring Geometry, the oxathiane ring is distorted more than either of the other rings. Effects of this distor­tion should be observable when the conformational and configu­rational properties of the three systems are compared.

4

RING GEOMETRY

Since the 1,3-oxathiane ring is not symmetric, a short discussion of its geometry might be helpful. Dreiding models or other models with C--C, C--0, and C--S bond lengths in the proper ratios are essential in any attempt to visualize the amount of distortion present in the oxathiane ring. Table I represents a qualitative examination of the differences be­tween 1,3-oxathiane, 1,3-dioxane, 1,3-dithiane, and cyclo- hexane using Dreiding models.

This examination was only qualitative since actual distances and angles can be varied by factors not considered in the formation of the models. The bond angles and distances used to make the models are given in column 1 of Table II. Comparison of the Dreiding model values with those obtained by measurements on the actual cyclic systems indicates that the model bond angles for C--C--C are too small, while those for C--S--C are too large. More important, the increase in the bond angle at carbon on replacing two of the cyclohexane methylenes with sulfur atoms is not indicated by the models, and increasing these angles will change the dihedral angles and decrease the syn-diaxial interactions.

There has been no study of the fundamental geometry of the 1,3-dioxane ring. Eliel and Knoeber assumed that the C--C--C angle and C--C bond length were the same as in cyclo­hexane and that the C--0— C angle and C--0 bond length were

A*the same as in dimethyl ether. (See Table II for values.) However, using the same method to obtain a model for 1,3- dithiane does not give the same results as the x-ray study on 2-phenyl-1,3-dithiane.^ In fact the ring is flattened con­siderably more than would be predicted from a combination of

Table I Chair Deformations

Ring sizeSyn-diaxial^

distances 2,42 , 6

4,6Tipping of ^

axial protons 24 6

5

cyclohexane0

000

0000

r ^ i ° °

1,3-dioxane

+

++

t t _|_!1

S o s

1,3-dithiane 1,3-oxathiane+ 0

+ ++

it tt c

0 M _ t t

+-2e

ti _j_u

continued -

Table I continued -

cyclJohexane 1,3-dioxane 1,3-dithiane 1,3-oxathianeChange in di- b hedral angle 4e5a 0 - + tt _tt

4e5e 0 + - it _j_tt4a5a 0 - + f tt _!!4a5e 0 - + tt _l!6e5a 0 - + +6e5e 0 + - -6a5a 0 - f+ + f

6e5a 0 _ + +

a. Based on Dreiding model cyclohexane as normal chair.b. 0 = no change, + = larger, - = smaller than for cyclohexane.c. " " indicate slight changesd. 0 = no change from cyclohexane, - = tipped into the ring, + = tipped out of the

ring.e. -2 indicates tip toward 2-axial proton as well as into ring.f. + in this case indicates decrease in angle on the ring side, caused by protons

tipped into the ring.

Table IIBond Angles and Bond Distances

Bond Angles C--C--C C--S--C C--0--C C--C--S

S--C--S Bond lengths

C--C C--S C--0

Dreiding models 109°28' 104ob 110°

109°28'

109°281

1.54 A 1.8b A 1.41° A

16 . . 17cyclohexane111.55 + 0.15

1,3-dithiane 116° + 1.5°100° + 1.5°

116.1° + 1.5° 114.9° + 1.5° 115.2° + 1.5°

1.46,1.51 + .03 1.80 + .03

MeXMe

98°52' 111°431 + 20'

1.802 1.41° + 0.003

a. X = 0 or S ; CH3S CI^, Ref. 18 ; CH3OCH3 , Ref. 19.b. Measured from model with ruler and protractor.

8

the dimethyl sulfide and cyclohexane bond angles and lengths. This flattening of the ring could be expected to decrease the 5a4a, 5a4e, and 5e4a dihedral angles and increase the 5e4e di­hedral angles.

Since the Dreiding models do not accurately portray the 1,3-dithiane ring, the actual structure of the 1,3- oxathiane ring cannot be assessed from the models. If Eliel and Knoeber's assumptions are correct, then the oxathiane ring might be expected to have bond angles somewhere between1.3-dioxane and 1,3-dithiane.

Vector analysis could be used to calculate the posi­tions of all atoms in cyclohexane, 1,3-dioxane, 1,3-dithiane,

20and 1,3-oxathiane. However, it is difficult to decide which values should apply to the 1,3-oxathiane case. In addition, while atom positions are relatively simple to calculate for the three symmetrical cases, 1,3-oxathiane requires 14 variables which are related through quadratic equations. Calculations on this scale are most easily done by employing a computer to do the actual work.

In summary, the geometry of the 1,3-oxathiane ring may be approximated by models based on a tetrahedral angle of 109°28'. While there is evidence to support the belief that the ring is deformed more than the models indicate, there is no evidence presently available to enable the construction of a better model. An examination of the models for oxathiane,1.3-dioxane, 1,3-dithiane, and cyclohexane indicates that there are ring deformations in the heterocycles which result in changes in the dihedral angles. The effect of these changes on the coupling constants of protons at these positions will be discussed with the nmr data.

9

CIS-TRANS EQUILIBRIA

The purpose behind the equilibrations of the 1,3- oxathianes was to obtain data which could then be compared to those obtained in the 1,3-dioxane, 1,3-dithiane, and cyclo­hexane series.

A number of similar compounds have been equilibrated.The 1,3-dioxanes have been extensively investigated by Eliel

2-4 6and Knoeber and by Riddell and Robinson. The 1,3-di-g

thianes were recently reported by Eliel and Hutchins. Per­haps the most closely related compounds from a chemical point of view are the oxathia ketals of cyclohexanones, 1£, which have been investigated by a number of workers.^ 14,21,22Originally the oxathia ketals were proposed by Djerassi as

9 10protecting groups for steroidal ketones. * Reduction ofthe oxathia ketal with Raney nickel would regenerate theketone. However, some of the ether, VL, was producedand was always the axial isomer. Assumptions were made thatthis indicated the formation of only one of the two possibleoxathia ketals; however, later evidence indicated that the

12same isomer was formed from either oxathia ketal. Equili­bration of the simpler cyclohexane derivatives allowed adirect comparison between the conformational preferences of

21 22sulfur and oxygen. *OR’

10c11lOtn = 2,3 R = _t-Bu or steroid fusion

R' = Et or i-Pr - •

10

These equilibrations revealed two interesting features. First, the isomer ratio in the presence of excess boron tri­fluoride etherate was not the same as the ratio when only a catalytic amount of boron trifluoride etherate or £-toluene- sulfonic acid was used. The second feature was that the amount of catalyst determined the rate of equilibration. With an excess of boron trifluoride etherate the equilibration wasrapid. With a catalytic amount, six months were required to

22reach equilibrium.Riddell and Robinson reported that the equilibrium

position in the 1,3-dioxanes was dependent on the amount of boron trifluoride present (chloroform as solvent), but was not affected by the concentration of trifluoroacetic acid. They also indicate that equilibrium was reached moderately rapidly at room temperature. In contrast Eliel and Knoeber report no concentration effect from boron trifluoride etherate in di­ethyl ether (over the range of 40 to 10 mol %) and found thatthe time to reach equilibrium (1:10 mole ratio of BF« to di-

4oxane) ranged from 2 to 99 days. They explain that the absence of a concentration dependence in their work is probably due to boron trifluoride being associated primarily with the ether solvent, whereas Riddell and Robinson used chloroform which will not associate well with boron trifluoride.

In the present work it was found that the time to reach equilibrium was extremely long. Although all compounds appeared to reach equilibrium within two days at 100°, only three had reached equilibrium at 80° after a week. Assuming that the reaction rate is slowed by one half for every 10° drop in tem­perature, ten months to a year would be required for some of the compounds to equilibrate at room temperature. In view of this the equilibrium position was established by equilibrating

11

the oxathianes at 127°, 100°, 80°, and 57°; however, equili­brium was only reached for one compound at 57° and three com­pounds at 80°. As a plot of log K versus 1/T is a straight line, the equilibrium positions at 25° can be obtained by extrapolation.

The catalyst employed for the 1,3-oxathianes was £- toluenesulfonic acid in tetrahydrofuran. Trifluoroacetic acid in chloroform did not appear to have any effect on the oxathianes after a week at 57°, whereas a definite (though minor) change in starting ratios can be obtained after a week at 57° with £-toluenesulfonic acid. Boron trifluoride ether­ate was not used due to the published information on concen­tration effects. The effect of £-toluenesulfonic acid con­centration was checked by equilibrating 5:1, 10:1, and 20:1 2-jt-butyl-5-ethyl-1,3-oxathiane (17) : £-toluenesulfonic acidsolutions (ca. 1.0 M in 17). The equilibrated values were all within experimental error. A check for possible depen­dence of the equilibrium on the concentration of 1,3-oxathiane was made by equilibrating 1.0 M, 0.5 M, and 0.1 M solutions of YL an<* £ “ toluenesulfonic acid (20:1). Again no concentra­tion dependence was found. The other oxathianes were equili­brated using 0.5 M, 20:1 solutions.

The equilibrium constants and AG's are given in TableIII. The differences between the 2-£-butyl and 2-methyl series are real and probably indicate that unlike the 1,3-di- oxanes the 2-methyl group does not fix the conformation. Work now in progress on the 2,4-, 2,6- and 2,4,6-substituted-l,3- oxathianes should substantiate this finding. Tables IV and V list values for the 1,3-dioxane and 1,3-dithiane series. As the data on the oxathianes is incomplete and at much higher temperatures than the other heterocycles, a detailed compari­son between the series serves no useful purpose at this time.

Table IIIEquilibria in 2,5-dialkyl-l,3-oxathianes

/ 0 ^ ^ — R

R 1 — A

R» R l/K13 Me Et 2.9214 Me i-Pr 3.4615° Me _t-Bu 12.2016 _t-Bu Me 3.26i f _t-Bu Et18 _t-Bu i-Pr 3.0719C t-Bu t-Bu 9.67

K 0

R'

127'AG‘

100°

l/K (kcal/mole) AG°3.36 + 0.16 0.90 + 0.044.09 + 0.11 1.05 + 0.02

a3.38 + 0.12 0.90 + 0.032.84 + 0.04 0.78 + 0.013.29 + 0.09 0.86 + 0.02

14.07 + 0.44 1.96 + 0.02

a. Problems with sample.b. Not run.c. 15, AGg0 = 1.98 + 0.05 s 17» AG80 = 0,79 ± °*01, AG57 = °'74 1 °'01 ^

19, AG°q = 2.00 + 0.05 N5

Table IVEquilibria in 2,5-dialkyl-l,3-dioxanes*

R' 0R

R'

R

R' R l/K AG25 o(kcal/mole) A°H AS'Me Me 5.11 + 0.04 0.97 + 0.01Me _t-Bu 11.86 + 0.24 1.46 + 0.01Et Et 3.44 + 0.13 0.73 + 0.01t-Bu Me 3.86 + 0.12 0.80 ± 0.02 (0.89) (0.86 + 0.09) (-0.1 + 0.3)t-Bu Et 3.08 + 0.07 0.67 + 0.01 (0.81) (0.74 + 0.08) (-0.2 + 0.3)

i-Pr 5.25 + 0.10 0.98 + 0.01 (1.10) (1.13 + 0.10) (+0.5 + 1.7)t-Bu 9.88 + 0.15 1.36 ± 0.01 (1.7) 1.5 (l.SI + 0.5) 0.6 (0.51 + 1.7)

a. Data from Ref. 4, values in parentheses from Ref. 6 at 30°.

i-1LO

14

Table VQ

Equilibria in 2-jt-Butyl-5-alkyl-l,3-dithianesR

R

t-But-Bu

R AG° (kcal/mole)Me 1.04Et 0.77i-Pr 0.85t-Bu 1.60

15

However, Table III does indicate that the trends in the 1,3- oxathianes are the same as in the other two heterocyclic series, as was expected. Also when compared to the conforma­tional energies for the cyclohexanes (Me = 1.7 kcal, Et =

241.8 kcal, ^-Pr = 2.1 kcal, £-Bu 4 kcal) , the three 1,3- heterocyclic systems have significantly lower conformational energies: and all three show the same decrease in energy when a methyl group is replaced by an ethyl group. Also for the1.3-oxathianes and 1,3-dithianes the conformational energy of an isopropyl group is still lower than that of a methyl group. No explanation for this is presently available.

Table VI is a comparison of AH, AS, and AG for 2,5- di-J:-butyl-l,3-oxathiane (19) , 2,5-di-_t-butyl-l,3-dioxane (20) ,2,5-di-J:-butyl-l,3-dithiane (21), and 1,3-dit^-butylcyclohexane. The large enthropy for 2,5-di-t:-butyl-l ,3-oxathiane (19) is consistent with the assignment of a twist-boat conformation for the cis isomer. If an axial t^-butyl group were present to a large extent, a smaller enthropy term would be expected in keeping with the small enthropy term for 2,5-di-t^-butyl-1.3-dioxane (20) which has been assigned an axial t^-butyl group

2-4from nmr evidence. A twist-boat conformation has been assigned to 2,5-di-j:-butyl-l,3-dithiane (21)

16

Table VIComparisons of AG, AS, and AH for Di-_t-butyl Compounds

t-Bu

t-Bu

t-Bu

t-Bu

21 S 20 0 20 0 19 0

8

CH0 CH, 23

AH (kcal/mole) AS (e.u.) AG (kcal/mole)

3.4 5.3 1.61.54 + 0.031.9 + 0.53.5 + 1.0

5.9

0.63 + 0.01 1.3625° + 0.0130°0.5 + 1.7 1.7

4.2 + 1.5

4.9 4.2

1.96100° + .02

NMR SPECTRA OF 2,5-DIALKYL-l,3-OXATHIANES

With two exceptions 60 Me nmr spectra were obtained on cis and trans isomers obtained by preparative vpc. Trans-2,5-di-Jt-butyl-l,3-oxathiane (19t) was obtained as a solid from the original reaction mixture; 60 and 100 Me nmr spectra were obtained on this recrystallized solid (containing about 10% cis isomer). The isomers of 2,5-dimethyl-l,3-oxathiane (12) could not be separated successfully by vpc and were not included in the calculated spectra. Cis- and trans-2,5-di-t- butyl-l,3-oxathiane (19c and 19t), cis- and trans-5-t-butyl-2-methyl-1,3-oxathiane (15c and 15t) , and cis- and trans-2-t- butyl-5-methyl-l,3-oxathiane (16c and 16t) were also obtained at 100 Me.25

Since the observed spectra are extremely complicated,chemical shifts and coupling constants for the 4 and 6 protonswere extracted with the use of a computer program capable of

26accepting data for three nuclei with spins of 1/2. Table VII contains a summary of the chemical shifts. The extracted coupling constants are listed in Table VIII.

Me t-Bu

Me t-Buciscis transtrans

Me 12 16t 16c

Table VIIChemical Shifts of 2,5-dialkyl-l,3-oxathianesa

R-2 R-5 2R 2H12b ch3 ch3 82.5 285(288)

131 Et 83 274.514t i-Pr 82.5 278.5151 t-Bu 82 278

t-Bu (100 Me) 134 460.516t jt-Bu CHa 56 2643

ch3 (100) 98 43517t Et 58 25918t i-Pr 57 258

19t t>Bu 58 258t-Bu (100) 101 438.5

13cC Me Et 82 28414c^ i-Pr 82.5 286

15c _t-Bu 87 288t-Bu (100) 143.5 376

4ax 4eq 5H 5R 6a 6e48(75)

151.7 161.5 106.3 60 185.3 238.3162.0 159.0 95 56 193.4 241.0

103 55 197.0 249.0271.6 265.3 155.0 90156.6 164.6 117-116 49 188.6 242.6256.1 269.6 190 78 309.6 399.6149.8 166.7 100 58 186.4 246.3

158.8 164.3 95 57 192.7 248.555

276.6 284.1 165 91 336.6 429.4

189.1 153.5 95 56(105) 217.2 233.2183.03 163.0 145 62,55 211.0 245.7

(100)85.9 60 219.6 263.9

277.4 277.4 144 99 363.5 392.55

Table VII continued -

R-2 R-5 2R 2H 4ax 4eq 5H 5R 6a 6e

16c t-Bu Me (100) 99 444 332.9 253.5 169.5 126 271.7 285.45

17cC Et 57 263 186.4 158.4 100 57(103) 217.3 237.118cd i-Pr 57 263.5 180.1 168.1 139.9 61,55 211.9 250.5

19c _t-Bu 58 260 55.597.5 431 (266.4)6 150 92 360.1s. 399.1

s.

a. Values in cps from TMS, error limits +0.5 cps.b. Mixture of isomers, values in parentheses for cis.c. Value in parentheses for CH2 group.d. Nonequivalent Me groups, value in parentheses for CH group.e. Center of pattern, Av = f(J^ 4^) •

VO

Table VIIIaCoupling Constants of 2,5-Dialkyl-l,3-oxathianes

R-2 R-■5 J5,4a ^5,4e J5,6a **5 ,6e J676 J4e,iTrans

131 ch3 Et 11.2 3.2 -13.1 10.7 3.5 -11.7 2

14t i-Pr 8.6 5.0 -13.0 11.2 3.1 -11.6 2151 t>Bu (60) 11.3 3.5 -11.5 2

_t-Bu (100) 7.8 6.8 -12.6 216t t_-Bu Me 11.0 3.9 -13.0 11.0 4.1 -11.5 2

Me (100) 11.0 3.9 -13.0 11.0 4.1 -11.5 2

17t Et 10.7 3.5 -13.2 10.7 3.7 -11.6 2

18t i-Pr 11.0 3.4 -13.2 10.9 3.3 -11.5 2

19t _t-Bu (100) 10.4 4.0 -13.0 11.2 3.5 -11.1 2

Cis13c Me Et 3.1 3.0 -13.5 2.5 1.9 -11.9 2

14c i-Pr 3.2 3.7 -13.8 2.3 2.1 -12.2 2

15cb _t-Bu (60) 4.8 5.6 -12.1 0_t-Bu (100) (Jax + Jbx) = 11.1 -13. 4.6 5.4 -11.9 0 N>o

Table VIII continued -

R-2 R-5 J5,4a J5,4e J4,4Cis

16c t_-Bu Me (100) 3.3 3.0 -13.1

17c Et 3.2 3.3 -13.418c i-Pr 3.2 3.5 -13.919cb t-Bu (100) (Jax + Jbx) = 12.9-13.

a. All values in cps. Error limits are +0.2 cps.

b. assumed to be 13 cps

^5,6a ^5,6e J6,6 ^4e,6e

2.5 2.05 -11.7 2

2.25 1.9 -11.7 22.7 2.1 -12.2 25.9 4.25 -12.0 0

N5

An examination of Table VIII shows that five of the cis compounds, 13c, 14c, 16c, 17c, and 18c, have small coup­ling constants which are consistent with the conformation indicated above. Of the trans compounds, five have similar coupling constants, and two, 14t and 15t, have abnormal couplings on the sulfur side of the ring. The normal coup­lings are consistent with the chair conformations indicated above.

In addition, a comparison of the coupling constantsbetween the cis and trans series shows that J,- , < J,- , 5e-4a 5a-4eand 6a<^ ^5a ge which is consistent with the argumentadvanced by Booth that protons located anti to electronegativesubstituents have smaller coupling constants than protons

27alocated syn to the electronegative substituent.The two cis-5-t-butyl-l,3-oxathianes, 15c and 19c,

apparently exist in twist-boat conformations. Only the sum of the coupling constants on the sulfur side could be extracted from the calculation of theoretical spectra. (In the cis-2,5- di-£-butyl-l,3-oxathiane (19c) calculations, only the center of the AB pattern could be determined.) The sum of the couplings is too large to be the sum of couplings from a chair with axial t:-butyl group; they also appear to be too small for classical boats iii and (The assumption is made that a classicalboat would have couplings similar to those observed in the trans cases. If boat iii had a significant contribution to the con­formation, the sum of the coupling would be expected to be at least as large as observed in the trans case.) On the oxygen side both couplings are directly observable. Neither is large enough to be considered as an axial-axial interaction, and both are too large to be considered as axial-equatorial or equatorial- equatorial interactions, which eliminates boats 1 and ii. Also

23

H H H

'— R

i « • •111

the absence of long range coupling (observed in all other cases) tends to substantiate a twist-boat assignment. The coupling constants on the oxygen side are too large to be consistent with a flattened chair with axial t^-butyl substi­tuent .

The long range coupling constant is about 2 cps in all compounds where it is observed. This has been assigned as J^e 6e using the couplings with H-5 to make the assignments in the trans cases and assuming that the same protons are coupled in the cis cases.

range coupling is not between H-4e and H-6e, this alternative seems unlikely for the following reasons. Coupling between H-4e and H-5 and between H-6e and H-5 can be observed in all spectra. Coupling with the adjacent geminal proton is also observed. The axial proton at C-2 is not split by any other protons in the 2-jt-butyl series and shows a simple quartet as expected in the 2-methyl cases. The 5-t^-butyl and 5-methyl groups appear as a singlet and a doublet respectively, and show no signs of any further splitting. While the 5-ethyl and 5-isopropyl groups are not readily observable (the C ^ group in the 5-ethyl case overlaps with H-5 in the cis com­pounds , 13c and 17c and with the CHg group in the trans

While there is a possibility that this observed long

24

compounds, 13t and 17t; in the 5-isopropyl cases the methine proton is not observed), they would be expected to behave like the 5-t^-butyl and 5-methyl groups. Conditions for "virtual coupling" do not appear to be met. In 12 H-3 will show additional lines in its spectra if Av 1,3 = J , „ 02g H-land J„ » = 0. These conditions do not exist in the H-1,H-J

I I I - c - c - c -

I I IH3 H2 H1

22

1,3-oxathiane series. In addition, late in the investigationa computer program capable of accepting data for seven nuclei

26with spins of 1/2 became available , and calculated spectrafor trans-2-t-butyl-5-methyl-1,3-oxathiane (16t) (ignoring the5-methyl-group) and trans-2,5-di-t-butyl-l,3-oxathiane (19t)were in good agreement with the observed spectra when a longrange coupling of 2.0 cps was included in the input data.(See Appendix 3 ).

It might be pointed out that while the long rangecoupling conforms to the "M" rule in the trans isomers and isassumed to be the same in the cis isomers, the "M" rule is not

28generally valid and should not be used to assign structures.29Couplings between all protons are observed in 23^ 24^ and 25 ,

and Tavernier and Anteunis point out that long range couplingshave been observed between axial and equatorial protons and5between axial and axial protons in the dioxane series.Barfield has done calculations on the indirect contributionto long range coupling constants and finds that a Karplus type

30relationship is involved. is a maximum when both pro­tons lie at 180° to the plane of the intervening three carbons,

25

decreases to a minimum when both protons lie at 90° anglesto the plane, and increases to a smaller maximum when bothprotons lie at 0° to the plane. However, his calculationsdo not take into account direct affects or substituent effects(maximum indirect calculated is 1.1 cps). He cites areported case of axial-pseudo axial coupling of 1.8 cps found

31in a steroid as an example of non-predictability of other effects. (Axial-equatorial coupling in the same system was much smaller.) In the present case only the cis compounds could be incorrectly assigned; and as the size of the coupling constant appears to be the same in all cases, the protons in­volved must have approximately the same spatial relationship.

ClCl Cl

ClClCl Cl

In addition the long range coupling is not first order as might be expected. Figure 1 shows the appearance of H-6e (adjacent to oxygen) in the trans series. There is a consistent change as the 5-alkyl group is varied from ethyl to t^-butyl (the methyl case is similar to the ethyl) . The seven spin computer program predicts these changes in its cal­culated spectra. As both H-4e and H-6e are affected by these changes, this does not appear to be a case of virtual coupling, since only the geminal protons on the sulfur side satisfy the conditions for virtual coupling. Also the patterns do notchange appreciably between the 60 and 100 Me spectra as would

28be expected for virtual coupling.Figure 1 also shows another interesting feature in the

trans oxathianes. For 17t and 13t the low field doublet is

Figure 1Long-range Coupling Patterns

2-methyl

2-_t-butyl

17t 10 cps5-Et 13t10 cps

-i-Pr 14t10 cps10 cps,

19t 15110 cps 10 cps

-t-Bu 19t (100 Me) 10 cps

15t (100 Me)10 cps

ho

27

smaller than the high field doublet. For 18t and 19t only the high field portion remains a doublet, the low field pattern collapses to a broad unresolved peak in 18t and then resolves into a triplet in 19t. However, for 14t and 15t the high field pattern is the one which changes. This is an indication of changes in the sulfur side of the molecule in trans-5-isopropyl-2-methyl-l,3-oxathiane (14t) and trans-5- _t-butyl-2-me thy 1-1,3-oxathiane (15t) . These are the two cases for which normal couplings are not observed on the sulfur side of the molecule. Also examination of Table VII indicates that these are the only trans compounds in which H-4a is found at lower field than H-4e. This would indi­cate decreased shielding of this proton, either by the equatorial 5-alkyl group or by the anti unbonded electronpair on sulfur. A shift to an axial 5-alkyl group would de-

32shield this proton (H-4a is at lower field than H-4e in the cis cases where the alkyl group is axial), but should also cause changes in the oxygen side of the spectra. The oxygen side, however, has the normal coupling constants ob­served for the other trans compounds. No change is observed in the chemical shifts of the 2-methyl group and H-2, and an observable change in their chemical shifts would be expected.On this basis either a chair conformation with two axial alkyl groups or one of the possible classical boat conforma­tions is unlikely. Alternatively the compounds might exist in twist-boat conformations. However, as the long range coupling is present and of the same order of magnitude as observed for the other trans compounds and no change is ob­served at C-2, a twist-boat where the spatial orientations of the two equatorial protons have changed considerably appears unlikely. The most likely possibility for the conformation is a flattened boat where interactions between the equatorial

28

5-alkyl group and the protons at C-4 and C-6 cause the C-4 methylene group to rotate, flattening the ring at sulfur and

CH,

CH, CH.H H

C-4, decreasing the aa and ae torsional angles and consequentlydecreasing Jaa and increasing Jae. This would have the effectof removing the anti-diaxial relationship between H-4a and thefree pair on sulfur and consequently shift H-4a to lowerfield. As the barrier to rotation about a carbon-sulfur bond

18(2.13 kcal) is less than the barrier for a carbon-oxygen20bond (2.72 kcal/mole) , deformation of the sulfur side

requires lower energy than deformation of the oxygen side.In the equatorial 5-t^-butyl cases, one methyl group

from the t^-butyl group is syn-diaxial with the axial protons at C-4 and C-6. From an inspection of models H-4a was seen to point out of the ring and away from H-2, a severe inter­action would be expected. However, in the 5-isopropyl cases, that methyl can be replaced by a hydrogen which will not have the same interaction. Thus interactions must also exist be­tween the equatorial protons and the methyl groups on iso­propyl and t^-butyl. From an inspection of models this would appear to be the case.

The change in chemical shift and coupling constants is not observed in the 2-t^-butyl compounds, 181 and 19t, which would be expected to have similar interactions. One possible explanation for the difference is that the substituents at C-2 are also slightly perturbed, and the 2-t^-butyl group main­tains its equatorial conformation at the expense of the

29

interactions at the 5-alkyl group.Considering all of the 1,3-oxathianes investigated,

some tentative conclusions may be drawn. Increasing the size of the 5-alkyl substituent in an equatorial position de­creases the shielding of the axial proton adjacent to sulfur and to a lesser extent that of the equatorial proton as well.On the oxygen side, both would appear to be deshielded to thesame degree. These results are at least qualitatively the

2 7bsame as observed by Booth. Increasing the size of an axial5-alkyl group tends to deshield equatorial protons on either side and to shield the axial protons on the oxygen side. Thus the pattern on the oxygen side is observed to spread out with increasing size of the axial group while the pattern from the sulfur side tends to coalesce. This result is also in keep­ing with Booth's observations since the chemical shift of the axial proton adjacent to sulfur is down field in the cis com­pounds from its position in the trans compounds. Thus what is observed is the expected case of shielding of the equatorial protons decreasing as the axial alkyl group increases.

Four of the fourteen spectra investigated have abnormalbehavior when compared with the others. The two cis 5-t:-butylcompounds, 15c and 19c, satisfy Lambert's criteria for a twist-

32boat conformation. Also the limited data available from the equilibrations on these compounds appears to indicate a greater AS° than would be expected for an equilibrium between two chair forms. The two abnormal trans cases, 14t and 15t, probably have flattened chair conformations. However, the preference for the flattened chair is made partially on the basis of chemi­cal shifts of the 2-proton and 2-alkyl group. There is the possibility that since axial protons adjacent to sulfur are not shielded as much as axial protons adjacent to oxygen and are frequently found downfield of the equatorial proton, the chemical

30

shift difference between axial and equatorial H-2 may be quite small. (The expected difference is about 20 cps, but this is based on the dioxane case.)

Table IX contains a summary of data extracted from3 4Eliel and Knoeber's work on the 1,3-dioxane series * , and

some of Eliel and Hutchins’ work in the 1,3-dithiane series.It might be noted that the chemical shifts for the 2-proton and the 2-alkyl group in the 1,3-dioxanes are found at higher field than in the corresponding 1,3-oxathianes. This is probably the result of the tendency for axial protons adjacent to sulfur to absorb at lower field than the corresponding equatorial proton due to decreased shielding from the anti free pair on sulfur.

The decrease in the observed J,- (oxygen side) of the trans-1,3-oxathianes when compared to the trans-1,3- dioxanes is predicted by the change in dihedral angle when models are examined. The ea angle in oxathiane is larger than the cyclohexane case which is larger than in the dioxane case. (See the section on ring geometry). These changes in dihedral angle should make Jae for 1,3-oxathiane smaller than the corresponding Jae for 1,3-dioxane. Conversely when examin­ing the cis cases, Jee for 1,3-oxathiane is larger than Jee for 1,3-dioxane because the ee dihedral angle in 1,3-oxathiane is smaller than the corresponding angle in 1,3-dioxane.

The available data for the coupling constants in the1.3-dithiane series indicates that the two series are quite similar. The differences in the cis compounds can be explained by differences in the torsional angles as observed from Dreid- ing models, smaller for ee and larger for ea in the dithiane case. The cis-di-t-butyl-1,3-dithiane (21c) is assigned a

gboat form by Eliel and Hutchins and the sum of the coupling constants is similar to the sum obtained in cis-2,5-di-t-butyl-1.3-oxathiane (19c).

Table IXNMR Data for 2,5-dialkyl-l,3-dioxanes and -1,3-dithianes

R R' 2-R 2-H R-5 J5,4a J5,4e4trans-1,3-dioxanes

Me Me 71.2 266.2 11.1 4.6t_-Bu 67.9 264.6 52.6 10.6 5.6

t-Bu Me 50.3 237.5 10.1 4.3Et 50.5 233.6 12.7 4.7i-Pr 49.8 231.0 10.2 4.9t-Bu 48.9 231.5 53.0 12.1 4.74cijs-1,3-dioxanes

Me t-Bu 69.1 273.5 62.3 4.0 1.3_t-Bu i-Pr 50.5 240.5 3.0 2.3

t-Bu 49.7 239.7 62.7 3.9 1.1Q

cis-1,3-dithianest -Bu Me3 3.2 4.2

Et3 3.1 3.5t-Bu Jax + Jbx = 7.3

a. chair conformationb. twist-boat

32

HASS SPECTRA OF 2,5-DIALKYL-l,3-OXATHIANES

Mass spectra were obtained on all 2 ,5-dialkyl-l,3- oxathianes. In four cases, 5-j:-butyl-2-methyl-l ,3-oxathiane (15), 2-j:-butyl-5-ethyl- (17), -5-isopropyl- (18), and 2,5- di-j:-butyl-l,3-oxathiane (19) spectra were obtained on both cis and trans isomers. In the remaining cases, spectra were obtained on either the pure trans isomer or on a mixture of the isomers. There appears to be no significant differences between the mass spectra of cis and trans isomers. Molecular mass ions were observed for all compounds, although they are less intense for the 2-t>butyl series.

Figure 2 shows the fragmentation pattern for the 2-t> butyl series. This pattern was derived through the observa­tion of metastable ions. Some of the ion fragments might have structures different from those indicated; however, the ones indicated are the most likely structures. In three cases,16, 17, and 18 , the allylic ion is the major fragment. For2,5-di-t^-butyl-l,3-oxathiane (19) the major ion is the tri­methyl carbonium ion.

In contrast to the 2-t^-butyl series, the 2-methyl series has a far more complex fragmentation pattern. While loss of the methyl group does occur to yield a fragmentation pattern identical to the 2-Jt-butyl series, the molecular mass ion fragments in several major ways. No fragmentation pat­tern has been derived for the other modes of fragmentation. Most of the major ions in the 2-methyl series are unaccounted for. In particular, a large number of even mass ions are observed which could not be explained.

33

Figure 2Fragmentation Pattern for 2-t^-Butyl-5-alkyl-l,3-oxathianes

R

R

0 + SrM

+

57I*

+CH2SH

M-850 s CHO

H-5 7

OHCHS45 M-101

R

" + M-119

+

*

41 OtherFragments

* metastable ion observed in some spectra

34

SYNTHETIC APPROACHES

The basic route to substituted 1,3-oxathianes is a generalization of the textbook examples for making ketals, acetals, thioketals, and thioacetals. In the case of the thioketals and thioacetals the equilibrium lies far to the

acid /XR"RR'CO + R"XH « — . *■ RRfC + H90

x r "

R,R' = H or organic substrate R" = organic substrate X = 0 or S

right. For acetals and ketals the equilibrium must be shifted to the right by removal of water. The 1,3-oxathianes resemble both. The oxygen side can be cleaved in the presence of acid while the sulfur side is essentially inert under the same

+S OH v. acid

RR'CO + HSCHoCHoCHo0H

HS .0+ R ^ R '

35

13 14conditions. * The basic synthetic problem therefore was not the formation of the oxathianes, but the synthesis of the appropriately substituted 3-mercapto-l-propanols.

Precursors to the 3-Mercapto-l-propanols

Two routes to the 3-mercapto-2-substituted-l-propanols were considered. The first route developed from the acciden­tal isolation by a co-worker of methyl 3-mercapto-2-methyl-

ch2=c(ch3)cooch3 + h2s Triton B» S'\,CH2CH(CH3)COOCH3

CH2CH(CH3)COOCH3

27 26

HSCH2CH(CH3)COOCH3

propionate (£) as a by-product in the preparation of dimethyl3,31-thia-2,21-dimethyldipropionate (26) by the Michael addi-i stion of hydrogen sulfide to methyl methacrylate (27).~~Lithium aluminum hydride reduction of _9 did yield 3-mercapto-2-methyl-l-propanol (28) in reasonable yield. Two things hindered the adoption of this route for all 3-mercapto-l-pro­panols. First, the preparation of mercaptans by the addition of hydrogen sulfide across the double bond of an a,p-unsatu- rated carbonyl compound is not feasible from the standpoint of yield since the resulting mercaptans react further under the same conditions. This problem can be avoided by using thiol- acetic acid (29) or another thiol acid to form the thio-ester which can be reduced to the 3-mercapto-l-propanol. The second

36

and more serious problem was the source of the a,(3-unsatu- rated esters or aldehydes. Although the 2-substituted methyl compounds are commercially available, the other alkyl com­pounds are not. Investigation of the literature revealed that the appropriate starting materials could be synthesized in

(ch3)2n h2+c i " r c h2cox + c h2o ----— — - c h2=c (r )cox

R = Me, Et, i-Pr, or t-Bu X = H or OR'

reasonable yields (50-707,) from saturated aldehydes or esters33through the Michael condensation of formaldehyde. However,

the one case investigated further, R = t:-Bu, indicated that the ester was extremely costly, the aldehyde was unavailable, and the acid, while available, was expensive and would have to be modified to either the ester or aldehyde before use.

The second route to the 3-mercapto-l-propanols in­volved the addition of thiolacetic acid (29) to an unsatu­rated alcohol. Brown and co-workers added thiolacetic acid (29) to a variety of unsaturated alcohols, aldehydes, andallyl acetates under free radical conditions and reported good

34yields of the thioacetates. The thioacetates could be hydro­lyzed by refluxing in aqueous base or alternately they could be

c h3c os h + c h2=chr f-— e- ra- 1-al*» c h3c os c h2ch2r

h sc h2c h2rR = CH2OH, CHO, or CH2OCOCH3

baseor LiAlH.4

37

removed by lithium aluminum hydride reduction. This route could only be used if the desired 2-substituted-2-propene-l- ols were available. The only commercially available 2-substi- tuted-2-propene-l-ol is 2-methyl-2-propene-l-ol (30). However, early in 1967 Marshall and co-workers described the lithiumaluminum hydride reduction of malonic enolates to 2-substituted-O t 352-propene-l-ols.

NaH - + LiA1H4RCH(C00Et)2 ■ ■■ ■» RC(COOEt)2 Na CH2=CRCH2OH

They propose the mechanism outlined in Figure 3 to explain product mixtures containing 1-16% aldehyde k, 1-25% saturated alcohol 1> an^ 62-80% unsaturated alcohol m. The actual reduction must proceed by both pathways indicated since f under the same reduction conditions gives almost exclusively the unsaturated alcohol, m; while d gives a mixture of 107> m, 40% 1,, and 48% k. Intermediates such as £, h, and j. are indi­cated by the presence of one deuterium atom in the 2-position of the saturated alcohol when the reaction mixture from either a or k is quenched with deuterium oxide and then retreated with lithium aluminum hydride to convert saturated aldehyde, k, to the saturated alcohol, 1_.

Two modifications of their procedure were employed.The solvent was changed from dimethoxyethane to tetrahydro- furan, and excess lithium aluminum hydride was hydrolyzed with either wet ethyl ether followed by aqueous sodium hydroxide or ethyl acetate followed by aqueous sodium hydroxide instead of the ethyl formate they recommended. In general the procedure worked well. Distilled yields of the unsaturated alcohols ranged from 30-60%. The major difficulty encountered was the persistent presence of lower boiling contaminants coupled with

38

Figure 3 Reduction of MaIonic Enolates

OEt OEt

R\ | X ^ oCH.

OHCHn

■>

EtOb

OEtFt

0A1—CHCH

— A1

CH

OEt

H ^ Oc

R

HR H

HR \ ^ k H

^OHm

39

wide boiling ranges. The behavior of the unsaturated alco­hols on distillation suggested the possibility that they were co-distilling with another compound. However, as the presence of saturated alcohols would not affect the addition of thiol­acetic acid (29) across the double bond and since they could be more easily removed at that stage, only the crudest attempts at fractionation were employed on the unsaturated alcohols. The widest boiling range encountered, 2-methylene- 3-methyl-l-butanol (30), was 30°, and this alcohol gave the highest yield of mercapto alcohol obtained (54%). Only in the reduction of diethyl t^-butylmalonate (31) was any diol encountered and that amount was small. The large amounts of non-distilled residue encountered in all cases appeared to be mainly mineral oil from the sodium hydride dispersion, rather than the diols (the diols are distillable solids).

Diethyl ethylmalonate (32) and diethyl isopropyl- malonate (33) are commercially available. Diethyl-_t-butyl- malonate (31) was not commercially available, although Columbia Organic Chemicals, Co., Inc., had it listed in their catalogue; therefore it had to be synthesized.

Diethyl ^.-butylmalonate

There are three general methods in the literature for making diethyl ^-butylmalonate (31). These are outlined below.

1. CH2(COOEt)2 + (CH3)3CX — ba— e» (CH3)3CCH(COOEt)2

34 35 31

2. CH2(COOEt)2 + (CH3)3CX — d » (CH3>3CCH(COOEt)234 35 31

(40

3. (CH3)2C=C(COOEt)2 MeM^-r * (CH3)3CCH(COOEt)2

36 31

Reaction 1, the alkylation of diethyl malonate (34)with 2-chloro-2-methylpropane (35) is the normal basecatalyzed alkylation of an active methylene group. None of

3 6the yields are good. A 6% yield has been reported and thebest yield, using metallic sodium in super dry alcohol, was

3729%. Since tertiary halides (or tosylates) containing aH atoms react with enolate anions to form olefins through a bi- molecular elimination process, the major product is isobutyl­ene.

3 4Reaction 3 was used by Knoeber ’ in her route to 2- substituted-5-Jt-butyl-l,3-dioxanes. She reported an 87% yield of 31. from diethyl isopropylidenemalonate (36). However, diethyl isopropylidenemalonate (36) is not commercially avail­able and must be synthesized which added an extra step and lowered her overall yield to 43%.

38Reaction 2 was briefly reported by Boldt and Schultz. They stated that a 50% yield of diethyl t^-butylmalonate (31) was obtained after refluxing a mixture of diethyl malonate (34) (1 mole equivalent), 2-chloro-2-methylpropaned (35) (3 mole equivalents), and boron trifluoride etherate (0.4 mole equiva­lents) for eighteen hours. However, duplication of their con­ditions did not duplicate their results. The reaction was found to be dependent on the purity of the boron trifluoride etherate. No product was evident unless the boron trifluoride etherate was distilled directly into the reaction vessel and was completely colorless. Monitoring the production of 31 by vpc revealed that the reaction was several times slower than indicated. Aliquots of the reaction mixture were analyzed twice daily. After twenty-four hours the percentage of

41

diethyl _t-butylmalonate (31) was 20% and after six days it had become constant at about 76%. The distilled yield of 31, corrected for contaminating diethyl malonate (34), but not corrected for recovered 34, was 59%.

No special techniques were used other than drying the glassware in an oven, distilling the boron trifluoride ether- ate directly into the reaction flask, and protecting the reaction from moisture.

While this procedure is not rapid, it is simple, requires only one step from commercially available starting materials, and provides a decent yield of 31. It has two minor disadvantages; the product is not pure, more rigorous fractionation on distillation would be necessary if the absence of diethyl malonate (34) were required; and the reac­tion does require a long reflux period during which it must be kept as moisture free as possible.

3-Mercapto-1-propanols

The formation of 3-thioacetyl-l-propanols from 2-propene-l-ols was not observed under the conditions given by

34Pinder and Brown , when benzoyl peroxide was substituted for ascaridole as the catalyst. However, the acetates were ob­tained when reflux for several hours was substituted for standing overnight at room temperature. Presumably the higher temperature is required to decompose the benzoyl peroxide and initiate the reaction. But when reaction was attempted under nitrogen, the major product obtained (65%) was the 0-acetate of the starting alcohol, indicating that the presence of oxygen is necessary at the higher temperatures. When the intermediate

acetates were isolated, their wide boiling ranges indicated

ch3cosh + ch2=crch2oh(c6h5coo)2

* ch3cosch2chrch2or1(C6H5COO)2

CH2=CRCH2OCOCH3

R = Me, Et, i.-Pr, or Jt-Bu R' = probable mixture of H and Ac

the possible formation of O-acetates as well as the S-acetate.The acetates were hydrolyzed in refluxing 3 N aqueous

potassium hydroxide solution either after their isolation by distillation or after removal of any unreacted starting materials by vacuum distillation. The mixture remained heterogenous even after several hours of reflux. After a standard workup, the 3-mercapto-l-propanols were distilled under reduced pressure to give 40-50% yields of vile smelling, colorless liquids.

incorrect analysis, which corresponded to one mole of 3,3- dimethyl-2-methylene-l-butyl acetate (38) per six moles of 37, prompted special purification of the analytical sample. (See Experimental) No special precautions were taken with the other3-mercapto-l-propanols.

done in a hood, and glassware was placed in an alcoholic potas­sium hydroxide bath before cleaning.

In one case, 2-t^butyl-3-mercapto-l-propanol (37) an

Because these compounds are unpleasant, all work was

0

43

2 ,5-Dialkyl-l,3-oxathianes9The procedure of Djerassi and Gorman was used to

prepare the 1,3-oxathianes from the 3-mercapto-l-propanols. Yields were generally around 75-80%. These compounds did not have the extremely unpleasant odors associated with the parent 3-mercapto-l-propanols. The 2-_t-butyl derivatives in particular smelled like camphor, rather than organic sulfur compounds. The only problem encounter in their preparation (other than isomeric complications) was a rather pronounced tendency to foam on distillation. This tendency could be easily controlled by magnetic stirring.

pounds were to investigate the configurational and conforma­tional equilibria of the cis/trans isomers, the ideal product would contain a 50:50 mixture of the two isomers. However, the conditions used to form the 1,3-oxathianes are also suitable for equilibrating them. Riddell and Robinson noted that the initial mixtures of the comparable 1,3-dioxanes were always richer in the cis isomer than were the equilibrium mistures. In the few reactions that were checked by vpc analysis before complete reaction of the 3-mercapto-l-propan- ol, the cis isomer was always the major isomer. Thus quench­ing the reaction mixture shortly after the disappearence of

RCHO + HSCHoCHR»CHo0H

R = Me, t_-BuR' = Me, Et, i.-Pr, or t -Bu cis and trans

R

Since the basic reasons for synthesizing these com-

44

the mercaptan led to more equal mixtures of the isomers than did prolonged reflux periods. In the preparation of 2-t- butyl-5-isopropyl-l,3-oxathiane (18), where 2-£-butyl-3-mercap- to-1-propanol (39) became the reagent in excess due to evapora­tion of the pivalaldehyde (40) during vpc checks on the extent of reaction, the cis isomer was the major isomer isolated. Although the same technique was tried with 2 ,5-di-^-butyl-l,3- oxathiane (19), the reaction was never stopped at a point where enough oxathiane had formed to make isolation feasible.

The preparative vapor phase chromatographic separations were extremely tedious. The cis and trans isomers of the 5- methyl-2-alkyl-l ,3-oxathianes, 12 and 1j6, had extremely similar properties on all columns tried, and only resorting to a 40' x 1/4" column (20% XF-1150 on Chromosorb P, 60/80 mesh) permitted the separation of 16 in collectable quantities. The major problem encountered in all separations was that the combination of long retention times and low cis isomer abundances led to long elution periods with high helium to sample ratios making condensation of the volatile oxathiane difficult. This problem was particularly pronounced with the 5-methyl-l,3-oxathianes,12 and 16 , and 2,5-di-t^-butyl-l,3-oxathiane (19) and was not solved for 2,5-dimethyl-l,3-oxathiane (12). It was observed that an acidic vpc column caused isomerization to occur. The high temperatures employed increased the amount of cis isomer. On column equilibration of a 2:1 mixture of 2,5-di-t^-butyl-l,3- oxathiane (19) and £-toluenesulfonic acid increased the cis/ trans ratio of the sample and permitted the collection of enough cis isomer to obtain nmr, ir, and mass spectra. In con­trast to the 5-methyl-l ,3-oxathianes, L2 and JL6, the remaining compounds could be separated on a 10 1 x 3/8" 207o Carbowax 20M on Chromosorb P, 60/80 mesh, column although several were separated on a 20' x 3/8" 25% SE-30 on Chromosorb W, 60/80 mesh, column.

45

SUMMARY

The investigation of the conformational and configu­rational equilibria in 2,5-dialkyl-l,3-oxathianes indicates that ring geometry is important in assigning conformational or configurational preferences to six-membered ring hetero­cycles .

Coupling constants between H-5 and H-4a, H-4e, H-6a, and H-6e were extracted from nmr spectra using a computer program. Comparisons of the coupling constants between the1,3-dioxanes, 1,3-dithianes, and 1,3-oxathianes have been made and interpreted in terms of ring geometry. The nmr data were used to make conformational assignments for all cis and trans isomers. On this basis it was concluded that all 1,3-oxathianes exist in a chair conformation except for the cis-5-t-butyl-l,3-oxathianes which exist in twist-boat forms.

Acid catalyzed equilibrations between cis and trans isomers of the 2 ,5-dialkyl-l,3-oxathianes were performed at 127° and 100°. Equilibrium constants and conformational energies were determined for all compounds at these tempera­tures. On the basis of these conformational energies, the2-methyl group does not appear to be a holding group as is the case in the dioxanes . In addition, 2,5-di-_t-butyl-1,3- oxathiane was also equilibrated at 80° which permitted the enthropy and enthalpy terms to be calculated. As the enthropy for 2 ,5-di-t^-butyl-l,3-oxathiane is large (4.2 e.u.), the twist-boat assignment made from the nmr data is sub­stantiated.

Mass spectra were obtained on all compounds. Four

46

sets of cis/trans pairs failed to reveal any significant dif­ferences in the mass spectra of cis- and trans-2 ,5-dialky1-1.3-oxathianes. A fragmentation pattern for the 2-t^-butyl-1.3-oxathianes was obtained. The fragmentation pattern for the 2-methyl-1,3-oxathianes is more complex and was not com­pletely determined.

47

EXPERIMENTAL

Melting points were taken with a Thomas-Hoover capil­lary melting point apparatus and are uncorrected; mass spectra were recorded on a Hitachi-Perkin Elmer RMU-6E; 60 Me nmr spec­tra were obtained with a Varian A-60 using tetramethylsilane as an internal standard; 100 Me nmr spectra were obtained from Dr. L. Keefer, University of Nebraska Medical School; ir spec­tra were obtained from Perkin-Elmer Infracords 337 and 137; vpc work was carried out with an Aerograph model A-90-P3 and preparative vpc was carried out with an Aerograph Autoprep A-700; microanalytical determinations were performed by Galbraith Laboratories, Inc., Knoxville, Tennessee, and G. Weiler and F. B. Strauss, Microanalytical Laboratory, 164 Banbury Road, Oxford, England. The columns used for vpc were: column A, 5' x 1/4" 25% SE-30 on Chromosorb W, 60/80 mesh; column B, 10' x 3/8" 20% Carbowax 20M on Chromosorb P, 60/80 mesh; column C, 20' x 3/8" 25% SE-30 on Chromosorb W, 60/80mesh; column D, 40' x 1/4" 25% XF-1150 on Chromosorb P, 60/80mesh; column E, 10' x 1/4" 5% Carbowax 20M on HMDS coatedChromosorb W, 60/80 mesh.

Diethyl 2-t^-butylmalonate (3_1). Diethyl 2-t-butyl-malonate was prepared by a modification of the method of Boldt

38and Schultz. Boron trifluoride etherate, 53.5 g (0.38 mole), was distilled into a dry 500 ml three-necked flask equipped with a magnetic stirrer, an addition funnel, and a reflux con­denser protected with a CaC^ tube. Diethyl malonate (34),102.0 g (0.64 mole), and 2-chloro-2-methylpropane (35), 167.4 g (1.80 moles), were added slowly with stirring. There was no evidence of an exothermic reaction during the addition. The

48

reaction mixture was heated to reflux and the course of thereaction followed by vpc on column A, 150°, 50 ml/min. Aftersix days under reflux, the ratio of 34 to 31 became constant.The reaction mixture was poured into a mixture of 408 g (3.0moles) of sodium acetate and 2 1. of ice water. The organiclayer was separated, and the aqueous layer was washed with250 ml of diethyl ether. The combined organic layers weredried (MgSO^), concentrated at reduced pressure, and distilledat reduced pressure. The fraction with bp 100-124°(24 mm) wasredistilled to yield three fractions: I, 23.4 g, bp 26-109°(24-18 mm), c£. 73% 31. by VPCJ IIj 49.8 g, bp 100-15°(18 mm),ca. 89% 31 by vpcj III, 20.7 g, bp 115-17° (18 mm), 99+% 31

37by vpc, (lit. bp 78-83° (1.6 mm)). The other component of the mixture was diethyl malonate, 34 . The corrected yield is 82.1 g (59%) of 3JL. Nmr (neat) of fraction III: 1.10 and1.22 (s + t, 15, J = 7 cps), 3.18 (s, 1), 4.13 (q, 4, J = 7 cps). Diethyl 2-t-butylmalonate (31) was used in the prepara­tion of 3,3-dimethyl-2-methylene-l-butanol (41) without further purification.

2-Alkyl-2-propene-l-ol. These unsaturated alcoholswere made by the general procedure of Marshall, Andersen, and

35Hochstetler. Sodium hydride (1.25-1.5 molar equivalents) and dry tetrahydrofuran (250-500 ml) were stirred in a 2 1., three-necked flask equipped with a mechanical stirrer, an addition funnel, and a condenser. The condenser was fitted with a gas inlet tube connected to a gas bubbler and nitrogen tank through a three-way connection so that the reaction could be kept under nitrogen or the evolution of hydrogen could be directly observed (see Figure 4). The diethyl 2-alkylmalonate (0.15-0.30 mole) was added dropwise at room temperature with vigorous stirring. Following the addition, the reaction

49

mixture was heated under reflux until hydrogen evolution had ceased. Lithium aluminum hydride (2.1-2.5 molar equivalents) was added portionwise to the cooled, stirred solution. After the addition the reaction mixture was heated under reflux for 4 1/2 hrs. Excess lithium aluminum hydride was hydrolyzed either with ethyl acetate in anhydrous ethyl ether or with wet diethyl ether. The hydrolysis was completed by the addition of 2.0 ml of water and 1.6 ml of 10% sodium hydroxide solution per gram of lithium aluminum hydride employed. The granular precipitate was removed by filtration; the filtrate was con­centrated at atmospheric pressure; and the residue was dis­tilled at atmospheric pressure. Analysis by vpc on column A indicated that the products were contaminated with low boiling materials, presumably alcohols which co-distilled with the desired products. The products were used in the synthesis of the appropriate mercapto-alcohols without further purification.

2-Methylene-1-butanol (42). This compound was pre­pared on a 0.15 mole scale by the general method previously outlined, using diethyl ethylmalonate (32) from Distillation Products Industries. Following the ethyl acetate workup pro­cedure, the product was obtained in 51% yield as a colorless liquid, bp 130-135°, (lit.33,39 bp 133-4°, 130-5%), nmr (neat):£ 1.03 (t, 3, J = 7.5 cps), 2.05 (q, 2, J = 7.5 cps), 3.95 (s, 2), 5.78-5.95 (m, 3).

2-Methylene-3-methyl-1-butanol (30). This compound was prepared by the same method on a 0.30 mole scale from diethyl isopropylmalonate (33) from K & K Laboratories, Inc.The product was obtained in 327, yield as a colorless liquid, bp 130-170°, (lit.39, bp 146-7°), nmr (neat): S 1.05 (d, 6,J = 7 cps), 2.0-2.6 (m, 1, J = 7), 4.05 (s, 2), 4.82-5.01 (m, 3).

50

3,3-Dimethyl-2-methylene-l-butanol (41). This com­pound was prepared by the general method on a 0.2 mole scale from fraction H of diethyl 2-t^-butylmalonate (31) . The reac­tion mixture was diluted with 500 ml of wet diethyl ether and hydrolyzed in the described manner. The product was obtainedIQin 58% yield as a colorless liquid, bp 148-57°, (lit. , bp 161-2°), nmr (neat):6 1.03 (s, 9), 3.92 (s, 2), 4.45 (broad, unresolved singlet, 1), 4.70-4.86 (m, 2).

Mercapto alcohols. The mercapto alcohols were pre­pared by two methods. The first method, lithium aluminum hydride reduction of methyl 3-mercapto-2-methy1-propionate (9) was used only for 3-mercapto-2-methyl-l-propanol (28) . The general procedure used for all the mercapto alcohols is a

34modification of that described by Brown, Jones, and Pinder.The unsaturated alcohol was heated to at least 100°, and a few granules of benzoyl peroxide followed by a slight excess of thiolacetic acid (29) were added. This mixture was kept at reflux for 4-5 hrs, cooled, and distilled under reduced pressure. The intermediate acetates may be isolated; or only the low boiling fraction (bp <^.80° (24 mm)) is removed and the acetates are immediately hydrolyzed by refluxing with 3 molar equivalents of 3 N KOH for 7-10 hrs. The reaction mixture was neutralized with acetic acid, and extracted several times with diethyl ether. The ethereal extracts were washed with 57o NaHCO^ dried (MgSO^), concentrated at atmospheric pressure, and distilled at reduced pressure.

3-Mercapto-2-methyl-l-propanol (28). This compound was first prepared by the lithium aluminum hydride reduction of methyl 3-mercapto-2-methylpropionate (j)) which was isolated by R. Polli as a minor side product in the preparation of di­methyl 2,2'-dimethyl-3,3'-thiadipropionate (26). Lithium

51

aluminum hydride, 20.0 g (0.52 mole) was suspended in 300 ml of anhydrous diethyl ether in a 500 ml, three-necked flask equipped as described for the preparation of the 2-methylene-1-butanols. A solution of 35.0 g (0.26 mole) of methyl 3- mercapto-2-methylpropionate (j)) in 40 ml of anhydrous diethyl ether was added at a rate sufficient to maintain gentle reflux. The reaction mixture was heated under reflux for two hours following the addition. After standing overnight, 40 ml of water was added dropwise over a 3 hr period with vigorous stirring and ice-bath cooling. After stirring for 7 hr, 30 ml of 5% HC1 was added dropwise, and the mixture was stirred overnight. The granular precipitate was collected by gravity filtration, washed with large amounts of ether, and dissolved completely in aqueous HC1. The acidic solution was extracted with ether. The combined ethereal extracts were dried (MgSO^), concentrated under reduced pressure, and distilled giving 14.6 g (53%) of 3-mercapto-2-methyl-l-propanol (28): bp 88-9°(16 mm); nmr: see Figure 5; ir: see Figure 30; mass spectrum:see Figure 49.

Anal. Calcd for C4H1()OS: C, 45.24; H, 9.49; S, 30.19.Found: C, 44.50; H, 9.52; S, 30.40.

3-Mercapto-2-methyl-l-propanol (28). This compoundwas prepared by the general method from 2-methyl-2-propene-l-ol (30), 7.2 g (0.10 mole), from Distillation ProductsIndustries, and redistilled thiolacetic acid (29), 7.6 g (0.10mole), from Distillation Products Industries. The inter-

34mediate products, bp 80-130° (18 mm), 8.7 g (lit. , 3-acetyl- thio-2-methyl-l-propanol, bp 121-2° (23 mm)), were then hydro­lyzed to yield 3.4 g (32%) bp 84-94° (18 mm) of product identi­cal by vpc (column A) and nmr with 28 prepared by the reduction of methyl 3-mercapto-2-methylpropionate (j?). Another preparation

52

of 2Q by the same method utilizing a slight excess of thiol- acetic acid (29) gave a 43% yield, bp 94-96° (23 mm).

2-Ethyl-3-mercapto-l-propanol (43). This compound was prepared by the general method from 2-methylene-l-butanol (42). One reaction which was run under nitrogen gave a 65% yield of2-methylene-l-butyl acetate (44), bp 54° (18 mm). The struc­ture was assigned by nmr, ir, and vpc and was confirmed by hydrolysis of a small sample to give a product identical with 42. The reaction of 8.6 g (0.10 mole) of 42 and 10.0 g (0.13 mole) of 29_ yielded 12.2 g of intermediate acetates, bp 125- 146° (25 mm), which on hydrolysis gave 6.0 g (50%) of 43, bp 107-9° (23 mm); nmr: see Figure 6; ir: see Figure 31.

Anal. Calcd. for c > 49.95; H, 10.06; S, 26.67.Found: C, 50.09; H, 9.90; S, 26.70.

A subsequent reaction under the same conditions with­out distillation of the intermediate products, but with removal of excess thiolacetic acid (29) and unreacted 42_ underreduced pressure, gave a 52% yield of 43, bp 103-7° (16 mm),identical by vpc and nmr with the above product.

2-Isopropyl-3-mercapto-l-propanol (45). This compound was prepared in 54% yield from 9.8 g (0.10 mole) of 2-methylene-3-methyl-l-butanol (30) and 10.0 g (0.13 mole) of thiolacetic acid (29). After two distillations, 7.1 g (54%) of 45 were isolated as a colorless liquid, bp 109-122° (22-21 mm). The analytical sample was collected on the fraction, bp 117-8°(21 mm); nmr: see Figure 7; ir: see Figure 32.

Anal. Calcd for CgH^OS: C, 53.68; H, 10.51; S, 23.89.Found: C, 53.53; H, 10.13; S, 23.90.

53

2-_t-Butyl-3-mercapto-l-propanol (37). This compound was prepared in 36% yield from 11.6 g (0.10 mole) of 3,3- dimethyl-2-methylene-l-butanol (41) and 12.4 g (0.16 mole) of thiolacetic acid (29). After two distillations, 5.4 g of 3_7 were isolated as a colorless liquid, bp 101-7° (12 mm) and 110-14° (14-13 mm). To obtain an analytical sample, a portion of the above liquid was dissolved in 3 N KOH, washed with ether, neutralized with acetic acid, extracted into ether, washed with aq NaHCOj, dried (MgSO^), concentrated under reduced pressure, and distilled at reduced pressure to give 32, bp 112-12.5° (14 mm); nmr: see Figure 8; ir: seeFigure 33.

Anal. Calcd for C^H^OS: C, 56.70; H, 10.88; S, 21.63.Found: C, 56.72; H, 10.77; S, 21.70.

- Oxathianes. The 2,5-dialkyl-l,3-oxathianes were pre-9pared by the method of Djerassi and Gorman. The mercapto

alcohol (0.017-0.07 mole) was mixed with an excess of aldehyde in 25 ml of benzene, and a few granules of £-toluenesulfonic acid were added. The mixture was heated under reflux until no more water separated in a preprimed Dean-Stark trap. Reaction times varied. With acetaldehyde (46) there was an immediate exothermic reaction on addition of the ]3-toluene- sulfonic acid, and the reaction mixture turned cloudy. With pivalaldehyde (40) there was no obvious reaction at room temperature. Prolonged boiling caused equilibration in the reaction mixture. Vapor phase chromatography of samples taken during the course of the reaction indicated that the cis

54

isomer was formed more rapidly than the trans isomer; Riddell and Robinson noted that in the dioxane series the initial mix­tures were always richer in the cis isomer than were the equi­librium mixtures.^ The cooled reaction mixture was washed with 57o sodium bicarbonate, and the benzene was removed at atmospheric pressure. The residue was distilled at reduced pressure. Oxathianes have a tendency to foam, which is con­trollable by magnetic stirring during distillation. The isomers were separated on column B, C, or D; the cis isomer was eluted before the trans.

2,5-Dimethy1-1,3-oxathiane (12). This compound was prepared by the described procedure using 0.07 mole of acetaldehyde (46), 0.05 mole of 3-mercapto-2-methyl-l-propanol (28), and an overnight reflux period. The product was obtained in 11% yield as a colorless liquid, bp 57-8° (10-11 mm); n ^D 1.4786; nmr: see Figure 9; ir: see Figure 34; mass spec­trum: see Figure 50.

Anal. Calcd for : c > 54.49; H, 9.14; S, 24.25.Found: C, 54.53; H, 9.34; S, 24.40.

5-Ethyl-2-methyl-l,3-oxathiane (13). This compound was prepared by the described procedure using 0.07 mole of acetaldehyde (46), 0.025 mole of 2-ethyl-3-mercapto-l-propanol (43), and a 2 hr reflux period. The product was obtained in 787. yield as a colorless liquid, bp 87-8° (18 mm); n ^ D 1.4808; nmr: see Figures 10, 11; ir: see Figures 35,36; massspectrum: see Figure 51. The isomers were separated bypreparative gas chromatography on column B, 110°, 240 ml/min.

Anal. Calcd for C?H14OS: C, 57.48; H, 9.65; S, 21.93.Found: C, 57.74; H, 9.72; S, 21.85.

55

5-Isopropyl-2-methy1-1,3-oxathiane (14). This com­pound was prepared by the described procedure using 0.07 mole of acetaldehyde (46), 0.022 mole of 2-isopropyl-3-mercapto-l- propanol (45), and a 2 hr reflux period. The product was ob­tained in 817o yield as a colorless liquid, bp 104-5° (18 mm); 25n D 1.4810; nmr: see Figures 12,13; ir: see Figures 37,38;

mass spectrum: see Figure 52. The isomers were separated oncolumn C, 120°, 200 ml/min.

Anal. Calcd for CgH^OS: C, 59.95; H, 10.06; S, 20.01.Found: C, 60.10; H, 9.72; S, 20.40.

5-t^-Butyl-2-methyl-l,3-oxathiane (15) . This compound was prepared by the described procedure using 0.07 mole of acetaldehyde (46), 0.007 mole of 2-t-butyl-3-mercapto-l-pro- panol (37) , and a 1 hr reflux period. The product was ob­tained in 877> yield as a colorless liquid, bp 108-9° (14 mm); nmr: see Figures 14,15,24,25; ir: see Figures 39,40; massspectra: see Figures 53,54. The isomers were separated oncolumn B, 140°, 140 ml/min.

Anal. Calcd for CgH^gOS: C, 62.01; H, 10.41; S, 18.40.Found: C, 61.93; H, 10.41; S, 18.46.

2-t>Butyl-5-methyl-l,3-oxathiane (16) . This compoundwas prepared by the described procedure using 0.06 mole ofpivalaldehyde (40), 0.05 mole of 3-mercapto-2-methyl-l-propan-ol (28), and an overnight reflux period. The product wasobtained in 55% yield as a colorless liquid, bp 78-79.5° (8-

298.5 mm); n D 1.4716; nmr: see Figures 16,17,26,27; ir:see Figures 41,42; mass spectrum: see Figure 55. The isomerswere separated on column D, 160°, 50 ml/min.

56

Anal. Calcd. for CgH^OS: C, 62.01; H, 10.41; S, 18.40.Found: C, 62.20; H, 10.42; S, 18.52.

2-t>Butyl-5-ethyl-l,3-oxathiane (17). This compoundwas prepared by the described procedure using 0.03 mole ofpivalaldehyde (40), 0.027 mole of 2-ethyl-3-mercapto-l-propan-ol (43), and a 2 hr reflux period. The product was obtained

28in 8270 yield as a colorless liquid, bp 124-25° (28 mm); n D 1.4733; nmr: see Figures 18,19; ir: see Figures 43,44;mass spectra: see Figures 56,57. The isomers were separatedon column B, 150°, 240 ml/min.

Anal. Calcd for C^qI^qOS: C, 63.77; H, 10.70; S, 17.03.Found: C, 63.95; H, 10.41; S, 17.15.

2-t^Butyl-5-isopropyl-l,3-oxathiane (18) . This com­pound was prepared by the described procedure using 0.017 mole of pivalaldehyde (40), 0.014 mole of 2-isopropyl-3-mercapto-l- propanol (45), and a 9 hr reflux period during which the reac­tion was followed by vpc on column A, 150°, 50 ml/min. The reaction did not reach completion for mercaptan was still present. After 7 hrs of boiling, however, no more product was formed. The product was obtained in 49% yield as a colorless liquid, bp 106-110° (12 mm), and was contaminated by a smallamount of a higher boiling material. The cis isomer predomi­nated in the distilled product. The isomers were separated on column B, 150°, 240 ml/min. The separated isomers were used for analysis; nmr: see Figures 20,21; ir: see Figures 45,46;mass spectra: see Figures 58,59.

Anal. Calcd for C^H^OS: C, 65.29; H, 10.96; S, 15.85.Found: cis C, 65.44; H, 10.95; S, 15.65. Found: transC, 65.14; H, 10.45; S, 15.40.

57

2,5-Di-t-butyl-1,3-oxathiane (19). This compound was prepared by the described procedure using 0.06 mole of pival­aldehyde (40), 0.02 mole of 2-t-butyl-3-mercapto-l-propanol (37), and a reflux period of 4 hrs. The benzene solution was analyzed by vpc on column A, 170°, 50 ml/min, before proceed­ing with the workup. A large amount of mercaptan was still present, and the cis isomer predominated in the product mix­ture which had formed. Another 0.024 mole of pivalaldehyde (40) and more £-toluenesulfonic acid were added and the reac­tion mixture was heated under reflux for another 3 hrs.Analysis by vpc at this stage indicated that aLl mercaptan was reacted and the product had equilibrated toward the trans isomer. The product was obtained in 80% yield as a white solid, bp 121-33° (13 mm), mp 73-77° (ethanol); nmr: see Figures 22,23, 28, 29; ir: see Figures 47, 48; mass spectra: see Figures60, 61.

Anal. Calcd for C12H24OS: C, 66.61; H, 11.18; S, 14.82.Found: C, 66.90; H, 10.92; S, 14.54.

Separation of the isomers by preparative gas chroma­tography was extremely difficult as the cis isomer constituted less than 15% of the isomer mixture. On column isomerization of a 1:0.5 mole mixture of _19 and £-toluenesulfonic acid in tetrahydrofuran shifted the equilibrium toward the cis isomer and permitted the collection of the liquid cis isomer, column B, 170°, 300 ml/min.

Equilibrations. The solutions to be equilibrated were prepared by weighing 0.5 mmoles of the oxathiane into a 1.0 volumetric flask, adding 0.5 ml of 0.05 M £-toluenesulfonic acid in anhydrous tetrahydrofuran, and diluting to 1.0 ml with anhydrous tetrahydrofuran. Ampoules containing 50 jul of the

58

oxathiane solutions were sealed under nitrogen. After equili­brating at the indicated temperature for a period of days, the vials were cooled quickly in dry ice-acetone, opened, quenched with 50 jul of triethylamine and analyzed by vpc on column E.

\5-Ethyl-2-methyl-l,3-oxathiane (13)

Analysis conditions: Column E, 140°, 50 ml/minRetention time cis: 6 .0 min

trans: 6 .7 5 minResponse ratio was not measured, but assumed to be

Temperature: time(hrs) trans/cis average K127° 0 7.552 2.919+0.43

24 2.87648 2.89774 2.985

100° 0 7.552 3.362+0.15719 4.13345 3.37368 3.58894 3.127

0O00 0 7.55236 6.625164 3.973*

AG'

0.852+0.012

0.900+0.35

Comments: * may be at equilibrium.

59

5-Isopropyl-2-methyl-l,3-oxathiane (14)

Analysis conditions: Column E, 140° , 50 ml/minRetention time cis: 7.3 min

trans: 9.8 minResponse ratio was not measured, but assumed to be

Temperature: time(hrs) trans/cis average K127° 0 10.928 3.456+0.078

21 3.57344 3.39374 3.402

100° 0 10.928 4.094+0.11418 3.94240 4.18766 4.03492 4.215

Comments: Some evidence for other products.

5-t.-but_yl^2-methy 1-1,3-oxathiane (15)

Analysis conditions: Column E, 140° , 50 ml/minRetention time cis: 10 .25 min

trans: 12 .5 minResponse ratio was not measured, assumed unity.

Temperature: time(hrs) trans/cis average K

127° 0 9.886 12.203+0.47621 12.59046 12.53073 11.489

100° 0 9.88618 17.54441 16.82543 24.68648 26.68665 22.17866 *

unity.AG°

(kcal/mole)0.987+0.018

1.046+0.021

AG°(kcal/mole)1.992+0.031

60AG°

time(hrs) trans/cis average K (kcal/mole)80° 0 9.886 16.856+1.3 1.984+0.054

37 16.15147 15.418163 18.699

Comments: * Too large to measure. The samples seemed to bedecomposing to other products at 100°, but this was not reproducible. All samples were chosen at random from 20 sealed ampoules. In view of the difficulties at 100°, datafor 80° and 127° are probably not as reliable as for the other1,3-oxathianes.

2-t^-Buty 1-5-methyl-1,3-oxathiane (16)

Analysis conditions: Column E, 100°, 50 ml/minRetention time cis: 23.9 min

trans: 26.8 minResponse ratio was not measured, assumed to be unity.

AG°Temperature: time(hrs) trans/cis average K (kcal/mole)

127° 0 1.336 3.215+0.04 0.930+0.01025 3.19149 3.27674 3.179

100° 0 1.336 3.376+0.115 0.903+0.02522 2.57648 3.25569 3.54889 3.324

80° 0 1.33654 1.845167 2.797

Comments: none.

2-t^-Butyl-5-ethyl-l,3-oxathiane (17)

61

Analysis conditions: Column E, 140° , 50 ml/minRetention time cis: 8.6 min

trans: 10.7 minResponse ratio: 1.0 + 0.1

Temperature: time(hrs) trans/cis average K100° 0 2.5 2.844+0.039

24 2.89844 2.83268 2.77996 2.869

80° 0 2.5 3.059+0.02237 3.082165 3.037

57° 0 2.5 3.069+0.02646 3.04174 3.047

115 3.067192 3.122

AG*

0.787+0.005

0.736+0.006

Comments: 1.0 M solutions at 100°* 1:20,Cone, trans/cis 100'acid:17 trans/cis

1:51:101:20

2.9953.0563.049

1.0 M 2.8350.5 M 2.8440.01 M 2.969

* not sealed under N2.

2-t:-Butyl-5-isopropyl-l,3-oxathiane (18)

Analysis conditions: Column E, 140°, 50 ml/minRetention time cis: 10.2 min

trans: 15.4 minResponse ratio was not measured, assumed unity.

62

Temperature:127°

100‘

80'

time (hrs) trans/cis02047710174467930

34163

0.8033.2143.1692.8290.8032.1403.222 3.4353.2230.8031.1462.571

AG®average K (kcal/mole) 3.070+0.16 0.893+0.042

3.293+0.094 0.885+0.023

2,5-Di-t^-butyl-l ,3-oxathiane J 12IAnalysis conditions: Column E, 140°, 50 ml/minRetention time cis: 14.1 min

trans: 19.8 minResponse ratio was not measured, assumed unity.

AG°Temperature: time(hrs) trans/cis average K (kcal/mole)

127° 0 8.427 9.670+0.148 1.806+0.01222 9.70045 9.86472 9.448

100° 0 8.427 14.070+0.0438 1.963+0.02317 14.02045 14.05869 14.94693 13.256

80° 0 8.427 17.230+1.102 2.000+0.04532 18.333166 16.128

Comments: From a least squares calculation: AS0 = 4.2 e.u.,AH° = 3.506 kcal/mole.

63

BIBLIOGRAPHY

1. F. G. Riddell, Quart. Rev. (London), 21, 364 (1967).2. E. L. Eliel and M. C. Knoeber, J. Amer. Chem. Soc.,

88, 5347 (1966).3. M. C. Knoeber, Ph.D. Thesis, University of Notre Dame,

1967.4. E. L. Eliel and M. C. Knoeber, J. Amer. Chem. Soc.,

90, 3444 (1968).5. D. Tavemier and M. Anteunis, Bull. Soc. Chim. Beiges,

76, 157 (1967).6. F. G. Riddell and M. J. T. Robinson, Tetrahedron,

23, 3417 (1967).7. H. T. Kalff and C. Romers, Acta Crystallogr.,

20, 490 (1966).8. E. L. Eliel and R. 0. Hutchins, Abstracts, 155th National

Meeting of the American Chemical Society, San Francisco, Calif., April 1968, No. P13.

9. C. Djerassi and M. Gorman, J. Amer. Chem. Soc.,75, 3704 (1953).

10. C. Djerassi, M. Gorman, and J7 A. Henny, J. Amer. Chem. Soc,, 77, 4647 (1955).

11. C. Djerassi, M. Shamma, and T. Y. Kan, J. Amer. Chem. Soc., 80, 4723 (1958).

12. E. L. Eliel and S. Krishnamurthy, J. Org. Chem.,30, 848 (1955).

13. C. B. Leggetter and R. Brown, Can. J. Chem.,41, 2671 (1963).

14. a. E. L. Eliel, L. Pilato, and V. Badding,J. Amer. Chem. Soc., 84, 2377 (1962).

b. E. L. Eliel, L. Pilato, and V. Badding,J. Amer. Chem. Soc., 81 , 6087 (1959).

64

15. R. Polli, unpublished results.16. Swissco, Dreiding-Steromodels, Greenville, Illinois.17. M. Davis and 0. Hassel, Acta Chem. Scand. , 17., 1181

(1963) .18. L. Pierce and M. Hagasi, J. Chem. Phys., 35, 479 (1961).19. a. P. H. Kasai and R. J. Myers, J. Chem. Phys.,

30, 1096L (1959).b. U. Blukis, P. H. Kasai, and R. J. Myers, J. Chem.

Phys., 38, 2753 (1963).20. T. Henshall, J. Chem. Educ., 42, 600 (1966).21. M. P. Mertes, J. Org. Chem., 28.* 2330 (1963).22. E. L. Eliel and L. A. Pilato, Tetrahedron Letters,

3, 103 (1962).23. N. L. Allinger, L. A. Freiberg, J. Amer. Chem. Soc.,

82, 2393 (1960).24. E. L. Eliel, N. L. Allinger, S. J. Angyal, and G. A.

Morrison, "Conformational Analysis," Interscience Division, John Wiley and Sons, Inc., New York, N. Y., 1965.

25. L. Keefer, Univ. of Nebraska Medical School26. C. L. Wilkens and C. E. Klopenstein, J. Chem. Educ.,

43, 10 (1966).

27. a. H. Booth, Tetrahedron Lett., ]_, 411 (1965).b. H. Booth, Tetrahedron, 22, 615, (1966).

28. N. S. Bhacca and D. S. Williams, "Applications of NMRSpectroscopy in Organic Chemistry," Holden-Day, Inc., San Francisco, Calif., 1964.

29. N. de Wolf, P. W. Henniger, and E. Havinga, Rec. Trav.Chim. Pays-Bas, 86.» 1227 (1967).

30. M. Barfield, J. Chem. Phys., 41, 3825 (1964).31. Y. Osawa and M. Neeman, J. Amer. Chem. Soc,, 85_, 2846

(1963).

65

32. J. B. Lambert, J. Amer. Chem. Soc., 8_9, 1836 (1967).33. S. Searles, Jr., R. G. Nickerson, and W. K. Witsiepe,

J. Org. Chem., 24, 1839 (1959).34. R. Brown, W. E. Jones, and A. R. Pinder, J. Chem. Soc.,

2123 (1951).35. J. A. Marshall, N. H. Andersen, and A. R. Hochstetler,

J. Org. Chem., 32_, 113 (1967).36. A. W. Dox and W. G. Bywater, J. Amer. Chem. Soc.,

58, 731 (1936).37. H. F. van Woerden, Rec. Trav. Chim. Pays-Bas, 8l2, 920

(1963).38. P. Boldt and L. Schultz, Naturwissenshaften, 5_1, 288

(1964).39. M. B. Green and W. J. Hickinbotton, J. Chem. Soc.,

3262 (1957).

66

APPENDIX 1

Figure 4Apparatus used in preparation of 2-alkyl-2-propene-l-ols

N2 Flowto N 2 tank

to bubblerH2 Flow

\

67

APPENDIX 2

NMR SPECTRA

With the exception of 2,5-dimethyl-1,3-oxathiane (12) from which the pure cis and trans isomers were not obtained,60 Me nmr spectra were obtained on the relatively pure isomers. In six cases, cis- and trans-2-t-butyl-5-methyl-1,3-oxathiane (16c and 16t), cis- and trans-2,5-di-t-butyl-1,3-oxathiane (19c and 19t), and cis- and trans-5-t-butyl-2-methy1-1,3-oxathiane (15c and 15t)» 100 Me spectra were also obtained. NMR solu­tions were 30% oxathiane in carbon tetrachloride, except for the two cis-5-t-butyl-1,3-oxathianes, 15c and 19c, which were about 10% oxathiane and the 100 Me spectra of cis- and trans-2-j^-butyl-5-methyl-l,3-oxathiane (16c and 16t) , trans-2,5-di-t- butyl-1,3-oxathiane (19t), and trans-5-t-butyl-2-methyl-l,3- oxathiane (15t) which were run in chloroform-d.

Spectra of the 2-alkyl-3-mercapto-l-propanols were obtained on the pure liquids.

Figure 5NMR spectrum of 3-mercapto-2-methyl-l-propanol (28)

00300cps 400

MeSHHO

l------------- 1------------- 1------------- 1------------- 1------------- 1------------- 1------------- rTau 3 4 5 6 7 8 9 10

Figure 6NMR spectrum of 2-ethyl-3-mercapto-l-propanol (43)

100300 200cps

EtOHHS

Tau 3vO

Figure 7NMR spectrum of 2-isopropyl-3-mercapto-l-propanol (45)

cps 460 300

i-PrSHHO

Tau 3 10o

Figure 8NMR spectrum of 2-t-butyl-3-mercapto-1-propanol (37)

200300cps 400

t-BuHO SH

Tau

Figure 9NMR spectrum of 2,5-dimethyl-1,3-oxathiane (12)

cps 400

toTau 3

Figure 10NMR spectrum of cis_-5-ethyl-2-methyl-1,3-oxathiane (13c)

~T -----------------1 1 J300 200 100 0Et

CIS Q S

Me

T~10T

Figure 11NMR spectrum of trans-5-ethyl-2-methyl-1»3-oxathiane (13t)

cps 400 300 200 100 0

Et

trans

Me

------1------8 ! -------

Tau 3 4 -f10T5 T6

T~7 T9

Figure 12NMR spectrum of cis_-5-isopropyl-2-methyl-1,3-oxathiane (14c)

200 100cps 400 300i-Pr

cis

Me

___________ L----- 1___________ 1___________ I__ 1Tau 3 8 10

Figure 13NMR spectrum of trans-5-isopropyl-2-methyl-1,3-oxathiane (14t)

cps 400 300 200 100

i-Pr

trans

Me

Tau I T4 T~~7T6T5o\

Figure 14NMR spectrum of cis-5-t-buty1-2-methyl-1,3-oxathiane (15c)

100200300cps 400t-Bu

cis

Me

Tau 3 4 5 6 7 8 9 10

Figure 15NMR spectrum of trans-5-t-butyl“2-methyl-1,3-oxathiane (15t)

100200300cps 400 t-Bu

trans

Me

T9

r8

v7T6

T5T4 rTau 3 10

Figure 16NMR spectrum of cis_-2-_t-butyl-5-methyl-1,3-oxathiane (16c)

cps 400 300 200 100Me

cis

t-Bu

—i-------------------- 1----------------------i--------------------- 1---------------------1--------------------- 1---------------------1--------------------- rTau 3 4 5 6 7 8 9 10

VO

Figure 17NMR spectrum of trans-2-t-butyl-5-methyl-1,3-oxathiane (16t)

cps 400 300 200 100Me

trans

t-Bu

T"

0

Tau T ~r5-r-8

—i— 10 00o

Figure 18NMR spectrum of cis-2-t-butyl-5-ethyl-1,3-oxathiane (17c)

200 100cps 400 300

Et

cis

t-Bu

TTTau 3

Figure 19NMR spectrum of trans-2-it-butyl-5-ethyl-1,3-oxathiane (17t)

100200300cps 400

trans

Bu

T9

T5

rTau 3

T4 76

NMR spectrum of cis-2-t-butyl-5-isopropyl-1,3-oxathiane (18c)

100200cps 400 300

i-Pr

cis

t-Bu

Figure 21NMR spectrum of trans-2 -1-butyl-5-isopropyl-1,3-oxathiane (18t)

100200300i-Pr

trans

t-Bu

T10T9T8T"6rTau 3 7

Figure 22NMR spectrum of cis-2,5-di-t-butyl-1,3-oxathiane (19c)

300 100cps 400

t-Bu

t-Bu

Tau00Ui

Figure 23NMR spectrum of trans-2,5-di-t-butyl-l,3-oxathiane (19t)

cps 400 300 200 100

S trans

t-Bu

Tau 3

Figure 24100 Me NMR spectrum of

cis-5-t-butyl-2-methy1-1,3-oxathiane (15c)

Figure 25100 Me NMR spectrum of

trans-5-t-buty1-2-methyl-1,3-oxathiane (15t)

I' V .(•'.W/■ Iif'l •'<!’ ,

88

Figure 26 100 Me NMR spectrum of

cis-2-t-buty1-5"methyl-1,3-oxathiane (16c)

200 100500cps

Figure 27100 Me NMR spectrum of

trans-2-t-butyl-5-methy1-1,3-oxathiane (16t)

200 100400 300500cps

89

Figure 28 100 Me NMR spectrum of

cis-2,5-di-t-butyl-l.3-oxathiane (19c)

.Vvv.'"

500 400 300 200 100 0cps

Figure 29 100 Me NMR spectrum of

trans-2 ,5-di-t_-butyl-l,3-oxathiane (19t)

il toin

^ I " h — r ^ i ■ i500 400 300 200 100 0cps

90

APPENDIX 3

THEORETICAL NMR SPECTRA

Theoretical spectra were calculated using a computerprogram developed by C. E. Klopfenstein which was capable of

26accepting data for three nuclei with spins of 1/2. Late in the investigation a program capable of accepting data for up to seven nuclei with spin 1/2 became available and a selec­ted number of spectra were recalculated using the larger pro-

26gram. Theoretical spectra in good agreement with the observed spectra were not obtained for all compounds. In particular the geminal coupling in several cases did not appear to be the same on both sides of the AB pattern and the computer calculations did not show this. The long-range coupling between the two equatorial protons could not be in­cluded in the three spin program, and comparisons between calculated and observed spectra were made to the center of the long range pattern. The calculated spectra substantiate the assignments of cis and trans stereochemistry to the iso­mers eluted in that order by vpc and in particular agree with the qualitative assignment of a non-chair form to the cis-5- _t-butyl compounds and a chair form with axial 5-substituent in the other cis cases.

In the following comparisons of calculated and observed spectra, all chemical shifts are measured from tetramethylsilane (TMS) as an internal standard unless otherwise specified. The 100 Me spectra were not run with TMS as an internal standard, but the chemical shifts observed agree (correcting for the chemical shift expansion) with those observed for the 60 Me spectra and the chemical shifts are given relative to TMS.

91

Since the 5-proton is extremely well split by couplings with four to seven other nuclei, its chemical shift was not accu­rately determined. However, shifting the position of the 5- proton by several cps has extremely little affect in most cases on the positions of the absorptions calculated for the methylene protons. The major exception is cis-2-t-butyl-5- isopropyl-l,3-oxathiane, (18c), where the 5-proton and the sulfur equatorial proton overlap and the pattern is an ABC instead of an ABX.

In the computer output, W1 in general refers to the shift of the equatorial proton, W2 to the chemical shift of the axial proton, and W3 to the chemical shift of the 5-proton, J12 refers to the geminal coupling between axial and equatorial protons, J13 to the coupling between the equatorial proton and the 5-proton and J23 to the coupling between the axial proton and the 5-proton, all values in cps. DE/DWl, DE/DW2, etc., refers to the change in the calculated frequency of a spectral line when the input parameter is changed by 1 cps. In the cis compounds W1 and W2 are assigned to the axial and equatorial protons, respectively, on the sulfur side since the axial proton is on the low field side. For the cis-5-t-butyl com­pounds axial and equatorial are no longer valid designations.In the trans-5-isopropyl-2-methyl- and 5-_t-butyl-2-methyl-l,3- oxathianes (14t and 15t) the axial and equatorial protons are again reversed on the sulfur side.

C I S-5-C THYL-2-ME THYL-1 » 3-UXATHl AN fcl, Cl SI DE

THE INPUT PARAMETERS WERE W1 = 233.200 W2 = 217.200 W3 = 95.000

J12 = -11.900 J 13 = 1.900 J23 = 2.500THE CALCULATED FREQUENCIES AND INTENSITIES ARE

LINE! 1 ) = 0.9717989E 0? INTI 1 ) - 0 . 103A665E 01LINE! 2) - 0.2105065E 0 3 INTI 2 ) = 0. 3853871E 00LINE! 3) = 0.23G2127E 03 INTI 3) = 0.1579952E 01LINE! A ) - 0.20S0775E 03 INTI A) = 0.A20 9369E 00LINE ( 5) = 0.2282A37E 0 3 INTI 5) = 0. 161373AE 01LINE! 6) = 0.355A392E 03 INTI fc) = 0.3269U6E--07L INE I 7) = O.yA75082E 02 I NT I 7) = 0.99A27A7E 00LINE! 8) = 0.11A9170E 03 INTI 8) = 0. 150A908E--03LINE! 9) - 0.2A21127E 0 3 I NT I 9) = 0.3909666E 00LINE!10) - 0.750AA6 9E 02 INTI 10) = 0.6160662 F--OALIMEf 11 ) - 0.9521089E 0? IN T I 11 ) 0. 10GA'590E 01LINE(12) = 0.222A065E 0 3 INTI 12) = 0.1575297E 01LINE! 13) = 0.2A01A25E 03 INTI 13) — 0.A1526 77E 00LINE!IA) - 0.2199763E 03 INTI 1A) - 0.161BA77E 01LINE!15) — 0.927807OF 02 INTI 15) = 0.9662592E 00

OBSERVEDENERGY INTENSITV DE/DKl DE/DW2 DE/DW3 DE/DJ12 DE/DJ13 DE/DJ23 FRS-iUE^CY

355.A39? 0.0000 0.9999 0.9998 -0.9997 -0.0000 0.0137 0.02052A2. 1127 0.3910 0.8981 0.1018 0.0001 -0.802A 0. A58A 0.0535 24*.2 & 241.12AO. IA25 0.A153 0 . 9 0 A 0 0.0960 0.0000 -0.79A6 -0.AA87 -0.0A91 241.1 & 259.1230.2127 1.5800 0.8981 0. 1018 0.C001 0.1976 0.A58A 0.05A I 251.2 & 229.2228.2A3 7 1.6137 0 . 9 0 A 0 0.0960 0.0000 0.205A -0.AA87 -0.0A86 229.2 '& 227.2222.A065 1.5753 0.1018 0.8981 0.0001 -0.1976 0.OA 85 0.A559 222.4219.9763 1.6185 0.0960 0.9039 0.0001 -0.205A -O.OAAA -0.AA09 220.0210.5065 0.385A 0. 1018 0.898 I 0.0001 0.802A 0.OA 85 0.A565 210.5208.0 77 5 0.A209 0.0960 0.9039 0.0001 0 . 7 9 A 6 -0.0AA5 -0.AAOA 20o. 11IA.9170 0.0002 0.8022 -0.8020 0.9990 -0.59 TO -0.00AO -0.015597.1799 . 1.03A7 0.0000 0.0001 0.9998 0.0000 0.A932 0.A89595.2109 1.C0A6 0.0059 -0.0057 0.9998 0.0078 -0.Al39 0.38699A.7508 0.99 A 3 -0.0058 0.0059 0.999 9 -0.0078 0.A002 -0. A07A92.7807 0.9663 0.0000 O.OOGl 0.9999 -0.0000 -0.5069 -0.51007 5 » 0 A A 7 O.COul -0.8021 0.8022 0.9999 0.5970 -0.0097 -0.0050

&

ClS-5-rTHY'L-P-N1 ETHYL-1 , 3-fJX M H I ANE » S SIDE

THE INPUT PARAMETERS NERE W 1 = IP9.100 W2 = 153.500 W3 = 95.000

J 12 = -13.500 J13 = 3.100 J23 = 3.000THE CALCULATED FREQUENCIES AND INTENSITIES ARE

LINE! 1) = 0.9798357E 02 INTI 1) = 0.1087938E 0 1 .....LINE! 2) = 0.1470436E 03 INTI 2) = 0.6048307E 00LINE! 3) = 0. 1B51721E 03 INTI 3) = 0. 130 7237E 01L IN E( A) = 0. 1440627E 03 INTI 4) = 0.68593 95E 00LINEl 5) 0. 1820582E 03 INTI 5) = 0. 14C2007E 01LINE! 6) = 0.2477288E 03 INTI 6) = 0.3531393E-■05LINEl 7) = 0.95002 7 3E 02 INTI 7) = G.9796233E 00LINEl 8) = 0. 1329982E 03 INTI 8) = 0.7177066E- 04 *LINEl 9) = 0. 1986688 E 03 INTI 9) = 0.6251458E 00LINEl10) = 0.5687419E 02 INTI 10 ) = 0.2972449E-■05LINEl11) = 0.948696 6E 02 INTI 11) = 0.1013200E 01LINEl12) = 0. 1605402E 03 INTI 12) = 0.1294044E 01LINEl13) = 0. 1955535E 03 INTI 13) = 0.6655559E 00LINEl14) = 0. 1575581E 03 IN T I 14 ) = 0. 1415268E 01LINE(15) = 0.918874BE 02 INTI 15) = 0.919 1842E OG

ENERGY INTENSITY DE/UWl DE/DW2 DE/DW3 DE/DJ12 OE 7DJ13 DE/0J23247.7288 0.0000 0.9995 0.9987 -0.9981 -0.0000 0.0327 0.0518198.6688 0.6251 0.9669 0.0328 0.0003 -0.6777 0.5041 0.0164195.55 35 0.6656 0.9675 0.0324 0.0001 -0.6769 -0.4719 -0.0184185.172 1 1.3072 0.9670 0.0 326 0.0004 0.3222 0.5040 0.0202182.058? 1.4020 0.9675 0.0322 0.0003 0.3230 -0.4721 -0.0146160.5402 1.2940 0.0328 0.9660 0.0004 -0.3222 0.0125 0.5037157.5581 1.4153 0.0322 0.967 1 0.0007 -0.3231 -0.01 17 -0.457614 7.0436 0.6048 0.0328 0.9666 0.0006 0.6777 0.0123 0.5076144.0627 G.6859 0.0323 0.9669 0.0009 0.6768 -0.01 19 -0.4538132.998 2 0.0001 0.9350 -0.9337 0.9987 -0.3547 -0.0006 -0.050097.98 36 1.0879 0.0003 0.0008 0.9990 0.0001 0.48 38 0.472295.002 7 0.9796 0.0003 0.0010 0.9993 -0.C0C9 0.4596 -0.489194.869 7 1.0132 0.0008 0.000 3 0.9989 0.0009 -0.4923 0.437491.8875 0.9192 0.000 3 0.0C06 0.9991 -0.0000 -0.5164 -0.524056.8742 0.0000 0.9344 0.9350 0.9994 0.3547 -0.0320 -0.0018

OBSERVEDFREQUENCY196.6195-5165.21o2.01 ^1 .5 , 159.1 L 156.5 ...

146.2, 145.= & 14>0 ,

VOXj3

94; CM rCM K-n i f \• • • •'O 1M 4 O - i f -M- f K~N CM CM CM CM Cl O , . , . ^m «3 «a *0 <o> W iTMTi

os ;zj ir\ t- ir\ ro\ o co <o n- i03 c • • • • • • • •</i m r-- - irscM 'o ir\-3- kn o03 0 5 - C - 5 " rC \ t . ‘ \ 0 \ ( 0 < o Is- <MO fc . C M C M C M C M t-t— t - «— r—

pH O O *J <p c CM 0 sj* H■ 0 O O O O 01 .0 O

10 01 O

' LU LU UJ Uj UJ1

'JJ UJ1

iLi LU UJ UJO n - O CC N- A CM 0 PC C* 0O CM O 0 co O' on. N- mN- O r^ CO O C A >r cr 0 NO

O • : O 0 O 0 " 0 CM O m AO O LU vO r*\ 7* CC CM A on on 0 CT'O ph * / pH ph CM CM o*. CO r*- A 0 O

UJ • < pH nO pH O' «—1 CM CC CO 0-4O O • • • • • • • • * • •— O 00 0 O O 0 O O 0 O O 0 OA LU

o11 1— : 11 II II II 11 II II 11 11 II II

p m ph

L-. n <M CO —«*<• —* —» «-» «—I «—• ——“5 ! ^4 CM m >r A O 0*“ CC cr 0

< m UJ P“J «p42 u» , w w <w> •»*» W •w* w W

**r- ; H- 0- t— k— h* L— L- h—L. U*M-* O O M X X -*?- X X X X X X 2 T ZT<r 0 O . M kart n—1 M MMp—< — MX A c ;O t • • X1 LA m <fits CC

00 m m .•a m on.- m m on fM v*n—* ' UJ UJ , 0 O 0 O O O O 0 O O 01 ' cc M

- j ■ UJ 11 u : LU LJ UJ UJ UJ LU *u LJ LJ UJ LJ>- : •U ; ° O 0 CO nT 0 N . >r r - AX II on JJ 1 CC pH GO on 0 O O n - n - Ou - O0 pH ' CO CC CM 0 sC 0 . »J 0 r - <V CMUJ . CM - 0 a : O nj- O' 0“ on un A cill JJ _v j j ! ^ >r on CO (NJ rr* 0 O'1 U- p H CC m N- on O A 0

CM tu U- 1 pHpHCM CM m CM A1 li. • • • • • • • • • • •

- J O 3 X 0 0 O 0 0 0 O O <_/ O 0>- a: O O LU< m o> 11 It II II II 11 II II II II IIU- 3- • • <

LJ CO PH1 i— fn pH 3

A 3 CM 1 U —» —* —» — — —* —» —»1 C- _ l pH CM m A nC CC O' O00 <X li II O w» pp w> w w W<r LU LL LJ LU UJ Uj LL) UJ UJ UJ •XI

UJ pM CM LJ ~T 2 : *79* X X z X z X, X Z£ pH X PP kM k—1 k—1 ta-k *—« w M Mk—

H* ^p pJ pJ •J «J 3 •J u

cn CT* «o 0 < - _ l m •n> ■tf O n - 0 O ' un u ]CM 0 O ' in <M n j f>n p H pH n - fSJ r - pH m

cn 0 0 0 0 in m vO (M m CM fM un <o 0Q 0 0 0 0 in s t m >3- pH sT in 1n 0V . • • • • • • # * • • • • • • •UJO

0 01

01

0 0 0 01

0 O1

O1

O 0 01

01

O1

[CM M3 O cn CC pHpHA un A N - p^-O CM un 0 0 p—HO O sO HA CM A

cn fs l 1 CC pHa COc O O O CC < r k-4 CMH0 A ^ r in ■j- 0 0 O O O A NT on O* • • • • • • • • • • • • • •

Q 0 O 0 0 0 0 0 O O O 0 O 0 O O•k. I I I I I I ILL1Q

CCCMsr P- A A m A cr O' X O' pHn-0 >r 0 <MO pHCCA CO0 —Jto MT•p fk.0 p 0 X O' X O' pHO' pHO —J O0 M3 M3 cn cn cn m O un CMO 0 O O CMCM • • • • • • • • • • • • • • •

pHO P-HO •J 0 O O O 0 O 0 O 0 O O 0 O 3 OO O O O -O 1 1 1 1 1 1 1OLUUJ UJ UJ Mco CCO' A UJ<r A 0 on Q in O >3- A n- 0 pH O' un M3 O' O' M3

CMm A O 0 p“4 v_yO p-i cn *3“in A O «r in «3- in O'in 0 r- sT O' 0 0 O O O O 0 O (O' O' 0» O' O'cn cn X on O' 0 0 O O O O 0 G O' O' O' O' O' O'0 pMft' nT JC • • • • • • • • • • . * • • *p- COP-HX c 0 0 0 O O O O 0 O 0 0 0 0 0 0• • i • Vk 1 1O 0 O 0 LU0

II II II 11 sc <r CMO' r- CMfKr- A c« pHpHO' O'0 Ln O cn CCCMA 0 >7"M3 un O tkn', jn——*<p«Pk Os.1O' p*H*■*-. 0 X CO X O C3 O O O cCMon on IXO' 0 O O 0 O' O' O' O' O O O O O'p>4 a • • • • • • • • • • • • • • •w w w w X 0 0 O O 0 0 0 0 0 a O O c Q Ou- 0- O- UJ 1X X X X aMPpHw

n- M3 f—n- CC- —10 CMpHX CMO' CML"0' in O' in O' sf 0 M- O m O M- cn O LOO' 03 COCC—1pH pH O O O O f*.on -n m. CM MO' O' O' O' COO O O O' O O O O O'0 O O O •v • . • • • • • • • • • . • • •UJ 0 O O c 0 0 O O O 0 O O O O 0UJ UJ UJ IX Q 1 ICM0 CMO CCO Apn 0 A OpH0 A > o CMO 0 pHCMA C O' r- O —1LO— 1

O on A A L* 0 rr, ■J*p*H0 in n- O X O' _n tn X 0O' <• X X — 0 in -HO sT O' m MTCM0 M3 O' X >3- 0p- (MPHO' in 0 h- COpHCM0 m M3 CT0 pH0 X X 0• • • • • • • • • • • • • • • « • • •0 0 O O LU0 O 0 p pHpHpH0 O 0 pHpH0 O 0L-II II II II

vf sT 0 C7 CCCMCM0 O c- O A c LOp- p— pp >- 0 oc CC0 O O P-Mm n- CCO c O CMCMm <r A O n- a M ,-n A WO «o CCCM•» <3- M3p*4 •H pH o; n a n ppHA <r O' in sC pHpHM3 M3W w w LU • • . • • • • • • • • • • • tUj UJ LUUJ sr CO0 cn >3“pHM3 A sT m O' CMO' CMX pHX X X X LUp*Hmr MTm PS X* CCf—jn pHO O -v mPpHP»HPH m CMCMrsj CMkPNpHpHpH•—<pHp pH3 •J —j -J

30IS S1JNVlHlVXO-t11-1AH13W-Z-1AH13-S-Sim:i

ii

Qr>1 O• -4O«M

■X) rco rc.

rr\o cm r— • • » •:r- a v o ovo no irv uv

v orCNA

m J3 (Vi o o <c — j X c m S0 m N- o' O 03CVJ to o fc» vO 03 X CO CM o x <m <■ O'“ 5 *1- sc vO •— > CO m (SJ c m X X in x in o >3-a r\l o CM cn o ro CM o m — 4 m o pp*■v. • ; • • • • • • , • • • • • » • •u jcs

o o 01

o o 31

01

o 01

01

c 3 01

*■>T

O1

cn cn O' CM <r O tn m vO X 00 in X oCM O ffc X o X <3- X X CM in CM a X o

m tn CM rn — < X •C m o X •s. •fc- CO m CM Cmp-4 o "J- v3- <*■ X <r o —H o o <r X m m

• • • • • • • • • • • • • • •asX

o O 01

o O o 01

o o o o o o o o

3

in ■J- in oc CM CO 3 —H m CM X fcC fcO N-.in o CM O — 4 Cfc O' X X CO X 4-H CM N?*o m vr CO ro M- n X a o x P.4 3 Xo Cfc cc o a — 4 p H cn cc CO o •— X O CC

CM • ■ • * 9 • • 9 • • • • • • •x x o m o O o fc-H O — H O X o o O o o o o o o> o o o 3 ro.

; ° o O o o o o o o o o o o o 3,-p

I 1 1 i

LU LU LU LU LU X ! L U X X X X X X X XO in iM x o sr r - CO nJ* CM m o i n n- a rA XO x m CM CO co m CM X CM o <r m o X O c C M v0 — H fc- — 4 m X m o fcO o CM O mC M m CM CO CC •sJ* in o O O' PM O' X fc- o o CO m CO (M p H o o X X CO N- X

o • X x ro m nT o CM o <r vO m M- o O o c o O o (H •H CM X X Nfc X X Xo LL' x r-— sO o <3 c*- 1 m m p4 X C in ■O' r**> O' o o o o o o o 3 rs X X X Xc X *>• m x *o i n CO CM CM m cn O' O' 0 s CM 1C » • • • • ■ • • • • t • • • •• < —H ^ 4 ^4 <r r~* — J X X CM O' *— 1 CM p-j X O o o o o o o o o O o 3 o 3 3

o • * • • • • • • ■ • • • t • ' v 1o o o o o o a o C a a o a o o o o X— J UJ o

II MJl II II ii II II ii it If it II II it II II sO r> in X <r sC CM m x X CM o o «<fc CM

m «— CC fc- o X o X :o X X X • •"n o to — m

II C M LO fc— — » *— — •» — * «-» »— — fc ■fc fc— *■*. C M o CM n3" X X fcj" O m 3 CM c X ^4 •J*T ’ • X CM m in o r - X O' c fc 4 C M -0- in 1*2 Cfc m fc—J X o CC: o CO in O — X

m u p—4 p-4 —H — 4 pH — 4 b • • t • • • • • • • • t • ■ •X — «— <— w w W M w w w w w w fc— N o O c a o o 3 o o —n { i 3 o a 32 : 1— x X x h- U- H- X I— X X U — UJ r

O O M 2! 2 : .21 2T 2 2 : 2 z 2 : 3o O fc— —— k— •— * tMrt —M — fc—« —-fc- CM r>• • fc- P»H fcT o e* cn m CC fcT X CM in CM X

— m < — H C3 CM O' PO LO a O' O O m C X mC X CMun CN X c*- CM UD m CM •w* m c- CO />■ o m__i oo m r<- m m m t-n m CM m m m m CM b O' o CC X CO X — i n o X — 4 3 ■.n

'a-' o a a O O o o o O o o O O O '*s • • • • • • • • t • • • • • •— X o o c o O c o o o a o c O O o

it 1 3 LU LL' UJ U J X' X X LU X X X X X Jh ’JL1 a 1 im X X C M <V: <r o 3 m O' sT CM

ii m LU CM NO o >r O CO in r- o m mx 3 . x o c m x CM c- m O' sf in X m in cn CC

CM "■? o ' m CC CM sO sO CM CM CM CM X i— i o c >- 1— « ro m CO CM in o CC CO ,*■> >0 in in X — 4_s LJ rsj o X x O CO pJ <r X O' O' o — 4 X o m m X JD m m ffcfc. o X V* CO —H X

a: — 4 c O m in o o C M r - X O in v0 in CO »— o CC cr sO M “ sC X p ^ m — 4 X X CM CM CMu. X X X x o«i CM mm 4 »pj X p— i •pH — 4 — J O' L O c o CM vO O x> O' o — 4 m X a •s. c

• • • • • • • • • • • • « • • 2" * 9 • • • • • « • « • • • • •o o c o o o o o o o o O o o o o o o UJ o o a x X X X o o o •—4 o o 3 ao o U J Xun CM L— II II II m II II II II II II II It II II II 2!• • <r

mUS *— < z> «r O' -»?■ X O' OC O' fc- ( M fctf- m m X m cc

o ,, «— — * «— » — fc— — — fc— — — V e- M" m o G G r- «o nT in CM fc— 4 O' tn-J CM m in o r*- X O' o F-4 C\J m <r in 3 r- fcCT n CM m CM O' o X — > X X m >?■ CM< — 4 ^4 —H -H — 4 n£ o CM X CM co X b fcfcp’ o o X CM CM X CC

It ii o w . w w w w w — • fc—> fc-p w fc-P X • t • • • • • • • 9 • • • • ♦LU •JU UJ LU' LU X X* X X x« X' LJ X X X “ / sj O' p—4 o sC G sO X CM X •n Cl X

—p4 r\J UJ 3 2! i?* 2 IC 2T 2 ."!T 7Z *3 2T '3 LU O o m LO in 'sT m CM X o a X3. pnt M x ** >— t M —- k—>1 — •— I— — CM • H — 4 fc— X —H — - —H Pfcrf •—4 X X

“ 5 -j -J X X X X X X X X

CIS-5-IS0PRnPYL-2-METHYL-l,3-OXATHIANE, 0 SIDE

THE INPUT PARAMETERS WERE Kl = 2 4 5.700 K2 = 211.000 W3 = 14 5.000

J12 = -12.200 J13 = 2.100 J23 = 2.300THE CALCULATED FREQUENCIES AMD INTENSITIES ARE

L I ME I 1 ) = 0. 1471677E 03 INTI 1 ) = 0.1057382E 01L I ‘. E I 2) - 0.2050214E 0 3 INTI 2) - 0.6395 338E 00L I N E I 3) = 0.241709 5E 03 INTI 3) = 0.1303088E 01LING! 4) - 0.2027373E 0 3 INTI 4 ) = 0.6970682E 00L INE I 5) = 0.2 395 967 E 03 INTI 5) = 0.1360312E 01LINE! 6) = 0.3117625F 03 I NT I 6) = 0.7888967E -06LINE! 7) = 0.1448835E 0 3 INTI 7) = 0.985292 IE 00L INE ( 8) - 0.18 I7429E 0 3 INTI 8) = 0.3734535F -04LINE! 9) = 0.2539088 E 03 INTI 9) — 0.6542087E 00LINE( 10) - 0.1081954F 03 I NT I 10) - G.4153270E'-07L LNE( 11 ) = 0.1450549E 03 I N T ( 11 ) = 0. 1011454E 01L INEI 12) 0.217220/E 03 IN T ( 12 ) = 0. 1291 64 IE 01LINE( 13) = 0.2517945E 03 IN T I 13 ) = 0.6823563E 00LINE(14) = 0.2149 351F 03 INTI 14) = 0.1371802E 01LIME! 16) = 0. 142 7 69 3G 03 INTI 15) - 0 • 9 4 5 8 4 6 4 E 00

ENERGY INTENSITY DE/nwl DE/DW2 DE/DW3 DE/DJ123 11. 762 5 0.0000 0.9998 0.9994 -0.9992 -0.0000253.9088 0.6542 0.9713 0.02 86 0.0001 -0.6666251 . 794 5 0.6824 0.9719 0 .02 8 I 0.000 I -0.665124 1. 7095 I.3031 0.9713 0.0286 0.0002 0.3 3 34239.5967 1.360 3 0.9719 0.0280 0.0001 0.3 348217.2207 1.2916 0.0286 0.9712 0.0002 -0.3333214.935 1 1.3718 0.028 0 0.9717 0.0003 -0.3349205.0214 0.6395 0.0286 0.97 11 0.0003 0.6666202.7373 0.69 71 0.0280 0.9716 0.0004 0.665118 1.7429 0.0000 0.94 34 -0.94 2 8 0.9994 -0.331714 7.1677 1 . 0 5 74 0.0001 0.000 3 0.9996 0.0000145.0549 1.0115 0.0007 -0.0002 0.9995 0.001514 4.88 35 0.98 5 3 -0.0005 0.COO 8 0.999 7 -0.0015142.7693 0.9458 0.000 I U .0003 0.9996 -0.0000108. 1954 0.0000 -0.9431 0.94 34 0.9998 0 . 3 3 I 8

I

DE/DJ13 DE/DJ230.0207 0.03510.4909 0.0146

-0.4703 -0.01540.4905 0.0166

-0.4707 -0.01340.0120 0.5000

-0.0111 -0.46810.0117 0.5020

-0.0115 -0.4661-0.0005 -0.03390.4090 0.4815

-0.4874 0.45150.4667 -0.4866

-0.5105 -0.5165- 0.0202 - 0.0012

&

OBSERVED?R2->USKCY

■154.8 & 252.8252.0 & 250.8 242.7 & 240.6240.6 & 258.5 217.2214.9205.0202.7 *

VOOv

C IS-5-ISOPRCPYL-2-METHYL-1 ,3-OX ft Til I ANE,S SIDE

f HE INPUT PARAMETERS V.hRE W 1 = IB 3.0 30 W2 = 16 3.200 K3 = 1A 5.000J12 = -1 3.800 J 13 = 3.200 J23 = 3.700THF CALCULATED FREQUENCIES AND INTENSITIES ARE

LINE ( 1) = 0.1481046E 03 INTI I) = 0.1369857E 01L I NE ( 2) = 0.1561698E 03 INTI 2) = 0.2163712E 00L I ME < 3 ) = 0. 1800 54 81: 03 INTI 3) = 0 . 1 41 3 7 7 7E 01L INEl 4 ) - 0.1526333E 0 3 INTI 4 ) = 0.6648012E 00L I NE ( 5) = 0. 1768155E 03 INTI 5 ) = 0. 1702374E 01LINE! 6) = 0.20179 7 7 E 03 . _ INTI 6) = 0.2691391E--02LINE! 7) 0. 14 4 5 6 8 2 E 03 INTI 7) = 0. / 9859 36E 00L 1N E ( 8) = 0. 168 7504 E 0 3 INTI 8) = 0.2 756234E--01LINEl 9) = 0.1937 3 26E 0 3 INTI 9) = 0.3902224E 00L[ME I 10) = 0. 12068 3 3 E 03 INTI 10) 0.5053497E--04LINEl 11 ) = 0. 1 4 48 6 54 f- 03 I M T I 11 ) = 0.1049823G 01LINC(12) — 0. 169847 7E 0 3 I f •! T { 12 ) = 0.1363914E 01L I NE (13 ) - 0. 19049 I9E 03 INTI 13) 0.46343796 00LIKEl14) - 0. 166309/E 0 3 INTI 14) = 0.1779751E 01LINEl 15) 0. 14L32 7 5E 03 IM f I I 5 ) = 0.7568219E 00

ENERGY INTEMSITY201.79 7 7 0.0027193. 7326 0.3902190.4919 0.4 6 34I 80.054 8 I .41 381/6.8155 1.7024169.84 7 7 t.3639I 68. 7504 0.02 76166.3097 1.7798156. 169 P 0.2164152.6333 0 .66 48I 4B. 104 8 1.3699144.86 54 1 .04 98144.56"2 0. 79 8 6141.32 75 0.7 568120.68 3 3 0.GOo I

OE/nwi DE/DW20.9977 0.96380.9008 0.11630.9127 0 .08690.9027 0.09290.9147 0.06 350.0952 0.90060.8177 -0.78410.0852 0.90 6 70.09 7 i 0.87/30.0871 0.B8340.000 2 0.02970.0121 0.000 3

-0 . 009 9 0.03580.0021 0 .0064

-0.8155 0.8202

0E/DW3 OE/OJL2-0.9616 -0.0121-0.0171 -0.77850.0004 -0.78140.0043 0.20820.0218 0.20530.0042 -0.20760.9663 -0.56110.008 1 -0.21810.0256 0.77910 . u ? 9 5 0.768 70.9 701 0.01270.9876 0.00990.9 74 0 0.00220.9915 -0.00060 .9953 0.5/32

DE/DJ13 0.0700 0.5307

-0.4374 0.5 L62

-0.4519 0.0261 0.0089

-0.0204 0.0115

-0.0349 0.4723

-0.49 58 0.42 59

-0.5423 -0.0788

DE/DJ23 0.2487

-0.0224 -0.0495 0.0687 0.0416 0.5100

-0.2295 -0.3717 0.6012

-0.2805 0.3301 0. 30 30

-0.5516 -0.5787 -0.0192

6

OESi'R'/SD?R3^U2KCY

193. 5 ......190.5150.0 176.3163.0 L 170.3 5-H ..................165.2 & 163.0157.2 & 154.4 15^.4 & 151.2

SO

TRANS- 5 - I SCPRGPYL-2-METHYL-l , 3-OX A T H ! ANE, iy? SIDE

T H E I N P U T P A R A M E T E R S v t E R E KI = 2 A 1 .000 W2 = 19 3. 400 *3 = 95.000

J12 = -1 1.600 J 13 = 3.100 J23 = 11 .200T H E C A L C U L A T E D F R E Q U E N C I E S A N D I N T E N S I T I E S A R E

LINEl I) = 0.10 I 795 7E 03 INTI 1 ) = 0. 1 139712E 01LINE! 2) = 0 . 19 2 7 5 5 9 E 03 INTI 2) = 0.6368A86E 00LINE ( 3) = 0.2375469E 03 INTI 3) = 0.1223AA6E 01LINEl A) = 0. 18 17054E 03 INK A) = 0.8380391E 00LINFl 5 ) - 0.2343355E 03 INTI 5) = 0. 1251671E 01LINEl 6) = 0 . 3400718E 03 I NT I 6) = 0.9 8895 36E-■05LINEl 7) = 0.9074522E 02 INTI 7) = 0.9042680E 00LINEl 8) = 0.1433753t 03 INTI 8) = 0.1753A1AE-■02L INE ( 0) = 0.2491117E 03 INTI 9) = 0.7308375E 00LINEl10) = 0.4595416E 02 INTI 10) = 0.197AA8AE-■03LINEl 11) = 0.98 58 420E 02 INTI I L ) - 0.108 29 L5E 01L INF. 1 12 ) = 0.2043207c 03 INTI 12) = 0.11 A03A0E OLLINEl 13) = 0.2458986E 03 I N T ( 1 3 ) = 0.792493 IE 00LINE! 1 A ) = 0. 19 3268 5E 03 I N T I 1A ) = 0 • 1336 3 36E 01LINEl 15) = 0.3753206E 02 INTIL 5) = 0.R711790E 00

ENERGY INTENSITV DE/DWl DC/DW2 DE/DW3 DE/DJ123A0.0718 0.0000 0.9998 0.993 5 -0.993 3 -0.00052 49.1117 0.7308 " 0.9823 0.0182 -0.0005 -0.62852 A 5. 89 86 0.7925 0.988 0 0.0120 0.0000 -0.6039237.5A69 1.22 3A 0.9324 0.0 I 7A 0.0003 0. 36932 3A. 3355 1.2517 0.9880 0.0112 0.0003 0.38R920A.3207 1.1A03 0.0175 0.9798 0.0027 -0 .3684193.2685 1.3363 0.0119 0.9851 0.00 30 -0.39 02192 . 7559 0.6368 0.0176 0.9790 0.00 35 u.629418 1.70 5 4 0.8880 0.0120 0.98 A 3 0.0037 0.6076LA 3. 3753 0.0018 0.9705 -0.96A I 0.99 36 -0.2 392101.7957 1. 1397 0.uOOl 0.00 37 0.9-763 0.00139 8. 58 A? 1 .0829 0.0057 -0.00 25 0.9968 0.020990.7A 52 U .90A 3 -0.0055 0.0090 0.9965 -0.02058 7.5321 0.8712 0 . 0 0 0 I 0.0028 0.99 70 -0.0009A 5.95A2 0. 0002 -0.9703 0.9 7 06 0. 9 99 7 0.2 39 6

/DJ13 DE/DJ230.0210 0.11370.5076 0.00 37

-0.A 88 2 -0.00670.5080 0.0110

-0.A878 0.00060.002 A 0.5422

-0.0015 -0.AAOl0.0027 0.5495

-0.0012 -0.4328-0.0012 -0.10940 . A B 9 3 0.A395

-0.5065 0.42910.4855 -0.5428

-0.5103 -0.5532-0.0193 -0.0044

C

0BS2RV3D FRS-USviCY'

2-19-6 l 24o.4 246.12J3.2 & 257.025 .5204.5195 -3 .............. .192.7131.7

110 - 1-'jq .,eo!c vo00

“■J \jj U1 O23 -S' • •

w l O'. C -U

O ' O' UJ j>

:s : i j s> *-l-sjOlIX)

-T* 23 -U uJ -3- 23 Cl ro u j 3 o o o

■f'- J

M

i— UJ3 3 O' -U

-S'OJUJf\j

->j -j0 -J • •-- oU1 -U01 csUJ J*

r oIX) 21cr>• r n~ U s~ 4> 3 -U -<O

c O o x_>f—o o o no no f—h- o c o• • • • • • • • • • • • • • •

•JDw *o no o o o r\j *—-0 -si o o of—• o ic r-« fNJ o O' i—cc on p—o Ol or—*c no O' o uu UJ co un no cc o o!NJ UTu*i no 0" p—-0 COl\J cc -0 UJ o

1c O

1O o o o o O c o 3 o c o o

ccrr,

• • « • • • • • • • • • • • • V*o <— p—> c- no uo un LO £*\ un o CC

no r—Xt—no o «5* fSJ un u> no *0 vH-0 AwVJ un xU r—no -p* r-* •£* Urt no ro i—

cn un >— 00 w -sj »— no o %0 un -0

o1

o1

o o o o O o Cj o o

om's.

• • • • • • • • • • • • • • • Cno o r- »—• o no urt cn un cn LO-> OJ SO5 'u0 no no o no un ■sj on -o no nj o noc . r-* ur. LLr- •sj »—•U’»—ar—wl no no -sir- lT. w o ur. no J* CO no X -0 no -0 f—

o O o cc c? o o o o o o o o o o• • « * • • • • • • • • • • •o Uj UDxC o o o o o o o o >£)sCX%*' JOO *0 o o C o o c w c> coX un o xO<J ■»J1sJl o r—-p- 1—■O' o -P 03Jl cc no 0s CO o IMIVJUJ o CC

I I I I I I IO o O C o o 3 o c c O o o o

« « • • • • * • • • • • • • »»0 <-*1o o c >c >o w o o o c o -J oO' c rv l\J o O' vO O' c o UJ UJ v£> O' ou-, o 2C23 c Jl O' CO r\j rsj r- 1— > O' ->» ou j f\> O' vO U-’ — > o > o UJ un 3 00 UJ

om

T_

n3t _

IX)

r * n r * T * r * r - r - r ~ r - r - r - r “ r * r r —H L . — 1M r-« w pa- PM PM PM ~-* L — 3*** 22: r> “ V V *“3 0 T 2 r 21 2: 3? 'Z A . IT n o »M m

r n - n m f n r n m m r r , m m m r r . m m r n—* —% r—» —A •-» •M O n ll *—•

r— »— l“ A > 2J l LL no r — o x0 CO -s i Cn u n -C UJ n o M- r -

• w a*^ +m+ ■—* m p r n i c fI c i—• - 1! r * UJ no

> ♦ 9 "D11 II II ll II II II 11 II ll II II i i i i II —4 O o >

m o oO o O o o o o o o o a o o o . o o o >• • • • • f • • a • • • • • • ■ c

r_» r — i—< o 00 h-* r— x0 n o i—• r—* r— r — ' T l m- s i J l - 0 o U J I— - 0 O un N> J l Cn u n O 73 —i

-s j o Ll cc >—* - 0 3 UJ O ' • 0 Jx, © h— ‘ IT. 3: r r .OJ r— *s* 00 no cn r— - o h— -c* © ( _ n o 7wO U1 UJ u J u n - 0 r u o vD ‘j j H— *s j O C L-» t o

LU Cn J l OJ CO n o CO o O ' ■sj o o u n . m UJ i i

-s i ••s LO N j n o r— JS o n o O 0 s o j n n o ■ «.* 3 ”."Tl .T l m m m m r n m m m m r r . .T l m m n >1 r r .

i >—i 73O w o o o o o o o © o o O o o m mr u LU L0 wJ n o n o UJ UJ n o UJ LU UJ X UJ UJ 0 0 PM

ur.; j > CO Un>

2 • •O © n

j—» <—i ►u IM M 1—9 p—i PM pa o oJ?* / „ 3? Aar s : 2 2Z! 2 2T ~T* 2 2 PM c o■H — 1 -H —i —1 • L —i —1 —1 — 1 —< 2

*— — • —* •—« s :M f—■ i— r r LO

0> oJ n o r— O o OC O ' J l j n U J n o p— 2 u .w w w w w w ■w* «—P w w C/l no i i

PM L 0It u U li 11 II II II II II II II II II II - —t, «M it

mo o o c O o c c o o © C o o O 1 in• • • • • » % • • • • • • • • u nc c n o CD J ) l\J xO n o n o UJ Cn 1 g * •

o r — cn • s o u> xC i—* no -s i X n o ; ✓3 oxC X X J l n o h— LU O ' r— h— i— o H * • m un oJ l r — n ; o cn UJ I—* 1—» : 0 un n o n o u n ' • ono X cn cn o o o r — r— - 0 O - 0 o r - ono o j n O o un \i J - n o UJ X 0 0 n o c n ( o -0J o n o LC CO CD Ll vO CC j } c u n «£ r— ■ om (T i m

im r r . m• m

im

1m m. t

m m■

m mi

m 'i

o oi

o o oi

o•

o1

o oi

o oi

o oI

o o !o r o o *— o »— n o r — r * |

I I I I IOm

o o o o o o o o o o o o o © O ©• • » » « • • • • • • • • • . • u.»—• un no o -> o r—J— no p—pp 4> no UJ H »—x. un iNJ o UJ r—* O ' cn un -sl v/! O O' Nu no uoo CO un O no •Sj O' PM COun UJ no h- ■x-I> O' no u: UJ no -0 -0 un •0 un o cn sQ no

i 1 1 Oo o O o o o o o O O O O o o m« « • • • • 9 • « • • • • • a >»o un o o on r- no UJ ru 1X3UJ fX) IX) IXJ o cno 'sjJ L-* UDun o no UJ UJ IX) fX) o UJ o -J c--S, cn X un x0 J' Ll .->flj *u vOo U1O' IX)

rn 1- on OJ i-p cn o jn UJ UJ UJ IX) h-t 05 UJ

m-k *»1—p •fc-un lji XJ: CnOn Wo O ~»J ~vjV-N t-3

T3(3pN "

VJl VJ1 O XJ1 XJ) -U <T W c t o c-j •<raS °

TRANS-5-I SCPRnPYL-2-^tTMYL-I , ‘i-OX ATH I AVJE »/!s SIDE

H*3

O

-JO

otn

O*-b

o

o

tn

O*5

<atn(U

H -n

Dfus :ro

ro ojO' , o.' ►— C3C sjJ -*J O 0 3 0 -ro O ' J* oj

r o r o r o r o i o i o i o r o - C 'wOi-MMu.uj-rj'i'nO O j' O' o ui no "O oc *3

CTNOUrOOi-C'CA U1 O O O. 3 O O S M Q SoJOMJvO“ 30«J-< o o > j ^ N 3 ' 3 0 m r o

O onO UJ

r— * f- - C ■ • I •05 o rn O j r C i— or. c o — —

o v o rni-O IO on O'

OJ »—C> Uc on onon j ' j> ro oj io -O o -u j>Oj

o on o —O -Io -<

c-o

IO 01

o o O o O a a o o o a oV-Urr

Cj • • • • • • • • • « • • • • •0) '£ Cj r;- o CC o o c o o w o vC o

r—» O C O '*> r— o x CO o r — o Tr“o J* o o <NJ -si ro •si -o ro -o r\j o f—-J p p o ro <J3 •si sO - o f\J o fO o •s j

z pmm mm* IM , , •— mm* 0mm .r-;' -* cc Z! Z 2 z r

rn r n rr m m PT m m m rrv nr. m m rn r r .—• —* —*P S —<* —* «—• »— —•p- K- >— ►— 1oi OJ iO r—* O s 0 X ■sj o U1 4> OJ ro i—~L“~ *■# **“ *

" * w

ii 11 tl ll il II ii ii II n ii it ii ii ii

o (‘.J o O r_,1

o Co ro CO o o r > o• • • • • « • • • • • • • • •OJ ro ro ro oo ro ro ' JS ro -*o ro roO j ro 4S ro h— ro 4> ^0 >o -p* O J o OJ t— * OJ'o j ps ro o •0 03 *sj O' o CL c s u* JS ■sjCO 'Jj p- — or- 0J o w*> ►— o o "C COU1 a i o o -si o ro c L. • • J - s |- J ro 05 o ro o ro OJ sG OJ h—a O'-si o IM 0J 'OJ CO on c v O' CC ro OJm m rr. rr, m m m m m m .Tl m rr. rn m

O o o o o c o o o o O o o o oH- UJ 'OJ 1—* ro OJ ro r—OJ OJ OJ VJJ OJ ro

*—i •>s PS PS PS PS PS IPS PS PS pp PSa z c: 2r *T* z \*tftm2:z Co z1 1 rr —1—t —i -i —t —t•H —i —1

c O o CC' c CCc o o a O o o a o S* —S ~s -*s PS PS PS PS PS PS PS• • • • • • • • • • • • • • • Vv P— r— r— p— p— P—■COcc l-S o X SJ o >0 o o o o o c 3T 03 J' N>Jro f—*c %0 ■sj O' on J' Uj ro p.J-*o c o o o I—o i—• w o CO sO ro W w W w W W wr <p wc r' O'l * o -S ro S|j ro ro -o ro •sj sGon r— rx. r- ro »— r- r- -sj CO •Sj -si tl U II u 11 II tl II II ll ll It II u II

orn

o o o o c O Q o o O o a o o o• » i • • * • • • • • • • ■ • £o v3 vC>o c o o o o o o o sCUJ

o sj O O •c o o o o c o o o>0 o sC <3 cr o o o o o o o >.3—sj -si o v£ -vl no rvj o -*IS, h— tv. 4> O

i I I i ic O o o o o a o o o c Ci o o O r-« • • • • » • • • • • • • • • IVJu( o o o o un - u - J ro M l \ J ro -o -0 o-Uo o o o <£>c, J—•f—r~ vOCD cUJ o O' o o UJ O >jj c O ' c C ' o UJ or— o >0 v0 o I—•o o >0 o o o I—. o

omI I I

o o o o o o o o o o o o o o o a• • • • • t • • • 4 • 4 • • • <_o J3 _Ss -> o c o o o -> -S' o r—r o p - ro c X o O ' 4> ■ s 4> - o IO UJ

ro CO -si o 1—• ►— ro i— U1 o un o jr>X o O'* IO O' 05 o •> UI ->l v0 IO un

i

i 1 1 1 I 1 I ao o o o o c o O o o o o o o o IT,• • • • * « • • • • • • • • • "Xo U1 OJ o -p> ■£> r ' c o o o o ao p - o 30 IO UJ O' J> O' J - JN •f> ro t_o p— P-* Co UJ Uj Uj O IO CO CO CC 05 IO IOOJ ro -p* r o 1—• O' O o O' <J1 05 u3 f—,- 0 Uj

o c O o o © o o o O o o o O o• • 4 • • • • t • • • • • * •UJ 1—• >—UJ © -Si »—-o I— O' 1—• n ppun O' 'UJ un O o -\J Lfi o © O' ro un ro oUJ (—O UJ -J 4>OJ INJ o f—>o ro j>un O' UJ O i—30 O JN5—JN■X IO■s i—cc-u o u3 un O' IO0*1wJ o UJ 30 >o *o cn o>— un >-• H O' -si H- UJ 1—>j—UJ UJ X- sCUn►—IO-u *0 IOX •sj O' J> IOo .0 03 COm m m iT) m m rn m m n

. i r n m n rn mo o o O o o o o o

. io o o o o o

o r “ o r— o o X* r— ■ s f— o O

X p—Vrn NJ r- rn

O II II PS

zrr* •or> 1 r\> Xc ps •jjr* rv O'

• •—i H 'O £>rn o oO o o iP*

Tl m

n- rr.jC'' C- ro ✓jc: r—p </>rr. oj ii c ?o IIm</*■

r rn a< ; m

ro

> Jl O U2 » •O O' O'c o

— o o

. i OJ

.“2 <_or ro ii

— iimo n os > •7Z O'm > o

• oCOoo

Co-J

MMIOIOOIIUIOIU:o -* iv> ro v n vw . t - .*>

-fc- - * 0 \ o v j i r o - s j ■' 0

ON - * 4=- f u o o\ - * Oo

*53 O W ti l CO C/5 ■T PJcn to pj <? S.: t-9

OOT

OW 0 7

*301$

0*3NV

IHlV

XO-t

* I -

~UU1

3W-7

-1A1 fiO-1

-$-S

OD

•■si x -s ‘OS G S£>r—•v'

(—11-*O'

i-c* O' 0s

i——«j

h-»■53

rofTi

ro o on on r-* X *—• O' J' -p» o -si ro ■si• • • • « • • • • • • • • • • rr,

JJ 0s- G- UJ ro O! o ro on -sj O -sj >s7O t—* rj G o ro oo -P* (7s ro sO -c* on OJ -sj cn'Jl -o oi X -0 ,s o CO cr UJ X on O' -sj -cX •sj ro '-0 on 0s IS) o ro o o on O J '

o o o ro ro r—• O o o—Hn'

• • • • • • • • • • • • • • •s_y :o G g r—o o o r—r—> X X o a o coo X G -T o o o ro -o un o o o 1—•<r- h—J* 0” ro rj r—r—cc o 0s o a -H►—». *>0 & i— c r—O' or un oo Cl O' a -<

o o o1

o Ci

o c C o o a c o o oon

• • • • • • • • • • • • • t • Ssc: c c c o e or oi on 1 j*i 0s*U"| 'wc *2 _s. a w X rc s—X ro *sj ■Si sC i’

o o ■X r—• I—* o X o o cc CO X r-G -o CC O ro U1 OJ X un on oJ S' r—

a1S. v a o c o o w o O O o O

cmS*

» • • • « • • • • • • • » • • oo o g 0 o o W, J ' 4> on Xs on Ol o 3To o Os* UJ o o h—->l X •o (—* Cc r“ noC“«f—• 0s w f**- oO S' r- -0 w r— W1*SO' Wwr—X w* 25 Oi h—X O •si no ro

o o o o a o o O o1

o O O o1

a G/3

CI

• * • • • • • • • » • • • • ■ 2Co o o o G g o a o o a o o o UJ

G G c G G cc c o o c o o o■s* 'Jl o •sj -o ISI o o ro o ro o ro unoT, OS 4> o on X U1 o oJ ro uo on o ro UJ a

o1 1

O o c1

o o o oI

c1

o o1

oI

o1

a

rr.

aC-.f—

* • « • • • • • • • « « • • • roG a C> a a o o *0 o o o a o og o o c** o G o o o o c o C3 o cG C; o a o g -J c o o o o O 05 cro o »—<r- o ro O' X X 4> -si cr o

1o

1o

1c O o

lo

1o o

1o

1o o o

1o 00

om'S.o

• • • • • • * • • • • • • • ' » c_o 0T« o o o ro ro ro ro ro i\ j ro o J*»—fvj o O' o on Ol o on -0 O' -sj cr UJUJ G 0> _S. -u CO O' -si cc SC .f* r—roO' on -j r—G o O' ro -0 ro O' o d oo.O'

1o

1c

1o

1o o

1o

1o o

1o

io o o

1O

00 Om

• • • • • • • • 1 • • • • • • : • "So V/l o o -> o IS) ro ro ro ro ro rvj ro O O0*1 UJ •sj o O' i— r\> 4>. UJ ro oo o VJ*) O -si c.■Si w. o oo o 0" IS) ro > cr cc cr 05 ro ro

o OJ G X on c •sj O' ro 0s COUJ ro UJ

j J f

j<£- J* r ~ G “"9 2 : i i 2 :m m rr ,T“i m rn m m m m rr. m m m m— s *-» #•% * s —*• -S <— • —-h— J— r—on Js UJ ro c vO X -sj c r on UJ ro s -

” " “

ii II H ii II ii ii ii 11 ii ii 11 n 11 II

c o c o O o o C s o 0 0 c 0• • • • • • • • • • • « • • •X f—' 1- CO -u t—* G X ro #—* 1—* *— ■Co o - s cr on ro X X on O' on cr on r -Os' -U sC O' •sj ro X -u o G 0 s 05I— cr vT ro G •sj r o G G c ro -sj on O•sj ru UJ u i on UJ -Si X -u O' UJ Js JScn cr on UJ *—• -sj 0 s or. ro ■sj 03 G X 0 -siO' ro un O >— CO o UJ o -P . o O' cr Pso onm rr\ .Tl ,TI rr. m m m m fm rr. iTi m m IT,

o o O O O O o o o o o 0 0 O ON? UJ UJ UJ ro ro UJ V r o uJ UJ OU 0J UJ IS)

r-m 1—1 p+m^r .2- aC. 2 zz 2- i -H —1 —i - s •H - i -H —1 •H«*• *-* »-s --S «■—* ~ s —s »

r - r* r— r— r— r-»uo -> Os' ro C G CO -si cr un 4> UJ ro h—S— — 1 — — « - — — —* wII 11 II ii II II II II Ii II ii II 11 ll 11

o O O G o o O o O o c O G c; O• • • t • • • * • • • • • ♦ •

ro cn ►— G on G on no r~ j— j— r -- 0 r— 'oJ X CO <w> —j 1—■ G r * r“ O X *-+ H—

ro O -Sj or W ro o CO O J> on 0 .p*a X O o -sj ■x X \C J> O'. Uj cr 0 rono or ro j r 4T on G 00 r o -P* O' Cr ro j> OUJ on o J l r o •u G IM oo UJ o X X cr roh— UJ O UJ G •P* UT ro ro on ro »— un rom m mt m rr. n

inr,■ m

i m m* i

rr. m1

m m1

m

o oi

o o oi

oi

o,

o o : o o1

0 01

0 0o Uj <-• o ro UJ M o ,un ro >-* no s —

— \X ►-* 2 ^ Xm IS) K- m

0 11 II •■s> 2 :r - TJn 1 r— Cc Or* uJ crj> • • X

0 X >m 0 0 700 0 0 >

TI m✓0 —1m 2'. ms.-* 0 . ro 70c 1- - o rm UJ 11

3Cn II rn

70m mon h—

c r> on cr

• •O 0 X

0 00

—i n:m UJtit u .un ro II

OU— 11—. 11mtn X

cr5» •3*5 0m cr 0

• 0ooo

0\ -J•£ - o • •cx -t-.

•V otl) tx' L-j CO *|C* t?i c c toL-jh- •oK a

TOT

3W 09

4 3

01 S

S*

3N

VlH

lVX

0-£

*l-

‘U!l

i3rt

-Z-l

Ain

8-i

-?1-

S13

TI\ANS-5-T-BUTYL-2-i'-'f;THYL-lf3-tSXATHlAN[:,0

SIDE

,60

MCQ ar*i 'A

Mcn 3 w y1/3 w cq cn o fc.

102

(CV I—' • •VO - i fICV -3-CM OJ*3 ^ !r~- iT\ tT\ o ro\<vj vo• • • • • • •r-- K’V'O. WtO N ITVIP. ifysfr 4 O C\ - 0OJ OJ OJ OJ CM T- T-

lf\COI

u‘\

r o •—. (SI cc J - v0 rvi ac o o o O' o c* LT\(Mo m O' OJ <3 cc n0 o -.0 ■n cc in <n" 0 (Mo o o o c - fO in m m CM <T m oa •-H o o o o ■JOvr LO>0 «-4 <r •vT L0 tn oV • • • • • • • * • 4 • • # •UJc

o o c1

o o o 01

c ai

01

o o 01

v_»t

01

00 O' >0 v0 co (T* O' .0 (SJ N. flO r- O' m orn O' r*- o vO o o rm4o o fc- O' in 4 mto CMo X —J X o o o o o "> o :e CM.4 o in sr LO<r o o a 3 o c tn JOa-> • « • » • • • « • • • • • • •Q o o o o o o o o c o o o o o o

UJcI I I I

o o ro O •

o 'JJO — DC • <ro

o cn— i UJ

roll o j cn -) yr

ro j j:c v-Z

O O — •ooIT.

r»C'

az<cn■j jUJ

CC —J J II O Ii IT*

II ro J J 00 D1 0£ 00 “5 CJ J J 3 UJ * - CC

<CC<1n_

ooo•

O'

o ao LU IT. I—• «s

CUrsi I

— ll ll

Z5l_3<o

(SJ 'JU — X

11 n O' O r- nO X —H X in fc- n X fcv fOo n o —4 fc. O O' o oo Nk. 4-4 r-* sT o O'

i o —4 o X O' X O' —4 ■O' p4 o —4 —4 fcl —4o n0 o PV ro ro, m n CM' c o o c* CMCM » • • • • • • • • • • • • * •4-4 O o mm4 o CM o m •—4 — < o rnmlO —4 o o o o O C o o —ia o o ■r Oo o o o o 01 o Oi o 01 o o o o o ■n 1 J 1 1 i 7 1 i

LLi UJ UJ LL’UJ 1 •UJ 'JJ IUU UJ 1UJ UJ UJ UJ UJ UJro CMJ 3 O ro fc- X o >r O fc- fc- CM 3 'UJm O' in LO r-. CM fc- o CM O' »r O' m fc- c tn fc4 ro o o O' O' (SI X co­•c* o r-. sCcc p4 o fc- c X sO in X O' m >0 in o CM o O *—Jro ro m >T CM rn s0 sO sO O'O' in >c o fc- m •cn o •—iin o CM cn CM O' a o O •—1 <rz-O ,’X ,fcv O' 0s fc. fc» .fc.ro rn X CM r*\ (SJ X ,»< •fc CM rn rn O' o o fcs c s O o a rfc O' fcl ffc O' rfcin —I (SJ O *5“ in w o 4—41—4 rr X • • • • • • • 1 • « • t • • •s0 P"4 O' p*H zo ■•4 n- wmd p—4—4 X —4 CO a o o c o o o o o o O o c o o |fc

• • • • • • • • • • • • 1 • • 1 1o a O o o o o o C O o o a o o UJQ

11 it II n II II II II II II II It it II II n- —4 —4 (Si fc4 N. h. 30 n CM' 4-4 fc-«*M n O' CM 5 p—4 n T •*n ‘3 ro jfc— •«—► — >— IM-M *—k ■*— —* — ., p—» CM O' p-i pH 4—(o X X CJ X o 'L> O O 3 fc-mrni CVJ rn o m sQ r-. X O' o CM cn <r tn jl O' o o o o O' O' O' -n O' O O o O o—4 p—4 —4 —4 p-4 —4 in • • • • • • • • • • • • t • •w w w w w w w w — w •— —p «—• \ o o r— o o o c o 3 c 3fc— fc— u- fc— fc- fc— ►— fc— fc— fc— fc- fc— fc- fc- UJ t 1<_ ?r z: 7* o— —* — * —<* “ ■M—4M-* —rf -4 b-4

in X in O' m o —4 JO 4-4 tn (NJ CM’<rO' tn O' tn O' c >n o n o *iO sj* O nJZ O' X X cz X p-H —4 —H 4-4 fc. -Q.1o a s.rO rn cn m, m- CM rn ro CM pn m m CM Cc O' fcS O” c ffc 3 o a <-x o c O'o o o o o o; O o o C o O o C O s • • • • • • • • • • • • • • •UJ o o o o o O c c o o —I o c 3 3LJ UJ UJ UJ UJ LU uu UJ UJ UJ *JJ LU UJ LU UJ 3 1 I>T fc- un m N» m 0s fsi CM rsi X X «—ia

CO o o fc- tn (M C\J CM o m m o ro o r-.*4 n0 (NJ cc m CM tn. O' X in cn CM O M- Xo in Is- n n- <r in pH X M* r> m X m > o fc- ro o •—4in in n X n X o sT CM —4o s0 tn m cm m x tn fc- o O CO o CM fc. o CM ro. o o 3 ON m m rfc o o n 3*-4 O' <r X <r X in in O' o o in o in M c in •—4 O' O' —4 (NJ n —4 r-— X O' O-4 .-4 CM •—4 <M cn..Cfc —4 CM <r —4 CM CM 4-4 4—k 0? a fc- X —4 CM P—< ro o r— r- 44 o K CL• • • • » • • • • t • • • • • z* • • • • • • • • • • • • • • «o o o o o o' o o o o o C o o o UJI - o o o 4—*•—4—4 o a c 4 4-4 O q

tl II it It II II II n II M II II It II iir—zk—

r- CM X n sO -4 n. o O' "T CM CM’•s. np—*<pfc «— p—. — .<*— — *— — — V CM O m o in o sC o fc. CM X cn n cz IT.4~l CM m nC in vO fc- X O' O —4 CM m M- in 3 <NJ X c CM o, <M <r o X r*v 4-4 CO c m Xp—<■4 -4 -4 —4 V fc. —4 LO fc- — o co tn m n o <r X CM ow w w* —M w w —■* w w w «—• —P —P LU • • • • • • • • • • * « • • •UJ UJ Uj UJ JJ UJ JJ UJ UJ UJ ■JJ UJ Uj UJ •J-t m fc. m n CM X o o n in o v_ n *fc

Z —z» zz -r —p✓. r"7 -IP ■-fcl c in n vC <T o O' O' cc tn fc o fc. O' sT»■*# taw* —4 —M — k—>k— -'—4 — M— —.* —< —4 rO CXI CM CM CM CM —4 p 4—* —4 —4-J -J -J .J «J •J _J _ i-J -J -J -J -J -1

r~ n r~ r~ r* r - r* n r " r " r* r* r~ r~ r * ; — 1o . — 1*—* f—• P— OJ oJ OJ Oj oJ OJ OJ c r mm mm m* PM mm pp mm -p PM P" Ml PM mm mm ■ IE r— y ; X

«M u- X- -T* -o 0". on O' 3i o sC o i— m CrZ- «c! 2* — ..!. i f zz z : ~r Z ; m rvj PM m*0 or sC O' _Nk X 01 o o -0 fNJ 2 m n m m n r r rn rr. ;n m m m m m m ■

• • • • t • • • • • • • • • • m —* —• —«» —S —S -M —* —• •— M*. o n II MSOfi sC 0“. VJ O OO C -Nj O' i—* o OJ r-* ✓Nf 4— t-* h-■ N-- *— P- £ l

or OW 3* XS G o 05 o sO o o on o on -C' wJ rvj r-» o >£ X -0 O' on JV oJ :n) m* r- wro ~s O' on 4s X -w o c r on on -0 -< w w w> w W W W w PM *— ' o OJ c

no r* O' s j o on F-* ~-4 -o X o o ro p—* So -Hr” r— ro

• • "O2 II II II ii II II II II II II ii II II 11 11 H s0 on >—1 1 rn o on 73

O O o p—• o c o r—• »— *— r— c c o r r o o O o c O o o o o O o o O ; o o c - >• • • • • • * 0 • • • • • 0 • • • t • • • 9 • • • • • • • • j So s7 o o o 0s O' OJ -£> OJ O' O ' o on mm wj 'OJ OJ p—» p-p & r -p f—• O' oo OJ UJ OJ p - 1 T l mo o c o oJ 1-0 O' J ' oJ o OJ O' O -NJ h-» o • s p* X on sO on 73 —ic *o o On c N— o C -Nj rsj or. N-» o o O on -0 c -C' 0J M O' on p-» on 4N o X : m y : rr.o X OJ on o o ■NJ ■%o or. -0 OJ u> OJ < o oc o cn on on OJ Oo OJ p— o X* “si O ; o c_ ro 73

o o o on nO OJ on o sD sO o j > •; cz onO' - j 4> O' O' X on 4> -si ,-sJ O ' X on -0 on 1 m OJ iiCc N- w ■sj N) O' o -0 p— N> -S o X or. O' _ 3.

w rr. -n (Ti iTl m n m m rr. m m m m rn rr. n II mo o c c o o o o o o o o o o c rr, PM 73• • • • • • • • • • • • • • • o o £3 o o o c o o c o o o o c 1 m rr,sj o o o o o o o o o w o OJ oJ Oj OJ OJ OJ OJ OJ Oj OJ UJ O' u-> oJ 0J ; on OJ!\J o c - o ro OJ ««N oJ Oj O ' cr O' O' mC O'wT o P-* r** o x O ' ru 0J (NJ w oC r— > or. OJr - r— PM OJ •—* 4> o o o JVJ C ro X 2 • •

G or.I—* mm PM mm PM PM PM PM PM mm mm PP , o

O Z “V«c_ 2 : 2i 2: 2C 2 2 : V C2. z zz P— a om —i - s •H —1 1 -H - s “S —1 ~2L

c G o O Q O o e o o o c- o c o — — •— •— —* »— — — •—* *N —• — ■£.• • • • • • • • • • • • 4 • • o i— *— r-» r— r - p— m OJsC o c o c o o o c o c o o o oc 5T or. OJ fNJ t—• o O CO -sj O' on 0J ro 1—- ‘ 2 0.NJ c r> •h.- s : a* O' O ' \JJ OJ 00- O NJ w SM •MP w w w MP W W SP S— on ro 11O'. r— p— >— ‘Ow r— OJ -o O' - J c r o PM OJX' r— .■v r— »u s j rs> o sO -0 nC -si CO II II II ti II II II II II II II II II n ll —1

PM nO m p -11 c O O o o o o o o o O o o o on X'v . • • • • • • • • • • • • * • • on

o o g o o G a o o c. ~J o o o OC O' r— o 1—* O' vO r — on O' p— O' r— > •• • • • • • • • • • - * • on w*» OJ o r— h— O OJ -> wJ UJ r— O 73 o

o so oo oj. O o o c o a a o sO UJ -si r - r— 4> X O ' c c O p— p— p— X ' C X' m -o oo sc o oj w w c o a o c c a C : o X C- OJ -0 OJ -sj O' O OJ ro o on •si OJ • oc o sij o o g o r-\ o o c a o o sD oJ ■30 »-* 4> CD OJ X ro OJ o i ■sj o on c rco X -si X l\J r - N- r - ro r - rsj on a -P' on X o r— fNJ -£> c> o o 0J or. -0 J s , o

IT. O OJ PM Oj 4> O' UJ O ' -sj X 4> o o r o n ; o

rnm m m m m rn Tl rn m 'r n

1 tm m m m rn

Iw0. o o o o o o O o o O o o o o o

c o o o o O O o O o O o o r—* o o p— o •p* O on r - -sj i—* o P— o p—0 • t ■ • t • • • • • • • • • NJOJ o o o o OJ 0s o oJ OJ OJ «jj O ' o o-NJ c o c o -0 sO X O h— o o COo o oJ Oj o sD h— X o N) o N) X 1p - o o c o h— o o o o o O o o !

omV. j

jo o 37j w o o o o o o o O o o o o* • • • • • • • • • • • • • • c . 1c w'l o o o o -F- -P' -> oro mm -0 or. X o o - >—• N-* •nJ o -Nl o ro 'OJr - o -sj 071 X o O ' O' O' O ' {VJ - r f\) OJ »—*C> - J O' X o rvj oJ CO o <J1 OJ OJ O' SO oo

o o o o o o o c o o o o o O oam

• • • • • 4 • • • • • • • • • N*o U1 X' .£> X* o 4> -P' o o o o o oo r— JN O' CO N ) O oo o CO ( \J r o \ 3 ro rvj c _o o X w O X o sC w ' o o o o r— ro\) OJ h— p—» o J JO o X o on OJ jj - 0 on O OJ

crr”■ * noo <jc

(+p * •<+ o

•.*-N- o

VN V N V>l VN V_N VJ<4 V>J 4 '* '•■d Ov ji v j ' o s -~j c o '-o vo o *;o m

c>>oi o Vji o —j ro m cn( x o 0 \ 0 > cn in

L£JOK

€01

CUS-5-T-RUTYL-2-KtTHYL-l,3-OXATHIANt,0 SIDE, 100

MC

CIS-5-T-DUTYL-2-METHYL-Lf 3-CIXATH IANE, S S I D E , 100 MC

THE INPUT PARAMETERS WERE Wl = 278.000 W2 = 278.000 VJ3 = 145.000

Jl2 = -18.000 J13 = 5.000 J23 = 6.000THE CALCULATED FREQUENCIES AND INTENSITIES ARE

LINE! 1) = 0.1503823E 03 INTI 1) = 0.1085L67E 01LINE! 2) = 0.2677456G 03 INTI 2) = 0.932203IE-03LINEl 3) = 0.28087C8E 03 INTI 3) =. 0.1913906E 01LINE! A) = 0.262 3625E 03 INTI A) =' 0.6876610E-03LINE! 5) = 0.2752610E 03 INTI 5) = 0.2084283E 01LINE 1 6 ) = 0.41 12 305 E _03____IN T I_6 ) _= _0.71 32 825E-06LI NET 7) = 0.1449992 E 03 INTI 7) = 0.9984909E 00LINE! 8) = 0. 1570977E 03 INTI 8} = 0.18 17935E-02LINE! 9) = 0.2938672E 03 INTI 9) = 0.6289717E-03LINE! 10) = 0. 1318738E 03 INT110) = 0.1226958E-02LINEl 11) = 0. 1447723E 03 INTlll) = 0.9934077E 00LINEU2) _ _= 0.28 07 417E 03 INTI12) = 0.1919 2 8 5 E_ 01LINE! 13) = 0.2882551E 03 INTI 13) = 0.5999210E-03LINE! 14) = 0.2753564E 03 INTI 14) = 0.2079502E 01LINEI15) = 0.1393872E 03 INTI15) = 0.9199056E 00

OBSENERGY IN TEN SITY Oh/OWl DE/DW2 DE/DW3 DE/DJ12 DE/DJ13 DE/DJ23

411.2305 0.0000 0.999 3 0.9990 -0.9983 -0.0000 0.0375 0.0451293.8672 0.0006 0.4 79 7 0.5194 ... 0.0008 -0.9996 0.2600 0.2801288.2551 0.C006 0.5186 0.4813 0.0000 -0.9997 -0.2607 -0.2394280.8708 1. 9 I 39 0.4797 0.5194 0.0009 0.0004 0.2610 0.2817280. 74 I 7 1.9193 0.5199 0.4801 -0.000 I -0.0004 0.2573 0.2401275.3564 2.0795 0.4810 0.5182 0.0008 -0.0003 -0.2210 -0.2389275.2610 2.0843 0.5186 0.48 13 0.0001 0.CC03 -0.2597 -0.237826 7.74 56 0.0009 0.5199 0.4801 0.0000 0.999 6 0.2583 0.2417262.3625 0.0009 0.48 10 0.5101 0.0009 0.9996 -0.2201 -0.237315 7.897 7 0.0018 -0.0009 0.0018 0.9992 -0.9993 -0.0372 -0.0028150.382 3 1.08 52 0.0004 0.0005 0.9991 0.0000 0.4807 0.476714 4.9992 0.9985 -0.0386 0.0386 L.0000 0.0001 0.0024 -0.0023144. /7?3 0.9934 0.0 39 3 -0,0376 0.998 3 -0.0000 -0.0400 -0.04281 39. 38 72 0.9199 0.0003 0.0005 0.9992 -C.OOCO -0.5183 -0.5218131.8738 0.0012 0.0016 -0.0007 0.99 91 0.9993 -0.0003 -0.0423

£

CIS-

5‘-T“B

UTYL

-2-N

.ETH

YL-L

f3-liXATH[A!'il:,S

SIDE

,100

MC

105

Q OCtJ> ta osr o f w r - i CO cn O &•

CMpo>coCM

-M*n-<M

cn O ' in ■d" o in CO N O ' CM cn cn MJ n - usn j m o O ' <NI o » n- -j m i cn M3 (NJ cn (M (NJ- I < f,C 0 m 00 < r cn cn ■j- ro o r— O c (NJO O 1 (NJ CN) CM CM CM (M ;(M CM o vT o o in Ov < : • . • * • *' • • • • • • • •UJ o oa

O1

O O O1

00- 0

10

1o 01 01 0

101

iw rr s <r n ncojo O r - o _ , _ _

m c n .v O no so in ( \ j in in *->i-1 O fSJ <\l (M CM CM (NJ (Nl (NJ■n • • • •‘a 0;0 o o o 1Ul Q

M3 m s tO n j - p» O n .cc O '

0 o o O1 i: ii

oo

CM

o vO n >r c m m, o O O O'O O O' O' 0 0 0 0 0 0*

O O' O' o o O O' O' o oO C

vOO '

O (NJ o cc o cc o — o sr o o in o• • I t *o o o o oI I I

o — O O cna o o o o oo oO o O' O o O'

o •o M3 UJo ry;

4 <A

c oOa»d LU

IIU

cn MII (M 00

—5 2 :cn UJ3 : W™»

O O “ 1o oo m-1 -—■

• •CO in <

CM inUJ UJcc»pd n o•V

II cn l_ l00 _ *

(NJ — i C?LL) i t UJt— ccUJ U .ZL

OUJ■“J

, o ; co o

0 o1UJ UJ cn inso cn(M (NJ (NJ — 1 «n O' O'

cn —i0 o1UJ UJO oO CO c- 00 in in r - coa: o00 (N)

i O O O O O

MJ'o CM m (NJ o paJ m _« o pad o; o o o o o o o o o o o o o COo ; o o o o o O o o o -J 1 1 1 1 1 1 1 1 1l { 1 I 1 l1 o ju UJ u UJUJUJUl’UJ u UJ N 1CO,o 00 c- in in O' CO CM Ul i

o o* o (NJ c- in o a (M cc o O' pad CO Pad o O' <—l—> o CMCM O' CO CO CO CM co o O' o 00 o o o o o o o O' O' o oc O'CO M-n- ir> o (M co a in O' o o o o o o o o O' o o c- O' O'M3' 00 ad cc (M cn •—4 O' CO CO cn O' o o o o o o o o O' O' o O' O' ■O'M3O' OC(M (V O' O' c <—< 7/t • • • • • • • • « • • * « « •P-.O' M3r~4 O' pad ih CM O' C3 0

1 joo o o o o o o o o o o o» • « • • • • • • *s. 1

o o o o o o o o o o UJ

II II II II II II II II III II III,<-r(Nj cn, <f u\ o; r-cco'O-cnjm.j' un

o; s r <■ •a4 pm rr CO c o in JNO' rr —j O' a a : pd .o X o !*■» o O

(M O' w—1CO M cc a> o o cn cn o o3 O'.UN in JO <r UN o o C C o oa « • • • • • •, • • • • • • • *N c C o o o o o o O o o c O c a

z z z z z z z z z z z z UJo

i < o I cc o : « r o! CL •; cci»— r»! o ojQ.I zj- I,I UJ — >' X i i

0 oO UJ O u- • <Tcn _j -I X1 l_5< II O

(NJ UJ

1I cnr- o o O O' OO' NTNOrr r-1I O' O'vkrfO'e padCCO'pado o X O o a-! O' N. N. padX: w-ipdCj o o rr •»aw« ccn cn cncn cn m1 rr rr cn cn rr rr rr rr rr o o*: UN m <r ur LAMTo o OCro J N

O o o o O o o o O o o o, o O O • • • • • • • . . » • • f •1 Ul o. o O Qo O c o o o o o C o oUl Ul UJUl u UJLUUL' UJUJ LU■JJLUUJUJ Q 1o NTo O' o. rv r- >r <3 a-1r-' pal lAO'n. UNin <3 rr O' c in O CMr- O' CM—i O' O' (NJM3o '*>■O pMCC.m- n- O' m(Mrsj O'cc c* OCr- Pwrsj rr CM V o o M3rr O' o O' O' O' cc cc in CM•n CMo r—O (M in r- cn cH o cr LA u- o o O rsj r- o ur o o —<o rr ain o 00 vOn- Md O' rr cc 30r- cr pppo o O X X o o o cc O' pp. or—t(NJCM(MCM padp*dCM•—<a~l «VJ<\J<\i i/) o o c O' O' c o c o CJo O' C 0" cu• • • • • • • • • • • 4 • • • • • • • • • • • • • • • * •o o o O O O o O o o o o o o o •JJo o o pH CMCMo o o •d o O o oII II II II II " II II II II II 1

i*;t11 n 11 7!

ii o pado r- in sTvTO' o CM—O' o— — P-* — p—. pa*P-a'pa. pa. p*. > cr LAin o a-din m: cns- O' •c*<NIO'CMcn<r UN r- oc O' *n>ad rvj rr Nf in (_5rr rsj O :mcr M•a O'<-aO' N- n. o X o•—( •Had—4ad pad eg CMO' rvj r- r CM cn 53 nJ- CrA- rj-— W w w w w wa W «aiP UJ • • • 4 • • • • • • • • • • •

UJUJi—1uj UJUJJJUl UJUJ UJUJUJUJLU PMrr CO'o O in in CMn- o •r >r O' palz z z z 2 z z d z yiZ iE o cc oc X N, N. o M3mLA•c <* r*— ■— —* •PPw P4«—• — PMPMMMMM Nf CMCMCMruCMCMCM(NJ— Mdpadpda ad>j —1_j u _J •U -J•J pU-J —1 mJ

—ir—• *— t— p—* r—* N ) NJ NJ N ) NJ NO r o i\ j ■f” mm mm «—> mm p— mm mm p-p •—1 m- mm mm mm X s : _LU p U- U UC C ' - o - u rz oc cc o r — r r ’T- * if. v LC iz. IT pT 2* 2 - zz Zf 7< ITt NJ mm r nr — o -N o cc NJ - u U l U l O o o c OJ r— 2 m m :T m m m m m r n nr. m m n rr . m• • • • • • • • • • • • • • m m «««<. —* <»-* •—» rnm. -— p-» <—* *m> —• mm. O 11 II

-S. w UJ r— NJ 0 s NJ UJ c r o uO INJ S J h - p— P—> mm r-* p— >r u CO 'J l - 4 u p C O ' Ul o UJ s cc >— -O CT u n 4> UJ NJ p— o s X -%* O ' un UJ NJ mm r * *UUU •;> 'J l O ^4 NJ o -Nj O •— O ■U> r o c r U l -< W W — W w —* «—* W — —- o 1 N ) C !CD NJ f— *c CD NJ o o - u -> o o i-** c r o c mm - o —1

r * UJ CC•—I > • 0 " 0Z ii II II II II M u 11 u n II II ii II II h -H O o >—1 m o o

c . - a o c p— O o NJ N ; p— 1—• o o o m o O o C O O o o o o O o c O O o o c >• • • • • • • • • • • • • • » -rt • • • • • • • • • 0 • • • • •o c d o o o o o C o Si cc o o c CO *— NJ NJ NJ p— p— NJ p—» mm N> NJ N J NJ mm . *n mN ; r— U l o cc -N N ) NJ O ' o o s I—* r— o *—< Uu -U CD X J ' SjJ vO U l J> mm -U CN X O ' U l —ivC u_ uC UJ r - • NJ O ' NJ J s NJ U-; o —1 un CC o J ' p— UJ cc 4> mm u n NJ o - J o m 5 t mUT u o UP c O ' r c c o NJ -^4 c r OJ o -< Uv NJ uu Cn ^4 o vO ►—» vO NJ UJ NJ LJ CN UJ ‘ r> c . N J 3C

O ' un X UJ U l NJ • x o ■L -sj sO CN sO U l • c p— o oO ' o NJ u> U l UJ O ' NJ O U l O UJ - u -Si : X . UJ IIN ) O ' mm CC NJ X s L ' o L i o X 1 3 !

I 1 o m r r r r , (Ti r r , r r . r r . m m m rrs m r n m IT, , n u mo c c c r o c r o o o o o O o o o o r r . p- p»• • • • • • • • • • • • • • • ■ s o o o o C o o o o o c o o o O m mo c c — p— o U . un ^s, u l j r U l a u - u - u-> wU UJ UJ u J u J UJ UJ u u UJ Up' u J c o N j

o •c cc CD f-~. o UC' o ''C o *w» LJ O >c •v” - oO'. C l - u LJ mm -«4 o NJ o CD N ) - u c c - 0 •X P— . > X CO

cc cc O ' c N j - u O 03 NJ NJ o Or r o r o if • «o o o

i— p—1 mm P-H p-p mm p p p-^ p—< mm mm mm p—• mm o oa V 2 *> cc 5.T 2 : tt - 2 : IT 2 : 2 ; ~z 2 o e

1 1 r r , —1 —1 —1 —1 • n —{ —1 - i —1 •H —i —1 —1 —1 zzo c r s. j o C ; O o O c o o o O CO o **, «—* ■*». p-» •—• —• *—> —* —n d :• • • • • • • • « • ♦ • « « • co r— h— r-* r— r— mm n r u j

o r - p - C o L ' un u*. Ul JN U l j r co j r U l J ' UJ NJ P-* o u r X O ' U l 4> UJ NJ p— 2 C -o 6 c c CO o c c sO o >0 vJ o vO o oo r o —* — w — W «— — ■ * c o r o itO' cc L< o cn CO -< *v% - u NJ r o Oj UJ

p— •L' NJ UJ LJ UJ O ' c c o O ' o cc II II II 11 ll tl ii II ll ii II 11 H 11 It —1ii

o iT. p-^m c C o c r c o o o o o C - O O O u o

1 • • • • • • • ■ V • • • • • • u no O o o O o O o o o o o o o 3 o N> p— p— o NJ mm JN N J N ) p—• N i i—• > •• • • • • • • • « • • » • • • T. C ■> LJ U l O U O ' U l O r - X N ) o P-V O

w Li LJ sC o o O o c o o o o u» u j o U i O CO u , \jJ C UJ mm O ' O ' sO “N. X m Uu oo o *_' D vC o o c o o c o o e <- J v U l 0 s -i> o r NJ mm UJ J s s NJ p— NJ CC • a>c w CD o c c L i p— o o Q o f—* o o - 0 w s 1-^ r— L i O X NJ o L i O ' O ' o u . oo o N ) CD o o c h«* o NJ o o >— oc o O NJ U l CN CD O - u N ) O ' CC p-^ NO U l D u J ■Jj o

(Ti -L o UJ p— CD ■Ni r o X O ' u J N J Nj NJ UJ O ' om r r : m

*m m T !

im iT»

im m

im m

Im m

•m

1 1 1 1 I 1 I 1w 'U . o o

io o o

iO

Io

io c

io o

1o o

io o

c r o O o Q c o c o C o r~s o c o h— o fmt r - n - o r— mm »— o O ' mm rn"* mm p— p— ,• • * • • • • • • • • • • • • N )S o o o O L i D o o o o o sC >c o iCD o o o o CD L i vC o o o o 00 o or— o r — p— o r - 1— o CD oc L j »—• o cCD r — iNJ o J N> CO NJ NJ -C* N> u n o U l o - *—• j j i

!

1 1 1 1 1 i 1 1

Or r .

I

1iii

o o o o o c o O o o o o O o o o (i• • • • • • • • • • • • • • * u .

U l O o J " c r NJ NJ NJ h-* N ) OJ H - OJ o I— 1 iN) NJ p— o O ' - 4 O - u sO o l \ ) o : r o c> UJ 1 i

CD o o CD o CD wJ un un r o 00 o o 1-L CD o UJ O ' u n -IN U l O O ' s o r o OJ r o

<1 II II I oo o o o o o o o o o o o o o - o m

O J l O O ^ H H W i - U M M U J M O a » r - W i - » O O J C 8 0 J O ' O M O N M - i“ i - ^ w j 3 i > u i a j u i u j O f w >— r o r o

co OUJUl i—CUJ >Ci '^ C'OJI'O'— I— -T*> .p* wo

r o r o-vj C?■> -O• •-O 10

rq O W U3 C-J CO A C-J C S3 t-J «=! t - : w

901

3W 001 4 301 S

S43NVlHlVX:j-f *

l-lA

H13W

-2-l

Aina

-l-S

-S10

TRANS-5 -T-0UTYL-2-KETHYL-1, 3-OX ATM I ANF. ,0 SIDE, 100 MC

THE INPUT PARAMETERS WERE W1 = 415.000 W2 = 328.300 W3 = L55.000

J 12 = -11.500 J13 = 3.500 J23 = 11. 300THE CALCULATED FREQUENCIES AND INTENSITIES ARE

LINE! 1) = 0. 162198OE 03 INTI 1) = 0.1080469E 01LIME! 2) = 0. 32 79 856E 03 INTI 2) = 0.7991785E 00LINEl 3) = 0.4114155E 03 INTI 3) = 0.112G354C 01LINEl 4) = G . 3167 312 E 03 INTI 4) = 0.9375015E 00LINEl 5) = 0.4078828E 03 INTI 5) = 0.L142973E 01LINEl 6) = 0.5886924E 03 INTI 6) = 0. 116H07LE'-05LINEl 7) = 0. 15094 34 F. 0 3 INTI 7) = 0 . 9 4 6 7 9 ? 3 E 00LINEl 8) = 0. 2420950E 0 3 INTI 8) = 0. 1687680F -0 3LINEl 9) - 0.4229045E 03 INTI 9) = 0.8522248E 00LINEl 10) = 0.6751357E 02 INTI 10) = 0.1761378F -04L liNEl 11 ) = 0. 1586652E 0 3 INTI I I) = 0.1049138E 01L INEI 12) = 0.3394746E 0 3 IN T ( 12 ) = 0.1071204E 01LINE(L 3) = 0.419 3701E 03 IN T ( 131 = G.88 4 3049E 00LINE(14) - 0. 3282185E 03 £ ’ J T I 14) = 0. 11922 76E 01LINEl 15 ) = 0. 1474092E 03 INTI 15) = 0.9234247E 00

ENERGY INTENSITY DE/UWl DE/LJW2 DK/DW3 UE/DJ12 DE/DJ13 DE/DJ2358 . 692 4 0.0000 0.9999 0.99 79 -0.9978 -0.0001 0.0134 0.065242, .9045 0.8522 0.9951 0.0050 -0 .000 I -0.5687 0.5059 0.00064 19.3701 0.8 84 3 0.9 960 0.00 39 0.0000 —0 . 5626 -0.4929 -0.00234 li.4155 1.1204 0.9951 0.00 48 0 .0001 0 .4306 0.5062 0.0030407.8828 1.1430 0.9960 0.003 8 0.0002 0.4 36 7 -0.4 927 0.00013 39.4 74 6 1.07 12 0.0049 0.99 42 0.0010 -0.4303 0.0005 0.52833 2 8 . 21 8 5 1.192 3 0.00 39 0.99 51 0.00 10 -0.43 7 1 -0.0005 -0.46633 2 7.9856 0.7992 0.004 9 0.99 40 O.OOll 0.5690 0.0007 0.5307316.7312 0.9 3 75 0.00 39 0.9949 0.C012 0.5622 -0.0003 -0.4639242.0950 0.0002 0.99 12 -U.9P91 0. 9 9 7 9 -0.1319 -0.0002 -0.0644162. 198 0 1.0805 O.GOOO 0.00 11 0.9980 0.0004 0.4932 0.4662158.6652 1.049 1 O.OOLO 0.00 0 I 0.99H9 0.0065 -0.5057 0.4633I 50. 14 34 0.946b -0 . 00 09 0.00 20 0.9989 -0.0064 0.4 92 3 -0.5284147.4092 0.92 34 O.uoOO 0 .0010 0.9 99 0 -0.000 3 -0.5 066 -0.53146 7.5136 O.GOOO -0.99 11 0.99 12 0.9 99 9 0. 132 0 -0.01 32 -0.0007

0BS3RV3D?R2-,.U^0Y

4 1 5 . 6 & 4 1 7 . 9415.4'4 C 5 . 5 & 4 o 6 . 7

4 0 4 . 1

354.63 ?-3 . 5 ...........

312.2

107

r- r- r- r* r“ r" r~ r* r~ r~ r* r> f“ r* r~ —1c- —i —1r— r—P-•ro Op OJ OJ •S' J> on i— »——■p* pi p-i p—■—<mm . X p—-C X 70

p-v s> O'* 0T r—NJ (O0 O r— NJ CD rr V Is! Ci' 0.) ic. C- DZ cc cc CcT. 21 m ro pm* m >-o o X ro NJ Cr -J nc o X sOro X I* m rn rr. m m m m m m m m m Tl m m

• * • • • • • • * • • • • • • rn «—**"*- — •—»—.. <—■—— •**> o u II pp . cnon CN o •o ro a u- UJ o O' h- p—r-* p— > 2C »

p— o X UJ o •u cc O' w u CD •o o u •S' UJ NJ ►—o sD -o O' on S' UJ ro r- ; r- X onNJ -j sG Ul r—£Nro -S' ►—X 'C o CO O' < w*— w w «—■w WWw 'mm —»; D S' c i_£s Ul cr O' *o ■Xs0 u. X vUo on o c p-»P-* —1 -n

r* p- on l> « « no ’ X

2 it II ii 11 II it II ii 11 II II II IJ ii ll —i UJ o >. c-1 1 m o o 7D —H

Zj Cj cr r—»p-*o O o ►—t—f—K- o o o rr o o o o c o c O o o o o o O ! cc o o > <• • • » • 9 • • • t • • • * • 2: • • • • • • • ■ • • 9 • • • • 1—o w* c o c o X r-» o r—• X X o on r—*UJ J* 'UJ H O' -> ro p-»u 4> UJ 4> OJ p— , Tl rn 1c ro S' -Oo OJ o X ■o OJ 1—X Ul o 4>ro p—uJ u -Uro -S' on'X O P-*mm NOO' i —< * NJ

j"' -u X cc c* CC’N Ul’X Ul on o — COcc O X u ro ro c CO CNP- -sj ro rr. 5“ rr.' 1o ro 0Uw S' ro a* O' o o o o CD ro a •< O' ro vUNJ CN•S' O' o SJ 'O' o sO‘UJ s0 O : O c. No 7D n?

*—ro on CO~sl NJ COCO S' -0 O' UJ O sO O c p— cn: H■nJ O' >“*X' 4> CO p— O' X O' O NJ on m UJ II i —iO 'v C . p r , UJ on on o X X sC O' , cr. 5T . X

CO m rr m m rn rr. m m rr. m m m rr. m kTl o II ITi i -<c O o X c o o c* c o o o o o IT p. X r“• • » • « * * • • • • • • • • N** o o a o a o c c O O o o o o o i m m iw cr rn c sc /—vo c o o w >u a UJ ou UJ 0*J UJ Nj ’uJ 'uJ UJ UJ UJ UJ uJ UJ UJ ' Ul UJ p.0 C- o /•""I O oc a o c- CC- r-,>0 u* w oc s! , NJ «•mm a o :o pp OJ S' OJ 4> O' on o Ul r—• j > UJ CD i UjS' o o o o on X "OCO -o IOOJ IOUJ • 2: • 9 i 1

a UJ Os X*—■ p« —p p-pp-<p<p'mm p-p pmmmm p» mm : c O X

CT CD 2." C£ *~pOCSCI CC2*: C2T2: 2: 2! ' 9— o o >m •i —1 —1 —i -H •H —i -i —1

c * o o a c- c o O-’o o o o N —■ —» — -** —* — ■ -n V _L-• • • • • • • » • • • * • • • C p— H- >— r— p—p— n \ UJu* o o o o o o o o U) o o o o vC 1.. 0)1 X ' UJ ro p - o o X *0 O' Ul -S' UJ ro r— £_ s>o w o o o X o o o c c a o o ro w w — w w w w *-* w ' cn ro tl Xpp ►— ro o r— o . on Ul oJ X ' OJ 1 p. UJ mU w>' a p— r—Of* pp ro ro X* - J -0 cc ’X II II II ii u II II II II II li II II ll II —i

M ii aa rn ppm o o O o c o o a o a O o o o o : cn un cn

• • • • * • • • • • • • • • • Ul ppo o o o o c O o o a o o o o o a o h-* CO t-*p- p» X »—o r- p—X \r* '■ J> • aV » • * • • • • • • • • • • • CiC ro p“*X o o O' u on S' o r—uJ p-»o o . >0 pp o mo uc VC pJ 01) s_vc c o o o o o oJ u cr u -sj CO u w -0 on UJ X P-*ro -u rri r - o j po o : w o o o o o C" o o o a o o ro X w o ■JD oC fo ro ro 'X) on X O ' CO : • o i p-o s* cc vO CO X pp h— t—* c o o o c -o ro sO ro o o on r»" o O ' IO X S ' UJ S ' : P— osO o o o o p- pp o U) ro f—' o r—sOZD Uk on UJ o CO uJ ro O' UJ o O' Ou S' ; o o

m oC-S' O ■0 0s o CO r-* ■S' X UJ r- O o'N rr. *n rr. .T. m •Tl m m m .Tl m m m m m ; i 3o i O0. o o o O c o o o c O a o o o o I 1

c c o o o e o o o o c o o C; c c p- p- o UJ o ,u pm*o p- o p+:• • • • • • • • • • • • • • • ro if—• x o o c p—Ul on 4> -> X' Ul on o | iro c o o o ro o O' OJ oJ o- OJ O' O' o i»—cr Cr o o; pp s CO - 1—-u o-0 uJ INJ OJ -u ro X Ul CO X CNUl

a*i

o O o o o o O o o o o o o o o

mN,c

1

• • • • • • « t • • • « • • • c. |c Ul on c o o o c X' Ul -S' on o i— !p-• o o o ODo a o o o o o o O UJ I ,ro O' ro Ul oJ o o o o o 0J Ul OJ on ro i iion ro -u UJ O' ro OJ O' on Ul CD UJ O' -0

1 ii

o o o o o a1o o O o c a o a o

om

;!

* • * * * « • • • • • 9 • • • >» fo on u: ■S' ■S' o J*. on on o o o o o o , io wJ ro cn O' O' O' OJ O' IOo o o o O' L. ; 1 'o C cc -S' O' OJ ■S' o O' o IO IO o J ' ro | ;•O o o o X o* O' oJ >0 0 sQ ro O ' o UJ ‘

I ; jv„n vji JS- .fc- 4s- -is- *xj o-* tovNOO--^ aca|\J VOJ 4-4 OVJi MD PJ Cfl

• • • • • • • ^ro 'j';(?\-*vji.£-o\ ci; a_ : K1 1

O', -'J :• •-J VO

801

f— r - r“ r - r* f“ r* r~ r* T f“ r - r - r T —1 c . -Hmm mm r~ r— pp * ; ro ro NJ ro NJ ro INJ UJ » pp* ppp PS p—• pp pp PS pp p pp *-s X 5. X"V G ■w- cr U* G cr c- -0 -si “S, X x m ~ A c~~, CD "7 cc cc. r~ Zx -CD DC CD z CD JC CD (T. ro rn

o -u G rvj f— cc u i— UJ CO- u ro —j, rn r*. m n rry m m m m n m m m m T. —H• • • • • • • • • • « • rn • • rn *— PS. PS. — •PS -s* •PS PS PS •-S —» p— PS PS PS n ii II PSOn *)>; p~ o X ’ cr o* ro p— c r -Si Uj 7* r« rsp >—• f— X* 2 >Jl -si v-J Z un ■7 s. “Si c- u s0 -si c r u \U> fNJ »— o o CO •sj o Ul UJ no HP T "Owl NJ r— CO (Js u i F— X Ul -o — I—* 'X O -c «— —p s - w w> —p — —p SP> p p —» SP s* SP — rn I no n~ cn73 O o G CO c pp .o o vC o X +-* -C* c pp s j -H 1

T no H u>— • • "O I

ti II II II II II n n II ii n II II II II —1 c r o 1> Hrr. o o X 1

• S O 7_' F— 1— o o o ro fNJ s - h-* o C ' o m o o o o <—• o o o c o o o G o O o c c »>*■• • • • • • • • • • • • • • • 77 • • • • « • • • • • • • • • • 7! Gr- G cc pp c? F-p t— w o *sj r— r-, un 1— .NJ ro ►— r— ro K—. 1—' Ww> no NJ no »-p Tl rn HO -si CC o UJ c O p— ro Lm c r u o o O sg -sj u cc c r Ul X c r Ul ->j Ui c r - i -<G" •Si Ul 1— c O c r-v o- s0 wr IV ex. C* —i -Si -5s X f— c un •X u no u . r— UJ X no *T 2D m r "£>. >w 'Ul r -» cr un f—• o p— -0 o ~C UJ c fNJ OJ c r -o p— oJ ^s -si p— C“v a CD c_ no X! I

-si *sj u UJ OJ Ul *0 -o vC •sj c r z G Ul C U> nofNJ u f— -C* ts- 0*1 X un X o —J >—• •X cr rr. UJ ii iw c - W-J sC, <*L> Cj r — CC w -p* c >■—. C o X CD 2D T

1 1 Tl rr. .T. rri rr. rr. rr. rn m m m m m rr. m O II m mo c . o C* o o o o o O o I*- '» /S PS 50• • • • « • • « • • • • • • • ^ s o O o o o o o o ‘o o o o o o o m m~V ;7- c . C1 C ru ro fNJ -0 -S, -sj c uJ UJ OJ UJ oJ UJ OJ X UJ UJ Uj UJ UJ wJ cn no -<

'*, r— ro c Cr. cr Sr »—* cr* UJ r— UJ 'Z - O' p“CT i— o f— pp CC s* Ul O' ro on •OJ rvj UJ -si p— I s> -si Ul io -vj G> fNJ 'NJ ro Ul Lu u cr -p* U u X 1 2 • » *“

77 X u sp-» mm pst *-s PS PS PS pp P-H PS p p p s pp p o G OJ

c ; V 7C. C7 jT*! C?i *? "p* V i f : r z 2 7 *mm o O 11 1 m —1 -n -H —i H —1 —< —< -H -H z z

o 77 cj cc o C 77 o O o o O o Q >s PS PS PS. ^s PS •s, PS 'p s PS PS PS - s PS —S 1 =•: X• • • • • • • * • « • • • • • «— p— r* f-m (—* S ' UJ >J* 77 c c o ,s. •Sj -si -sj ro •sj ro ro ro z U oo ro h - o o X -4 o u . UJ ro pp 2 : C- —*

r r V ro o _s, F— ‘UJ k— X uJ cr c r z ro SP —p s-p w s-p —p w •— SP SP SP sp SP —• cn no u Xrz C* oj r— t-m cr 1“ x*- ,— -si ^s ■Sj _-s cc IS UJ SPro O O -si o LO CC u . W r-* c r U ro ■s r— it it ii u 11 II II II 11 II II II It II 11 —1 >

s ii 2 .CD .T H mrr, CD O O o T o o o C o o o o o o Cn Ul s

I 1 *s • • • • • • • • • • t • • • % ono o O o C o o O o o o o X ro — p— O u —» O' j— -p- no fmm pp r-* p— O •• • • « • • • • • • * • • • xz. S j CC’ s> -Si x Ul v. O r— o s j r - *—* /0 o cnc o G o G Z c o o c o o o o V«C uJ -Si ro ro Cr u C" CC -Si O j ’OJ UJ o u C UJ rr. 0 s oG o „£ z c c o o o '*S c o o sO X O o O •p** (— •si 1— 1—• OJ sU 4> o*. J> • G cn•sj CO CD* o ■sj CC ro o •s o ro o r - Ul u O o r— Ul 0 j fNJ 1— fmm >s» 0J ro a UJ X PS00 f— CO 00 f— r*» r — X 4> INJ r - X sT O w o p— ro UJ •OJ -si a h— >p O' - s ’ pp •sj G o O

n J— s>> S . u V •s. V V X o s j cc X O' X o r rN m rr, r*"i rn iT» 1

rr. rr< T l rr.i nr. m rn T; .Tl «•

1 1 1 I I \ 1 1ul_ •*», O o o o

1o O

ic O

io o o G ps O

w c r - o o cr o O o o O o c - CC* r—• c . CD I-* o ■oJ C UJ i— •Ul p— o p- O F— pp• • • • • • • • • • • • • • « fNJ oCO r \ cd cr c* X G o o o o o o oc o ow 6 r — *■— o z or. O'* u u u oCs o c: o o u» ro r—• -0 “si co X ro p— C: io o o G o O Ul Cr o u u -o u O o

omI I I ll ll I vo c o o O Q o o O C O o o O o G ‘• • • • • • • • • • • • • • • L-o u . no ro o SP pp HP ip* s. UJ J> o ImmC' o»' X hs cr pp no ro no o 4> o , s ‘OJ

s u S-J on Cv •Si ps UJ s'* S j cr u crno X -u G o cn no , G oJ s j X o G n0 X

Jo o C' o o CD c o O a o o c O o rr,• • • • • • • • • • • • • • • Xo u . i— no or O UV UJ UJ F— UJ r—• r— F— o Oo V o V) Cr U 1— s i V 4> -si Ul U, cn Lm•SJ G O' u* -SJ •P* CO U“, ►— O' no cr ‘G n>» i— no 1

ir» no uJ r-* cn SJJ o UJ o X UJ o o Ul UJ

IO IV)V 1 CN' Co Js- • •VQ -t-8*

ro rv> r o ; CN ~~J —-J

Vjn ro vm • • • '

VJI VJIe»IO

- JoVN

3 o „ » toN) C-D CO

s °

601

ClS-2-T-BUTYL-5-METHYL-l»3-0XATHIANEf 0 SIDE, 100 MC

TIIl: INPUT PARAMETERS WERE Wl = 2B5.A5G W2 = 271.700 W3 = 71.000

J12 = -11 .700 J13 = 2.050 J23 = 2.500THE CALCULATED FREQUENCIES AND INTENSITIES ARE

LINE! I ) . _ 0.7326183E 02 INTI I) = 0.1022197E 01LINE! 2) = 0.26A9238E 03 INTI 2) = 0 . 3A02873E 00L I NE I 3) = 0.2828132E 03 INTI 3) = 0.1637518E 01LINE! A) = 0.262A3616 03 INTI A) = 0.3635A55E 00LINE! 5) = 0.2807021E 03 INTI 5) - 0.165865AE 01L INEt 6) = 0.A861758E 03 INTI 6) = 0.A257359E--08LINE! 7) 0.7082397E 02 INTI 7) = 0.9976A59E 00LINE I 8) = 0.890A012E 02 INTI 8) = 0.9A12585E--OALlNtl 9) = 0.29A5137E 03 INTI 9) - 0. 3A25A96E 00LINE!10) = 0.5293A66E 02 INTI 10) = 0.58925 9 IE--OALINE!11) = 0.71I5080E 02 I NT 111) - 0.10018 37E 01LI5EI 12 ) = 0.27662A36 0 3 INTI 12) = 0.163562 /E 01LINtl13) 0.292A016E 03 " IN T I I 3 ) = 0. 3 612 A 8 A E 00LINE( 1A) = Q.27A1853E 03 iNT I 1A) = 0.1660581E 01LINt(15) = 0.6871188E 02 i n rii5) = 0.9781713E 00

ENERGY INTENSITY UE/DWl UE/DW2 DE/DW 3 DE/DJ 12A 86.1758 0.0000 I.0000 0.9999 -0.9999 -0.000029A.5137 0.3A25 0.8779 0.1221 0.0000 -0.827A292.A016 0.3612 0.8835 0.1165 0.0000 -0.8208282.8132 1.6375 0.8779 0.1220 0.0000 0.1726280.7021 1.6587 0.8835 0. 1165 0.0000 0.1792276.62A3 1.6356 0.1221 0.8 7 79 0.0000 -0.172627A.1353 1.6606 0. 1165 0.8835 0.0001 -0.17922oA.92 3 8 0.3A0 3 0. 1221 0.8 7 79 0.0000 0.82 7 A262.AR61 0.3635 0.1165 0.88 35 0.0001 0.82088 9 . 0 A 0 1 0.0001 0.7615 -0.76 1A 0.9999 -0.6A8273.2618 1.0222 0.0000 0.0000 0.9999 0.000071.1608 1.0018 0.0056 -O.O055 0.9 999 0.006570.82 AO 0.99 76 -0.0356 0.0056 1.0000 -0.006568.7)19 0.9782 0.0000 0.0000 0.99 9 9 -O.GOOO6 2 . 9 3 A 7 0.000 I -0. 76 IA 0. 7615 1.0000 0.6 A 0 2ilocsurod froi: t-iutyl position at 97*5 c-s.

/DJ13 DE/DJ23 OBSiSRVilD0.0096 0.0125 FR;v.;U!3:;CY0.AA 52 0.0632 295.0 h 295.1-0.A395 -0.0591 295.1 & 290.10. A A 5 2 0.063A 28> 9 & 231.9

-0.A395 -0.0589 251.9 & 279.70.0595 0.AA23 276.6-0.0557 -0.A3A8 274.20.05 96 0.AA29 264.9

-0.0557 -0.A3A6 262.5-0.0038 -0.00820. A952 0.A9 3 7

-0.3895 0.371A0.3799 -0.38 39

-0.50 A8 -0.5061-0.005 7 - 0. 0 0 A 3

f.

110

<r.KNK\

: *43 “0 *3 cm eo o' h- ir\ irv=i- -=f

P ►*l>3 O« r«iM U V.3 J (Tl Ct? O K fe 4 O r - S K N O O N

fC\ KN CM ^ ' O ' O ir \-^ - CM CM CM CM

m c? in — cmcm cn m in in cnm o o o o

o o o o o o

O M3 —i n w c o N

r>» m co o M-Ov*

o «y co <-» n» cn o o n i n o Heo c - oo cc«0 CM CM CJ CMco o o o o

in s f o o o om cm in in

oinM->cinM->0in>i-iJ'O"J-'OOO —lo M C O C C C O C O —< —■> CM O O O O c ? o o c n o o o o o c ' c o o o o o c c o i n i n c c c c w i n ^ o o o o - '

CM—I O O O O O O C O O o o o o o o— 9 1 1 1 I I I I Ic

UJ LU LL1 OJ LU>3* M3 30 O

>0 M3 inCM pcI OCM J- CO

- ro00

LU UJ

in M3 inO' O' O' O' O' o O' O'

«o o c

oo o

M - i n M - s - M - ' C n M N i n M ' C ' C ' C - i

- o o in oo o o o o oi o1 * UJ UJUJ UJ UU UJ LUO pm o 3* un o o oo o PM PM %0 O- «-4inae o o o M3 o PM P> oO • oc O r*-O' X —io m UJ •n in O 3" <ro o ft! o cr PM O X• < ** r*. X o.J • • • • • • •UJ r- o o o o 00 oQ UJii*—*</) u— 11 it ii It It It II*oMM<n 11 PM LO —»*3 ft! PMm < r in o o-Ul ro UJ

7 T 3 u. w w w w w< W u- L» W* u* w-«—« o o M J3* Z z: *c* 2! Z 2!o o fc*■—* •Mt fc-* Mc cn oC • •s?X in m <in1 CM m PO ro co PMro UJ UJ O O o o o o O* MMUJ n o UJ ’JJUJ UJ UJ UJ UJ1 jC ,'r o a> •n in O CO •w-J ii ro UJ o o nO PM ftNh-> - in r> MT h- PM h**PM CO C'PM—> Cjr o m PO cO >?“ofc— uj UJ *■4 o *■4 M3 <7*UJ <«✓ V4* c PM sT O2. . UJ UL _ N. CM •»4 <M ro N*I 2. • • • • • • •in < o o a ; o o O o 00 OI ftr o o UL j•j < & — 4 L i 11 II II It tl II II> - ' CL • • <in ro «J i 1

U n j —*30CJ o PM » O • *■*i n . *J PM CO in ofc* zr <r ,1 » * It ii o W l w aC\J UJ UJ UJ u i UJ UJ u j

UJ CM 7 ! J? Z /. * .UO ~T~ •— — a —*•—•—* fc— *0 -J -J _J «J -j

UJ LU CM C-i n cm i n cm cn cm CM M" «r cn — CMm •

o o

II II

UJ LU—i eoO «i-t— J p-rO' o m X) <r- oM3 n» ■ «

0 o1II II

ii tl It 11CM ro in—4—4*4*4w w

fc* 1— I— fc—2! s 2T ft"*—4 M

ro PO POPMO o o OUJUJ UJ UJo oi ft'C'O POO *4 N. o<7 oCM O ft'OTX ro m o-*—4 PM —4 o

• • • •o O o Otl II II 11

PM ro in—4 —4w* W> w w*UJ UJ UUUJ2! •Z f tM-i —«J

«sfinMininMinM-r-^oN-n- j . ^ r t ^ - i a e o a e c i c o o o o MO C O ' O ' O ' O ' O ' O O O O C O O O O O C CQ C ' O ' O ' O ' O ' O O O O O ' O O O O O '

U J O O O O O O O O O O O O O O Oa i

o n e M j i c i ' f i n c N O O H C ^ - O O c n O O ' ' f - - » J - 0 ' O C ' ' J - C M -oonir. O M i M K ' f o c s -r n o e o c o — cm — c m c - c c o o o o

U J O O O " — •■“ • ‘- ' O O O 0 — 0 0

to s m o o >■ O' N N !> O c o r v J ^ C N j r s j o r * -o? pm 3 s —* c o ^ >riii • * • • • • •

m cm cm rsj cm «— —

PM O X in ICUO O' o POuoo o o ouo—*—4sz X s3• • • • • •PM o h- ops.o-X f

OUPO<1O

> /•

nufNis-2-r-PurYL-5-tftniY'L-i, 3-o x a t h i a n e ,d s i o e , i o o m c

THE INPUT PARAMETERS WERE WI = 399.600 W2 = 309.600 W3 = 190.000

J12 = -11.500 J13 = 4.100 J23 = 11.000THE CALCULATED FREQUENCIES AND INTENSITIES ARE

LINE! 1) = 0.1972636E 03 INTI 1) = 0.1115635E 01LINE! 2) = 0.30922 53E 03 INTI 2) = 0.7 770 368E 00LINE! 3) = 0.39 63091E 03 INTI 3) = 0.1107331E 01LINE! 4) = 0.2982703E 03 INTI 4) = 0.9694926E 00LINE! 5) = G.3921912E 03 INTI 5) = 0.U46140E 01LIME! 6) = 0.5197466E 03 INTI 6) = 0.71302 59E--05LINE! 7) = 0.1863087E 03 INTI 7) = 0.9238014E 00LINE! 8) = 0.2802292E 03 INTI 8) = 0.2 75392 3E--0 3LIME! 9) = 0.4077849E 03 INTI 9) = 0.8529655E 00LINE(IO) = 0.9922490E 02 INTI 10) = 0.8364906E--05LINE!11) = 0.19 31456E 03 INTI 11) = 0. 1067084E 01LINE( 12) = 0.3207009E 0 3 IN T I 12 ) = 0.1040243E 01L INEI13) = 0.4036653E 03 INTI 13) = 0.8932960E 00L I N E I 14 ) = 0.3097446E 03 INTI 14) = 0. 12L3494E 01LIMF.I 15) — 0.1821892G 03 INTU5) - 0.89 32105E 00

ENERGY INTENSITY DE/DWl DE/DW2 DE/DW3 DE/DJ12 DE/DJ13 DE/DJ23519.7466 0.0000 0.9998 0.9958 -0.9956 -0.0002 0.0195 0.0919407.7849 0.8530 0.9954 0.0049 -0.0003 -0.5653 0.5092 -0.0020403.6653 0.8933 0.9963 0.00 37 0.0001 -0.5606 -0.4904 -0.0023396.3091 1.1073 0.9954 0.0045 0.0001 0.4333 0.5099 0.0031392. 1912 1.1461 0.9963 0,0032 0.0005 0.4 381 -0.4898 0.0028320.7009 1.0402 0.0045 0.99 37 0 .0019 -0.4328 -0.0004 0.5403309.7446 1.2135 0.0036 0.9944 0.0019 -0.4 3 89 -0.0001 -0.4542309.2253 0.7770 0.0045 0.9932 0.0023 0.5659 0.0002 0.5454298.2703 0.9695 0.0037 0.9940 0.0024 0.5598 0.0005 -0.4491280.2292 0.C00 3 0.99 18 -0.9876 0.9958 -0.1270 -0.0001 -0.091219 7.2636 1.1156 0.0001 0.0024 0 ,9976 0.0008 0.4899 0.4515193.1456 1.0671 O.OOLO 0.00 11 0.9979 0.0055 -0.5098 0.4511186.3087 0.92 38 -0.0008 0.00 31 0.99 7 7 -0.0053 0.4 902 -0.54 31182.189? 0.8932 0.9001 0.00 19 0.9980 -0.0005 -0.5094 -0.54 3499.2249 0.0000 -0.9 917 0.99 19 0.9998 0.12 72 -0.0195 -0.0008

OBSERVEDFREQUENCYhod,6 & ho6.95 hoh.7 & h02.9 597.2 & 595*6 595*5 & 5 9 1 .4520.7

509. 7 ------298.5

210 - 170

113

_ X o o> rTla; 'j MC O &Jno es o c--.

vo-=rCM

ir\-=frevOJ©3 «3 |

lf\ O i r M T M T N • • 0 • 0

r - CO Ox MO Ox O v tfN-y1 ir\ o\ co CM CM CM C\J r— *—

r*-I—oOx

Io-M-

| jpo uVco o sr co po <r *r m Nfn'P^C'MO'f'J'O tn O O O O *0 N N —' O —I ' O O O o w J Ifl <■

L U O O O O O O O O O 0 : 1 1 I I

o n in M n w O O l o co O' min _i —i vc o o-j o >rtn in o

• • • • • •o o o o o o! Ill>1- 00 «3- in M3 PMCM "C *3" M3 CM <—pp, o.o CC M * o—i o :ip -j- t> vi- o• i • • i •o o o o

pp vO J - N O ' N M pp <p O O H O N O l P l P P J O O O O C O - J G C — po.oooo>j-in>3-'joo

o o oI I 0 o1 o o o o o o oI I IILUo

t H kO O kO pH CM kC O' kO ro in O cr k3“ ktf*1 pH 0 0- kO in pH 0 kj- ns rsj in ro •H O

| ! O 0 O' X CO CO O —H C' 0 O H H O pH

O kC LO ro PO rrs 0 in. PM O O O c PM

CM ♦ • « • • • • t • • • • • 0 01 0H O pH O H st O PM O pH «H O pH O pH O 0 O O 0 O

r^ 0 0 O O O O O w

o 0 O O O O O O O O O O O O O -5 1 1 1 1 1

2: i 11 1 C

Uj LU 'JJ UJ LL' LU UJ UJ UJ UJ LU UJ LU U.’ Ul

0 O , 0 O' <r CM ro in 0 •p. •H cc O CM in PO PM •JJ

0 O ; r - kfr PM O O cc in O CC H sC pH ro. in CO a in in H in H 0- H N- pH PM X <r CM CO ro

•k O i n- O O CM CO C- CC' *-H PM 0 ro v0 0 PM CC n- H O O <NJ kJ* LO O N- X f\I sO rP' sT cr

UJ ; O t : O CM in O' 0 0 <r cc xO PM >o O N« oj cc O O 0 O O C O X O' O' O' cr

Ci O pH LU : Cr CO h*. LO >?■ in o* Mk 0 r*- O in 0- H-> O' O O 0 O O O O O ^k O' cr O* O' cr

PH O pH C£ 1 *-h PM h IT CM nT s0 O in c pH O C\J PO PM rs • • • • • • • • • • • • • 0 000 • <c pH O pH O' m-J in co PM N. pH pH cc pH CO c 0 O O 0 O O 0 c O 0 0 0 O O 0

fW | 0 • • • 4 • • • • • • • • t • 's. 1

W LO ; 0 O O O O

00

a O 0 O O 0 O 0 LU0k UJ ! Q

UJ If PH 1

: II 1! II It II 11 tl 11 It 11 11 II II II II 0 H in 0 kC H vO 0 kf vO H sr LO /M t

<* ro M ' X in O' '•O rn CM m 0 rO 10 Mm O kj* N*

PH II (M L0 \ MM «m mm MM MM MM PM PM MM MM MM MMMM C\J CO pH 0 p<4 0 X X CC 0 c 0 pH Q r-.

-0 2 | ' pH PM PO C in sD, 0- SC O' O pH PM PO >5“ IT- 3 CO O 0 O 0 O' O' 0 O' O' 0 0 O c O*

m UJ ■■1 pH H pH pH pH a • • • • • • • • • • • • 0 0 0«r :s u_ 1 w W w M MP kkP MM w w MM* w SM «H> MP HP 0 r> 0 O 0 0 0 c O 0 / » O 0 0X 2 ' L. U t— L— L- L» L" L» k— U- U 1— u*> H ■j j

0 0 PH Z 7 Z z z ST Z 7 Z 2: z Z z X nr c

T 0 c . ph MM MM *•* Md M p—* PH w PH tH PH PH PH

PO t sO pH c i

0k • • 2; ! in <r kC* in in CM PO ro in <r PM CM r- X cr

cc <c pH cn 0 O 0 0 ro cr ro O' N (-*■> <r rO 0 01 ! X

1JC c* cc O' C O pH cc •H 0 O O O 0 N

•J p<4 L0 i ^ PO ro CO ro m: r0 ro ro PM POi ro rn ro ro, a 0 My O' C ' O' O 0 O 0 O O O 0 cr

>• i UJ LU ; 0 0 O 0 O O O O O O 0 O c O O •s. • • ♦ • • • • • • • • • • 0 022 . c c PH 1 j LU 0 O 0 0 O c O 0 O O O O O 0b**» UJ II O i LU LU UJ UJ 'jj lu! uj L‘J LL1 LL’ ■ y LL’ UJ UJ UJ O

LJ ! > c PM cc 0 CO 0 ^ kyj* m r - rn a". 0 O 0II ro UJ ! h- kj* O 0 in in 0s O' CC' o- sO in in in. kO

1 ; (✓> *-h 3 in rr, O in in N- PM PO kO 0 vO cc cr fM

n ' CC fM “0 CP ; 0 mh PM sj“ ppJ H ro 0 0 in oc sO O >- pH kO tn 0 X 0 ro PM cr pH X> in. Hk pH

1 j j jC ■JJ ! «sf CO r> 0- in n ro pH pH o- O 0 kO cr.' O' 1— O kO in LO 0 D »M CO tn PM O >?■ "Ts >- 2

• J L- <X : PM CO ro ro H H o- in f-H pH 0 c o 0 PH O in PM PM sT N- kj* PM LO O cr 0 O <M O

LU LL , —h M PM pH PM ro; •—< pH CM 0 pH H CM H •—4 L0 O Oh X H PM O X sC O' O pH X X O

IC • • • • • • • • • • • • • ■ • y.z • • • • • • • « • • • • • • 0

Z5 < 0 O a i O 0 O O O O O O O 0 O O O O O ■j j 0 O O pH H pH O O O *—« — t 0 O O

CC c c 0 O LU 1 ►—

1 <r kO to t—11

II II II II II i II tl II II II II II II II 'Z.

u- a . • • <11 HP

1 PM pJ

CM l- kj- Z5 0 in O' X O' X cr CM O kfr X r- kj- X X

1 z> (M 1 O 1 M «Mk MM «M MM «M MM MM «M PM MM «M PM MM >" 10 cc m. kC in in in *>£■ O cr n- kO 0 kO kC

LO C l . •J ph CM ro in kO o- OC O' O pH PM ro M- n O H m CJ 0 in >0 X PO in pk. n 0 fk. PM 02 <r pH pH H pH pH pH zV pH 0 X n0 <r LO 0 pH PM ro 0 O' pH O r—

<r ph II II 0 w W> w. w w MP W pp* MP MP w MP w LU • • • • • • • • • • • • • 0 0c c UJ UJ UJ LU LU UJ LU UJ LU UJ UJ UJ LU UJ JJ I- in H kC

i»M in O' X X r- H kj- cr •c O' pH

’.U pH PM UJ 2T z 2T 7Z ‘Z. mZ-*p #-7 IZ <£ yz LU H n 'O ro X cc r*- N PM pH pH 0 VC

T- 15 pH X PH PH M M PM P-4 *M PH PH PH •—* HP —* PH PH PO PM PM CNJ CM *— ^H mp4 pH h4 PH pH H

(•p* —I ♦— -J u —/ mJ - J _J pJ -J -J pJ ^J - J - J MPJ

TRANS-2-T-BUTYL-5-KETHYL-1, 3-QXATHIANE,S SIDE,60 MC

THE INPUT PARAMETERS WERE WI = L64.600 Vi2 = 156.600 W3 = 117.000

J 12 = -13.000 Jl3 = 3.900 J23 = 11.000THE CALCULATED FREQUENCIES AND INTENSITIES ARE

LINE! 1) = 0. 1234877E 03 INTI 1) 1 0. 1377648E 01LINE! 21 = 0. 1513446c 0 3 IN M 2) K 0.3199038E--02LINE! 3) = 0. 1652668E 03 in r. 3) = 0.1619162E 01LINE! 4) = 0. 142638/E 03 INTI 4) = 0 . 3 9 7 514 8 E 00LINE! 5) = 0. 1592951E 03 INTI 5) = 0.1979R99E 01LINE! 6) = 0.2059035E _03 INTI 6) = 0.2462496E--03LINE! 7) = 0. 1147818E 03 INTI 7) 0.82U601E 00LIME! R) = 0. 1314382E 03 INTI 8) - 0. 1306028E 00LIME! 9) = 0. 1780466E 03 INTI 9) = 0.5144220E--01LINE!10) = 0. 1008597E 03 IN T I 10 ) = 0.2251530E--01LINE!11) = 0. 1175160E 03 INTI 11) 0.9602 769E 00LINE!12) = 0 . 1641244E 03 INTI 12) = 0.1636383E 01L INEI 13) = 0. 1720735G 03 I NT 113) = 0.24U835E 00LI ME114 ) - 0. 1 554171E 03 IN T I 1 4 ) = 0.20 70762E 01LINE! 15) = 0. 108808RE 03 INTl15 ) = 0.7 "8062 IE 00

ENERGY INTENSITY DE/Dlil UE/DW2 UE/0W3 UE/0J12205.9035 0.0002 0.99 75 0.9592 -0.9566 -0.00721 7 8.04 66 0.0514 0.6249 0.3726 0.0024 -0.9690172.0735 0.2412 0.8301 0.1699 0.0001 -0.8755165.2668 1.6192 0.6264 0.3596 0.0141 0.0184164.1244 1.6364 0.3/16 0.6266 0.0018 -0.0157159.2951 1.9799 0.8315 0.15 68 0.0117 0 . 1120155.4171 2.0708 0.1679 0.8163 0.0158 -0.1219151.34 46 0.0032 0.3731 0.6135 0.0134 0.9717142.6387 0.3975 0. 1694 0.80 32 0.0274 0.8656131.4382 0. 1306 0.4590 -0.42 98 0.9708 -0.8498123.4877 1.3776 0.0C05 0.0269 0.9725 0.0099117.5160 0.9603 0.2057 -0.1758 0.9701 0.1035114.7818 0.8212 -0.2032 0.2167 0.9865 -0.09621 u 8 . 8 0 8 8 0.6881 0.0020 0.0139 0.984 I -0.0027100.8597 0.C225 -0.4 564 0.4706 0.9859 0.8571

03S3RV3D/DJ13 DE/0J23 PRS UEiiGY0.0740 0.27800.4150 0.2116 175*5 & 171.7-0.4222 -0.0817 164.50.4141 0.25790.1234 0.35 79 160.7 & 158.9

-0.4231 -0.0354 155.4-0.0403 -0.30240. 1225 0.4042 142.5 .......

-0.0412 -0.2561-0.0821 -0 . 1018 115 - 850.4634 0.3378

-0.3738 0.04450.2997 -0.3225

-0.5 3 75 -0.61580.0081 -0. 1762

&

>3 ■ ir\

<>3co

115

-T CM ^ 4 KNQ O CM CM !M 2 ; ' O O |

rtj 1

oc d t o . c M c O ’- r ' - i r s o c oMO'W M VD CM -4" CM CM O » - cOCQOS -4" KA CM CM »— OO Cl, CM CM CM CM CM CM

PO OJ sj- PO cc O' IT o cc h- OJ *3- r^ *3" in toOJ CO N- in N» *3* —H LO OJ ■d* sO o N. o G OJG P-Hro po rO PO 0* in o - tn ^h ON p—4 ro C oQ o o O O o *3“ o s3- Nj- >r in o

• ■ • • • • • • • • • • 4 • • •UJc

o o 01

o 01

O 01

o 01

01

o o 01

01

01

00 o tn O* -3* *3“ *3" s3- o ^4 ro CN O'ro ro ro —* ro PTN CM ro OJ cc o P-H

ro ^h r- o o- ro ro rO f' o CC *3" oj o •—4o >3- jr c vf“ O O O O o •"C >r nO tn o

• • • • • t • • • « • • • • •o o o o o o o O o o o o o o o oI I I || I |lLLJQ

o ro tn f- in O in ro, in X C CN G O X1 j o >o 0J ro n* ro 0- <3 OJ c z o rO rO o X

i o n in n3" ■3" -3* s3- tn in o o o o o oo p- h- OJ OJ OJ OJ r*. 0- in o o O o in

OJ • • « • • • • • • • • 4 • • 41 o ^4 o o- o 3- o >3" —H p<4 o (■4 O P-H o o o O o o 3 3 o 3 o o o o o! o o o o o o c o

1o O o o o o O -o 1 i i 1 1 1 1 1

! 'UJ UJ UJ UJ UJ1 1UJ LU

1LU UJ

1UJ LL' LU UJ LU LU

Lm.N*

j o : — 4 CO OJ N- CM nO —J O' o OJ •— 4 in in O LU1 tn i co CO G X X •■•4 in ro, ro >3* X in o OJ Q 0- H o o —-4P-H p«4 p-H X ON X G G

OJ : n3“ CO G O' to CN po ■c OJ p-H O' r > ro LO o r>. c o 3 o o o o o C n r O' G Go • ; ro in O' X r* s3“ ■pH cc *3" X 1 fO LO o -L sj- CN o o O o o X o o 3 co ON G G Go OJ UJ ro 0 CC in oj in >n. P—4 p*H ro O C C ■H rO 0* ro CO o o o o o o 3 o ON G G Go 0< O c o tn o O' o X O o < r o IT. sC • • * • • • • • • * • • • * •• < :«— » <r P—4 in —4ro O' >3->3* —j »pp4—H tn p-H O' O o o o o o c o O c O G o O O

LLJ o • • • • • • • • • • • t • • • •v 1a o LO o o O o o o o O r z c o cc 3 O LUM UJ ‘ C1/? n

k— 11 ti II ii II M II II II 11 II It II II H X 0- N- OJ in 0J in r- —H OJ JT p-H Ga ro ■—P O' o X o X 3 4—4ON — H o o OJ OJ a O•» 11 OJ UO 4— — «— «P«* <pp.pp* P-*p-* «p* pp* pp» «p* p— p-* OJ CN Op vC r*. ‘C 0J ro OJ rr o o o r z o o

UJ — > iZ nH OJ ro in O CC r> O — oj ro LO c o c 3 o CN O' CN 3 C O o o O o CLz ro UJ —H *—H X • • • • • • • • • • 0 • • 4 4

•w — * — > w <—p*— ■__-wP — - <— *— N* o o o O o 3 o o o '3 <~z o ob_ 2 : k—>k- w— k— L«» L- u u- b— k— k— k— k— UJ 1 131 o O z: z z X ZT •c. X <_ z z zr ;7 *cC z y Xk— o O IM P-H M —■4M4 1—4 *— « bp4 *—• k—tb-P•- rr l v G

• • ~ T ON 0J in 0J LO S. •C" •s. s3- C" O JT ro o c :

Cw N- p.1 < 1—4 CO 0" ppH C n P*4 O c c o X o o 0J OJ o o1 •—4 t : OJ ro oj rr o* vC •v. o O *3 oro OJ LO ro ro ro ro ro ro OJ ro rO OJ ro ro-. ro 0J C fo 3 ry> r> o C' o x o —A ■C. X'#• . UJ UJ O O O O O O c O O o O O O O o • • • • • • • • • • • • • 4 4

OC «—1 IJJ o o O O o c c o o c o G e o o1 i LJ II o LU UJ UJ tu1LL’LU LL UJ LU LJ IU LL* UJ 'JJ UJ O i 1-J : jc X O' sO JT to O' vO JD o N. N. oj ro>• tl ro UJ SO CO OJ ro o in >3- |N- OJ in tn O' O' OJ tnX t/> p*4 X tn NO OJ LO. ON ro O O- OJ |N- OJ > 0 X LOk— V OJ •g o CN X 0- X rtv in X p-H * C n c ;“A >■ o sT O C n c o o vO co o LO G p-H nC oUJ LU JZ •oj OJ o m X p«4 C O OJ tn TN o OJ ro. o r > k— o —H -H 3 o* o —4 o LO a rO ro LO r- o1 k— c* o 4 ro o ro LA O' OJ <0 sO o OJ <r OJ N- M o X c X OJ X ro N- o o rr. a G vO oin UJ LL. M1OJ OJ OJ OJ ro CO p*4 OJ |N- —H OJ OJ OJ CN OO o <r in >T in s3* in J ’ in o o o CO G oi 5l 4 • • • • • • • • • • • • • • 7* • • • « • • • • • • 4 « • 4 4—j <r O o o ■X o o o O O o o o o o o c o JJ o o o -J —H —H —4o o o P-H o o o> or O o UJ k—H* < r- k— It II II II II II 11 II II It II II II II II ZTX a. • • C b—*

X r- •—4-J1 t— ro X —H o n- sT in 0* OJ sO P-H 3 CO o nT in *c1— —> OJ 1 o : pp* p>* P-* 4*. pp*pp*.p>*.P-* pp***»ppp*p-b —* >- in (M c- OJ c CO 0J CN r- 0- %o LO o fH- •s.

1 CL —J OJ ro 3" in o o- c c ON O pp4OJ ro sO •n O ro Osj cc 0J co a0 LO o n o*. n 0J jr o CL.OJ <t —- p*H p~4"—4p—H —H X >r LO in X X o *r n- 3 o —H X G GI p-h ll II u «—*w «p> «— * w •—>*— IMP *pP «*p* w *-p> «*p IU • • ♦ • • • • • • • • p • • 4LO LU UJ LU LU1 UJ UJ LU 'JJ ‘JJ LJ IL UJ LU LU UJ Z' *3" in rr. rr. P*4 0J o o X OJ OJ N- oM LJ #-* rj LU ”7" 'T*. 2' zz z z z ~z T* •r •~T 7* LU in n3* vT rr, ro OJ OJ *—H 3 rj o lLL G f*Lo

TH 3: X 1—4 M— k—4 mP —p b— —P m OJ 0J OJ oj OJ OJ 0J Oj p-H p-H

116

VO OJ

St« or-i us t* r-3 oc; :=> r-7 c y to c-j m « O Cr-

r<~\ OVD o '-T\ r~~T— • T— ••— r'-«vo —tf

N O C O ' O N r - 0 \ r -

VD NAOJ CNvO ‘3 OJ <3o\On,o -r\

or --

oo

c O O ( \ l « - t . < r e o C T ' v £ > O J < ’O d J < t - t a ~ t . t f ' , j -M S <J s O M ' ^ O O N r O f f O m t J K lOO.OOOOd'd'lO.S-O'S'd'd-ino s • • • • • • « • • • • • • • •• J J O O O O O O O O O O O O O O O O 1 ) 1 1 1 I I I

f t' C T ' O C O N v C O i n ^ L T \ ^ C C ^ ' d , fNJo x m cn O'O P

n • •o o oftUJO

resOp

01

x m

01

O' X 0s X c—d dd f t —d o CO CCo O O O O P p

o o o o o o oI II I

P CC

o oI

mrric01

UJo

LO

LO«te

UJ

<r

<Xa

ooo

•oo

oocrs

•fo UJa:<

ooUJ II ft*bn

r o —OJ 00-> e

m3:

OO

XOft

o —o00 c ♦ 7*

re <

re tad CO ; re m ro m ro ro 00 OJ oo rp fft fft•>* . UJ X i o o o o O O o o o o o O o o o

ta4 "2£ tad1 'X 1) o : X UJ X JJ •JJ UJ IX1 UJ UJ UJ UJ UJ UJ UJ UJ

U ■ ;< p - a* in OJ x> oo un m o o o O’ O' sC fta> II r o X o X O' •O X fp o O tft O' oo o X

t/> tad X p - Lft o o m in X n . sO o - o IP m o int— 0£ oo o : (—4 X X in o O' o O' 00 o m OJ o ‘O' N-XI X X X ■ m <—4 00 X O' or O' o o X o ift rr> >o1 ’ u— •■ o fj0 cc O’ ft- %r O' ro O' X O' 03 O' X <?

in X L_ ' ^ f-4 *—* n-4 00 O' «»4 •—4 o CO •ta »—• n " I O'1 • • • • • • • « • • • • • • •

- j < o o o o o o o o a o o o o o o O o o> . c i o o Xu - ' < p p b« 1 II II II II II ti 11 II II II II II It II IIX : CL • •Xi K-

-Occ

PO taJtaJ

'■

k- 3 f t u d— nta nta n^ n-~* nta ntai a nH 00 m in 0D N* X O' o OJ p0 xT •n

OJ < •nj ta4 ta4 n1 41 M II II o •MX tan ««« w> <ta» •ta tan tan ta-» w tan tan •—* tan tan

oo X X UJ Uj UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ Ujtad X n4 rsi X 1 «£• “F /•— 2! <r IcT T* _ '* —J X'o X

I—3 •—d

—3 V— - ■ta tan ta« tan kta tan »—< tan hn tan hta

00

oooo

N CC M CO ^O' f\j lO f\) LOX X X Xo- ro pj oo ooo O in, o ro o X tad tad o ft o ft Oo c o a o o :o O o o o a a o o —i

C5LUUJ UJ UJ IXI LUUJ UJ UJ LUX’X UJ UJ UJ ft.tad n Lft X tad ft X rOi n s0 00 r LUO' o X X nOOOoo tad oo f t andX O' in C3 fto ro X o in 03 tad O' IP. sOOJ o o fto- <- in tad ft- o tad o tad OJ ro OJ o *3“ COo O ft- a X ft- O' i n f t or tad O O' o O m O'o OJ rp cc ft- x <“X o rr X m n4 •tad n nd o tad fO0' *—>to X tadft in n— (O ft a• • • • • • • • • • • • • • •ft io o o o o o o o •3 o o O a o o UJ

a.

II n II 11 II II II II 11 II It II it It II -TX

«ta« nta nta tata tad ta d-d *ta nta. nta d* dta dta COtad OOm sTin 03 ft- X O' 2 ft

c\ft

X *<r* in jC CO•tan tan tan w tan tad tan w tan ta« tad tad tad tad tad ftk»> 1—V—b— b— Ita ft ft ft ft b—ft ft ft UJ

ztad tad 2T z tad J? ✓rid o

O O' ^ p

in or

o o 0 o1 Ir«- r>-

a o

— • O !M <NJ ro O O Osf O O O

OI

c oI

O O'o --O rr- O sf « »

a o

>f rg <0 r'l in 51 NO O O O O O Oc a o c o o co o o o o o o

f X W N ? "1cc cc c: s' cr r*cn :> cs o' c* C'O' O O' O' CS O'

C — ' O O O O O O O O O C O O

to lO ta 3XI

_n O ro O t"- C0.1 O' -> ■T' O O O O 'M O Ivl >T'S''<r<rtf''a-ir'OCOOoc OOOC'CT'iT'lT'T'OOOO'To o

m O' nT O Np X ’ rp X fp O' m X OJ p 00f t CO CO ft o tad CO X r> a tad O »d tad 0 tadr*c ft •Op in <* IT. -p -P -p p o u> C3 ft 0o ft T' 3s O' o o ft o O' o 6 ftf t • • • • 4 f • • « • • • • * •LU o o O o c o o o o o o c

70 Q

1

>- o 00 oo O' NO ro ^r -p ft ft p Oft 03 ft ft i n ft -o o o r> o r-ta 00 ft 0tan o <r CO ft X SO o 00 f t o C7 tad ft ft 3<S) c in IP ro, <r fp in n vC o o o cr 0 02* • • • • • • • • • « • • • • ••JJL*

o o O tad tad tad o o o tad 0 0 0

Oi o a- i n in or c O' 00 m ft ft p-- 0 nT>- m in oo CT X c o X vC o a O' 0. IT fto n 03 m o rp IP CO un O' n ft m c f t cr-/ O' 00 o X O oo o X in O' ft O' ft •*->UJ • • • • • • • • • • • • • • •3C >3* o "O oo O' in pd tad X o or, O' cr v0 XUJ or

OJcrta4 X. 5

-ta.#d otad otad in •P m O ft r O' v2

r- i— r- r—f—• f— r— r— h— fSJ PO ro ro OJ MS m* M*4 MS »—ims MS m- ms MS r— MS 1—4 ms X »* X -H

UJ sj o o O' -sj cc CO © OJ >j\ on UJ rr “2» 2. 21 2 2: —> 2 Z Z X 21 Z 2 m ro r— mX rsj O' UJ O' o on on 0" -si © ro o 4> OJ 2 m m m m m rn m m rn m m m m m m >• • • • • • • • • • • • • • • m —• .MS —* <—* —* *—*—• <*—»*—»«—* o it II *— 2© -P- SJ o cc OJ o cr cr PO ro © © on cc i-— »— >—■> t— j> 2 . ts>ro >—* -u ro Ol cc © 4> wA oj X X OJ on -p* UJ ro h— o © X © O' on OJ ro H— n no 1© on -s| N) no O © -p* r— \j no © X —* -< SM> w — ►■«— w» -—* — •sm —* — ' n i ro c ro>0 CO o CO o © © © -si «sj •si o O' X cr 1 c f—- -p* —1 l

omi i i i io o o o o o o o o o o o o 0 0

• • • • • • • • • • • • • t i •o or -p' on o o o o o on o n ! ©ro h— X p— X o o O ' o c X X »-— ro•5* ro o H— -o o o o o o o ro -si i-*, onX m— X o OJ -c* -sj U1 O' ro JV H-

1o

1o 1o o o 1o

1o o. 1o o o o 1o 1 '

0 - 0• • • • • • • • • • • • • • : *o on on -S' »— UV -p* O". o o o CD ►—o or oTi OJ OJ ro ro Ul UJ on o o o o r oro «sj -P* o OJ »—* X sC -0 o •p* ■c* ro oj

ro on -0 4> O' OJ o o on ro X X

O'—4 > • • “0z it ii II ii 11 n n ii ii it H ii ii ii II —< O' OJ >—1 rn o o ;c

o o h— !-«• o o © »-S ►— h-• o o o m o o O o O o o o o o o o o o o o o J>• • • • • • • • • • • • • • • z • • • • • • • • « • • • • • • 2o X X o I—* o w c r OJ o r j r— X o oo © r—» ro f—» t— 0J ro 1—* © uJ ro 1—• ro »—• ►— -n mo on sC X o -sj o •Si »—• c r OJ X o p— ro X on © o X on O' c r OJ OJ -u X o 30 —4o o u* X © r* »— X OJ -s4 on • s *— c j ' c r c •Sj oo © -P' o ro 0>J © on ro 0 1 O' r r 5* mo 00 OT. r— o i— c r r o on •Sj X O' o -< O' c r -si ro c ro on uJ 4> ro o © O' X G Cm ro x

on -tr CO on -0 © ou on -sj r— OJ X X © ro C f—4 co© -P' -0 r o © X o ro © ro ro m OjJ IIo •Sj Cr © X on X © 0>j cr -si © a © c , •c.. s:

G m m rr. r r m m rr. m m ,m m m m rn m o II no o O o o c o c o o o o o r s IT. ? j• • • • • • • • • • • • • • • "s* o o o o o o o o o o o o o o O i m m

c O o o o o o o o © © © © CD ro OJ OJ OJ OJ rsj 04 OJ rsj OJ OJ OJ 0JJ oo uJ on:s cc c> o o X o F-— o »— © X © CD © s : X

o fSJ 'UJ o X o -0 © NJ © r■* © © >— 3> 0«j cro ro O r— OJ o X © -0 O 1—- © ►— -0 2 • •

<s -0—s — «—• •—4 l-S MS »«4 PM MS ►-4 O o

o z z Z z 2 Z 21 z 2 z 2 2 z 2 —4 o om —1 —i —i -H —1 —1 •n —i *—1 —1 —t —H -H

o Cj O' © o o o c o o O CC o o o S* —» — — •^s ^S «—* *— *—« —S •— *— — —- -H sc• • • • • • • • • • • • • • • o r - r— r— fmm r— f— m oooC o o o o o <2* © sC © o © G o © 5T on JS UJ ro r— O © X -sj O' on -P' u J r o r— 2 C .X o o o c -4 X X X X o »— O 1— © ro w w. S— W S— w S— w > S-* w w — S-» on ro IIf— Ou -o © -> OJ SJ on X cr cr G X ro —s OJ-p* OJ o X -si on o -si fmm © O' o •sj UJ II II II 11 11 II 11 II 11 II II Ii II ii 11 —1

iia m r -m o o O o o c - o o c o c O o o o ! cn G© » « • » • A • • • • • • • • • O

o o o o o o o o o o o o o o O CD ci­ f—• X r— r— 4T -0 1— X ro t-— © r - O ' f— > •• • • • • • • • • • • • • • • s~ on OJ OJ O O \J\ X © i—* ro t—- -si p— r— oo OJ o sC OJ s£> o © o c o c o c © OJ © C - J -si X cr r—» ro vn X *— M— c r X on m o oo oc o o >£ r~ o o o o o o o © OJ OJ p— -si X c r on -p* on. 0J -p* on X ro on' • ohJ O' on o on ro OJ Oj »— o o o rvj OJ on ro •si o O © on o © X X X h - © •sio on •si OJ OJ on ro ro oo CD c a © -C' OO •sj ro o © O' X on i— J> |SJ on- o

rr. on Oj on ro -p* un o o X on r— r— OJ ro o>* m m m m m m m m m m rr. m m m m !Gt - o o o o o o o o o o o o o o o

o O o o o o o o O o o o o o o r» o r— o h- *— o ro o ■c- ►— o r - o• • • • • » • • • • • • • • • ror— o c o o ■on c r OJ OJ on or. ooc o f—* h-» o o X o o © © © X © c1— r — »— ro r—* r— o © c r X ■Si © © oc r o c r r o X o -sj X X •Sj OJ O' ro © c r

ias

\0TIm-<r*I

x

XJ>

L Ocom

rvjo

COo

-vl 0 3 0 ^ 0 J-VJ1 > o\_nvr. On-vi o - " o - s j v i r o o C n v j

R° £5* r o i\3 to

V>l Js-V! CO l\D V} VN • « • •r u o c o v ji

^ o50 to K to <> to C5 50 to LOt)

L U O O O O O O O O O O O O O O O 0 : 1 I I II IIII 1 stf- n - m IT, sj“ p - in s 0 xO tartCP tartrt- m m

i i ; O' CM X tartcn m x£ CM p - o in to in in mi i m s3* CC m CO i n xT ta— <r prt CSI o -rt fM CM

| t O ■sT xl- xtf* <r O Q o o o xy xy xl- m oj i " j • • « • • • • • • • • • • • •

! i 1ii

ovUJ

o o 01

o 01

o o o 01

o o o O o o

1

iiI

jij

o

sO CM m o o o p - m xO xO rt- x0 o noi m o ps* CM in p - p - xy CP •n o fxa. CM m; i 1 o LP rt­ m CSJ *n fSJ in xO CM o CP CO O rn' o CC fs- tart CM tart CM CD P- xO o o o o OI i CM • 9 • • • • • • • • • t • • •; mM o tart o -rt rO o tarl O CM tart tart o p-j o tart o o O o O o O o o o o o o o o1 ° o o o o a

1 ‘o O|

o Oi o o o C o p-x 1

J: LU UJ IJU UJ UJ

1 ! UJ UJ

1UJ UJ

iUJ JJ LU U-1 UJ LU

l—JX>.

o : CO CsJ xC CP in < f sO m m CM CM CM m m Os UJo • CP xj' ro • y in o cc xff- fs* CO sO s r ^x m o O CO xO o tart 00 xO rt- n CP in tart xO *n CPP - CO >0 CSJ cm tart p - xO n j m 0* CO Ml stf- m. o N?“ tart o sT in in Crt tart in CD xp xO X o LP

o • tad CO ro JO m o in sC r - T CM S«* <rx cc tart r^ o o o o o O ta- -rt P- or cc ac- CP CPo o u.» •CO xT in CO O si- *Xta in xj- m fXta pxta no o m CP o o o o o o o o O' CP <p CP CP CP

tu o tart • <\I v0 lo O cv CO rsj cr tart o S?* xO n* m • • f • • • • • • • • • • • •Q • < — 4 -M xO tart tart CO s t rsi xO tart tart xtf- tart r - Q o c o o o o o o o o c o o o o— c • • • • • • • • • • • • • • • N, 1CO o 00 o o o O c o o o o o o o o •~N o LU

tart u j Ol/> It ta—

•h I— It II n II II II II ii n II 11 II II II ii CP r\j rn. o m X CP xT rt- CM rt- fx- X- XUJ ro tart LP —< •y. xf rn o ta<4 CP m tart IP o o X ’ IP

It CSJ CO ta— ta- —*• tata — r—. r-ta rttartta, rtta P-aa rtta —ta CM rs- «o n - in rt- m prt CM o xp tart o CP o xO< - o z : , tart CsJ ro 'J- in xO p - cc c> o tart CM ro sT in •yz cr »ta4 o taH c* 00 CP cc c* rt- O o o o p-

m LU ' tart tart tart tart •—* tart 3 • • • • • • « • • • • • • • •21 Ima W tar •ta tar ta> tar tar tart ta* tart •«* tata Wr ta— tart v» c> o o o o o CD o CD O o o o o ou 71 rt- rt- Sta L« L— rt- fa— u> u - L* h - U- J - Jta» J* 'JJ< O o — 21 Z 71 z 2T z n 71 ~y ZT z* z cX o o M to— ta* ta< tai« tart tart tart tart tart tart tart tata Mart tarto cc IP a1 • • 3D xtf* n - o m tart in rt- tart 00 m IP. xp CP p -

rn 0 s OO < tart X o o tart tart cc cc X CP CM o o taavV o ta—ta xy 3 , nx •cr CM xl* rsj m fx» in rt— 'C CD r— o xO

ta— tart <n 1^ po rn ro rr» m Csl m ro CSJ m m r0 m CSJ C CP CO O X CP ta-* o Pta< o N- CD o CD o rt-1 UJ UJ . O O O O O O o o O C o c o O o •ta • • • • • • • • • • • • • • •

CrT tar* UJ C o o o o o o o o o C o ry o o> - •JJ 11 o UJ LU UJ 'X! •JJ UJ LU LU UJ LJ JJ LL‘ I f UJ LU c T 1X J= 21 j UP •T p - o *0* in x3- in O a: m fO. m, XIi— 11 ro UJ in cp rn P - cm O ? CO 00 00 rn tart s0 fXtaUJ oo o CO o o rsj in, cp %r xG pr, CM in cr O part1 V CM - o c r <r CSJ cc o xT o - to—d LO CO C O rn sT o xj- > - ta-« p - m (M CM CM x0 •y o o CP 3D vO — CM

LTl 'JJ 1Z UJ xO xO x3- o 2> N- P - O N- CM Ml 5 s rn tT' rn fc— c xj- CM -n m X?" X sT 3D CM ta— CM p- 2* vCI h— rt: o >3“ xO po sC sO fSI fw CO O m n - < - CSJ tart o cc o LO o rt- P“ xO tart xj- 00 rt- m in o

. J 'JJ u . p>4 r«— tart •-j CsJ cr tart tart r-ta ta-i tart p-rt •-rt C7 in o CSJ xp in sO X? p - -rt xO -2) CM O X P - oDa­ 2 • • • • « • • • • • • • • • 27 • • • • • « • • • • • « • • •rt— < o r—x o o O a o o o o o o o o o o O o i J o o o tart tart ta­ ta­ o o O — o o cr> cc o o UJ rt-CD < p - CM rt— II 11 it II II II ii II II ii II II It II 11 Z1 a • • <r -rt

rt— o rO _ i1 >— o tart X in in m P- (P rn ro xj* o O \r X o X X

CM x ta* 1 LJ ta— *— ta­ •Ita tata tata «-•. tata rtta rtta rtta rtta rtta rr-. rtta > CM CO ta-> xj* rt- m x0 CP ro. sj- in X CP tart ro( CL • J tart CM ro n3- in xC p - CO O' o part CM ro. n 3 *n xC C" o (M in xO 0-J O xp o *M — xT o

CO 2 <T tart tarttart tart —j ta-4 21 fSta X xj* X x3“ m x0 CM O uo xT O rt- /tata, <MIt It O w taT tar ta* w tar ta> tar tart tart —r w- —«■> tart •-rt LU • • • • • • • • • • • • • • •

< UJ UJ UJ UJ •JJ UJ LU UJ UJ UJ UJ UJ l-J UJ lU Z n - r— ro xj- O CP tax o xO o xO rsj xO (M XV LU tart rsj (JJ 27 Z ’ z 71 Z 71 22 z* 22 71 T* 2* f . 22 LU tart fSta rt«- o >c •n i xl" •rtX| CM o O •7s 2x fx.u - X 25 ta— X -ta tart— tart •ta tart tata tart tart tart tart ta-i tata —rt part tart tart ta- ta­ prt — tart -rt tart ta­

-o rt- -J -J ta l taJ tal ta l - J •J taJ . J taJ .J _ l -J

CUS-2-T-BUTYL-5-ISCPREIPYL-1,3-C1XATHI ANE,0 S IDE

THE INPUT PARAMETERS WERE WL = 250.500 W2 = 211.900 W3 = 140.000

J12 = -12.200 J13 = 2.100 J23 = 2.700Tht CALCULATED FREQUENCIES AND INTENSITIES ARE

LINE I 1) = 0.14236326 03 INTI I) = 0.1058 317E 01LIME! 2) = 0.206223GE 03 INK 2) = 0.664892 8E 00LINE! 3) = 0.2464128E 03 IN T( 3) = 0.1276794E 01LINE! 41 = 0.2035468E 03 INK 4) = 0.7323559E 00LINE! 5) = 0.2442924E 03 INTI 5) = 0.1325962E 01LINE! 6) = G.3224712E 03 INK 6) = 0.9730820E--06LIME! 7) = (J. 1396870E 03 INTI 7) = 0.9806516E 00LINE! 81 = 0. 1804326E 03 INK 8) = 0.66964 09E--04LINE! 9) = 0.25861132 03 INTI 9) = 0.68413126 00LINE!10) = 0.9949 72 IE 02 I »* J T I 10) = 0 . 6 7 9 2 718 E •-06LINE! 11) = 0. 140242HE 03 INK 11) = 0. 1015897E 01LINE! 12) = 0.2184218E 03 INK 12) = 0.1260900E 01LINE(13) = 0. 2 5 6 4 8 9 9 E 0 3 IN T(I 3 ) = 0.7130014E 00LINE! 14) = 0.21 5744 IE 03 INK 14) = 0.I 3 419256 01LINC!15) = 0. 1375652E 03 INK 15 ) = 0.945U766E 00

ENERGY INTENSITY DE/DM GE/DW2 DE/DW3 DE/DJ12 DE/DJ13 0E/DJ23322.4712 0.0000 0.9998 0.999 3 -0.9991 -0.0000 0.0189 0.0378258.6113 0.6842 0.9 762 0.0238 0.0001 -0.6520 0.5004 0.0115256.4895 0.7130 0.9771 0.0228 0.0000 -0.6493 -0.4816 -0.0125246.4128 L.27 68 0. 9762 0.0237 0.0001 0.3479 0.5000 0.0138244.2924 1.3260 0.9 771 0.0223 0.0001 0. 3506 -0.4821 -0.0103218.4218 1.2609 0.0237 0.9760 0.0003 -0.3478 0.0097 0.5040215.7441 1.3419 0.0228 0.9768 0.0004 -0.3506 -0.0087 -0.4697206.2230 0.6649 0.0237 0.9759 0.0003 0.6521 0.0092 0.506320 3. 54 6 8 0.7324 0.0228 0.9768 0.0004 0.6 49 3 -0.0092 -0.4675180.4326 0.C001 0.9535 -0.9528 0.9993 -0.3015 -0.0005 -0.0365142.3632 I.G5 8 3 0.0001 0.000 4 0.9995 0.0001 0.4908 0.4800I 40.2428 1.0159 0.0010 -0.0005 0.9 99 5 0.0028 -0.4913 0.4560139.68 70 0.980 7 - 0 . t.Mj 0 9 0.0013 0.9996 -0.0027 0.4724 -0.4938137.5652 0. 94 51 0.0001 0.000 3 0.9996 -0.0000 -0.5097 -0.517899.49 72 O.COOO -0.9533 0.9535 0.9998 0.3C15 -0.0183 -0.0013

OBSERVEDFRS-iU QY259.5'& 257.5~ 2p7.5 & 255.5247.5 & 245.5245.5 L 245.4218.4215.75............_206.2205.5160 - 110

119

r. r-* P— PM h-* P-» p— M* ro r—< *— —* ■—• p— M •— • pm *-•

U"i Ur. U1 **"*J -si -O —N cc sC o T T-~* *rt ■v -CC 2 li- 2 f z iZ ' >© 'X, O u j -F* 00 •X p—• CC “V m m n m rn m rr. m m m m m• • • • • • • • • • n «■-* —» —• —* *—» —* —1* mm4> ro r*« -J © c* © un JaJ r— r— h— r»* *—■fO © o h— >c mm O' U1 o un > ro r— c sC ■X O' onrvj NJ © -c* o UJ un O' CO o < •*— —■ *— —

O C O »— I—o r:

O 'X O ■£ rsj u» oo i— o u-. ro o oC M U i- CC W C M N P Uioo->^-^^;c^-c^'C'0'u>

V/ • >W W' < W I W N—✓M o H c O' N QNJ N ^ ITi U I - C\) c- ■<

C ^ C O' ^ ^ O' Sj U r- M O ^ r * ^ C i - * C 2 r - 0 ^ o O K G CO N I" C C ' ^ , ^ - ^ N r - N ) 0 ' S N r O N ) ' \ )

2-H

11 II II 11 II ii n ii j iii

11 11 ii n n '„t

rr O o o o o o © o o o o o o 00

• • • • • • • • I • • • • • •oo i—* H-* r"- »— *— mm 1— ♦— ro 1—* mm i— N— mm—« UJ - 0 CO “U UJ ro v£ OJ o un - 0 4>—i o o •X uJ nC r— r— X \C cc O' vO UJ-< fVJ O' o CO sC r— CO un -sj o -u r—»

CO Sk- r-» f— o CC © © > ro ^ O'CO -> cr 0 SO CC ro V—o U*1 ro un ro p-aor. vU r - r\j ■ 4 O' >c ^ !UJ r o -< O' UJ O'

rr.m n rr. n m n m m !m m rr rr. rr. m IT.

1V* o o o o © o c o lo o o © o o OZD UJ UJ u- uJ Oj UJ UJ OJ (UJ UJ UJ uJ SjJ UJ ’UJ

o c o

J > O C - C O 3 0 ' X X CO i - i - t— p— ' w ' C O h - O l N J ^ N N c C ' - J C ' C C'„i. w. ^ wJ d J ' (?• *> C C* n ' v£l O

i ^o o o o o o o o o o o o o © © » < • • • • « « •o o © o © o o © ac o o o o o o c os*) C' N' w -N O N o

ZDr-a

•c. c? DC7 2*

l-N2 :

mm"Z.

mmV*

m —i —I —H —n —< —H —t -H -H -H —1 .—1c. —* —• •—v —» *-* —■»•o

© r—un

r— f—'OJ r o

p—» f—

1—© X Ssl O' U1 OJ ro P--

NO fO W *— mm •—> W mm w w V—* mmr - i

11 11 II n II II II ii ; ii II II II II II : II

I i i —i ^ . “ j —i —i —i —iO O O O O C O O C C C -------------------------------------------------------------------------------~

o o O o• • • •>u uc o UCCC © ©cr. on ►— 0 scc- oJ © X

I 1 1 1- o r. O C' C; o o c

I I

©rn o c o c* o a o o o o o O o

00

1 • • • • • • • • • • • • t • •© © cc p—• ro P-— p—* iO fO UJ © o r - UJ p—' p—• t— © o u*l o ro p—• un O ' o o un VO r oo Uj Uv1 ro UJ o © o H- \ s o p— X o r occ © fV O ' r o ro -0 ro ro O ' OI O ' o un C

^ ; cc O ' O ' t o ro mm -U un un mm UJ UJ O '4> rn r—* "X UC UJ -0 cc mm o un o UJ © vJT. -u

n © rv mm 4> Sjv '— © UJ © -o <D Uj -NP ©N m r “. rn iT; T p i . 1 *n m m n m rr. fTi .n m

1©C. © o o O o

1© o

1o o

l© o o O o Lo

o r* © r— o p— fmm o ro o mm o mm o p— *

•>» O O O O CC :s h- r - r - a ' . 03 oI'l C' O C C -s Ul I N ►- M P- S 2 O c. c > i r c c ' - N M ^ C ' W ' . ' J i M C r - f — -* J * 0 > C M l j j r — JO i£l OC O H o M

oI I I I I I I I 'S.o o o o o o o o o o o o o o o c j

O V-’ CC >»< J 1 O' O C1 Ol - j C C O >1 >1 u io a o . ' w ^ o j i y o ^ s w o ocC . O u I i- O I u i u j W ^ O ' J ' M ' j j O ' W

— 1X mm 5* Gm ro p— * m

oCD II It mm * M

> unr* "O lo 1 mm roG P M CC —4 Ir* UJ ©> • • ■o i-H o h-• E» ©m o O 30 G© © o > -H

•T'l - cT nr. r*/W —< im s ; rr, ur,© c . ro -?c Ic p—- inm UJ ii unuc sc ©o II m ©»— vC ©m rr. Cun f M t ©

O -<> UJ CO ! r -52 • • lO JO mm

c o 1p m c o 1 UJz t l—1 s : 1 ©rn UJ Xzz ta­ , >UO ro ii•— wJ

M -P M 11 2>rn mm 2cn rn

O «•> •

©m UJ o un

• ©uc 1 un© mm,© ©m

I Io o o o I I IO 0 . 0 o

I I io o o■V Ifl j 3 - W «J O u ; Ol UJ O ' f * d O ' c : c w m j - c w. - N i c r -*;0

oO o rr,• t NO i— o O DJ uc iv4> O NW

\J1\J1VJ1

&~9

—J —J — — I CO VOCo Co -*

Ji— -J -vlfi» R*O n "JVO |NJ

On --4

»I-J or.V 03 C COM c*jE 50 2K wo

O Z T

TRANS-2-T-&UTYL-5-ISCPROPYL-l»3-QXATHUANFfO SIDE

THE INPUT PARAMETERS WERE va = 248.500 W2 = 192.700 W3 = 95.000

J12 = -11 .500 J13 = 3. 300 J23 = 10.900THE CALCULATED FREQUENCIES AND INTENSITIES ARE

LINE! 1) = 0. 1017596E 03 INTI 1) = 0. U 3802GE 01LINE! 2) = 0. 1920759E 03 INTI 2) 0.6 7 76869E 00LINE! 3) = 0.2450628E 03 INTI 3) = 0.1184299E 01LINE! 4) = 0. I812P27E 03 INTI 4) = 0.9179732E 00LINE! 5) = 0.2416920E 03 INTI 5) = 0. 1220039E 01LINE! 6) = 0.3468452E 03.. INTI A) = 0. 1118739E--04L INEI 7) = 0.9096638E 02 INTI 7) = G.9060258E 00LINE! 8) = 0. 1513765E 03 INTI 8) = 0. 1105324E--02LINE! 9) 0.2565280G 03 INTI 9) - 0.7705610E 00LINE! 10) = 0.3797949E 02 INTI 10) 0. 82 792 19E--04LI HE( 11) = 0.98 36 957E 02 INTI 11) = 0.1081534G 01LINE!12) = 0.20354 20E 03 I N T I 12 ) = 0.1 10 2 6 9 0 E 01LINE!13) = 0.2531571E 03 INTI 13) G.8240759E 00LINE! 14) = 0. 1927471E 03 INTI 14) - C.1302672E 01LINE!15) = 0.8759464L 02 INTI 15) = 0.8732561E GO

ENERGY INTENSlTY DE/UWl DG/UVJ2 DE/QW3 DE/DJ 12 DE/DJ13 DE/DJ23346. 8452 0.0000 0.9998 0.99 3 7 -0.9935 -0.0004 0.0213 0.1115256.5288 0.7706 0.9876 0.0129 -0.0005 -0.6075 0.5090 0.0007253. 1571 0.8241 0.9910 0.0089 0.0000 -0.5941 -0.4887 -0.0051245.0628 1. 18 4 3 0.98 76 0.0121 0.0002 0.3904 0.5095 0.0079241.6928 1.2200 0.991 1 0 .008 1 0.0008 0.40 33 -0.4883 0.0021203.5420 1. 1027 0.0122 0.98 51 0.0026 -0.3896 0.0009 0.5442192.7471 1.3027 0.0088 0.98 8 3 0.0028 -0.4051 -0.0008 -0.4427192.0 759 0.6777 0.0123 0.9843 0.0034 0.6033 0.0014 0.5515181.2827 0.9180 0.0089 0 .98 75 0.0036 C . 5928 -0.0004 -0.4355151.3 76 5 0.0011 0. 9 789 -0.9727 0.9938 -0.2032 -0.0006 -0.1087101.7596 1.1380 j 0.0001 0.0035 0.996 4 0.0013 0.4891 0.440698.3896 1.0815 O.OG35 -0 .0005 0.9969 0.0147 -0.5087 0.434890.9664 0.90 60 -0.0033 0 .0067 0.9966 -0.0142 0.4873 -0.54638 7.5946 0.8 733 G.OoOl 0.00 2 7 0.9971 -0.00U8 -0.510' -0.552137.9795 O.COCl -0.9786 0.9789 0 .9997 0.2037 -0.0208 -0.0028

OBSiSRV.-lDFR2QU2RCY

257*5 ( e s t i m a t e )254.1 & 252.5245.1242.6 & 240.75205.5192.5 -------------181.2

TRANS-2-T-BUTYL-5-ISGPROPYL-1t 3-UXA Til I ANE » S SlOE

THE INPUT PARAMETERS KEPE ___________kl = 16A.300 N2 = 155,800 W3 = 95.000

J12 = -13.200 J13 = 3.400 J23 = 11.000THE CALCULATED FREQUENCIES AND INTENSITIES ARE

LINE! 1) = 0.1016 U HE 03 INTI 1) = 0. 1239527E 01LINE! 2) = 0.1502928£ 03 INTI 2) ~ 0. 18 70336E'-01L I ME( 3) = 0.16A39A7E 03 INTI 3) - O.L7A17 75E 01LINE! A) = 0.1A14120E 03 INTI A) 0.3557830E 00LINE! 5) = 0.1589689E 03 INTI 5) = 0.188 371OE 01L 1 ME( 6) = 0.2261836E 0 3 INTI 6) 0.35820836--OALINE! 7) = 0.9273096E 02 INTI 7) = 0.87 3006 IE 00LI ME( 8) = 0. 11028 THE 03 INTI 8) = 0 . 8 7 7 19R6E--01LI ME I 9) = 0.1775025E 0 3 INTI 9) = 0.579HU7E -01LINE!LO) = 0.78629066 02 INTI 10) 0.28 398886--01LINE! 11) = 0.961859AE 02 INTI 11) = 0.9 832 750E 00LI ME(12) = 0.163A007E 03 INTI 12) = 0. L7 30106E 01LIMEI 13) - 0. 1720760£ 03 IN T f13) - 0.25 71836E 00LINE! 1A) = 0. 1 5 A 519 2 E 03 INTI1A) = 0. I 9 5 4 6 9 7 E 01LIMEI15 ) = 0.8730AA6E 02 INTI 15) = 0. 7881203E 00

ENERGY INTENSITY 06/Dhl DE/UW2 DE/DW3 0!; / D J 1 2 DE 70J 13 DE/OJ23226.1036 0.0000 0.9989 0.98 32 -0.9822 -0.0020 0.04 66 0.1811I 77.5025 0.0580 0.6465 0.3512 0.002 A -U.9720 0.3869 0.2004172.0760 0.2572 0.8390 0.1609 0.0001 -0.8674 -0.4266 -0.07 74164.39A7 1.7418 0.6469 0. 34 76 0.0055 0.0230 0. 3058 0.2203163.A007 I.7301 0.3524 0.6453 0.0019 -0.0216 0.1380 0.3604158.96 8 9 1.8837 0.8395 0.1574 0.0032 0.1277 -0.4277 -0.05 7615A.5192 1.9547 0. 1602 0.8 325 0.007 3 -0.1311 -0.0496 -0.3420150.2928 0.018 7 0.3528 0.6422 0.0050 0.9 7 35 0.1369 0.38 02IAl.A120 0.3558 0. 1607 0.82 89 O.ulOA 0.8640 -0.0507 -G.3221I 10.2078 0.0877 0.48 70 -0.4 7 47 0.9877 -0.8424 -0.09 74 -0.0383101.6118 1.2395 0.0003 0.0102 0.9895 0.0035 0.4773 0.399596.1859 0.98 33 0. 1929 -0.1801 0.9372 . 0.1081 -0.3362 C. 121792.7310 0.8 7 30 -0.1918 0. 1969 0.9 950 -0.1061 0.28 97 -0.302887.30A 5 0.7881 0.000 7 0.00 66 0.9926 -0.00 15 -0.52 38 -0.58 0678.5291 0.028 4 -0.4859 0.49 15 0.994 4 0.8444 0.0408 -0.1429

£

OBSERVED

172.7 & 171.0

1 $ : ? (broad) 159.9 & 158.0 154.5

141.A-----------

122

IS 2 ,5-Dl-T-RUTYL-l,3-OXATHIANE U SIDE 100 MC

THE INPUT PARAMETERS WERE Wl = 399.100 w2 = 360.100 W3 = 160.0U0

J12 = -12.000 J13 * 6.250 J23 = 5.900THE CALCULATED FREQUENCIES AND INTENSITIES ARE

LINE! 1 ) = 0. 1653168E 03 INTI 1 ) = 0. 106 3 9056 01LINE! 2) = 0.3561606E 03 INTI 2) = 0.6781539E 00LINE! 3) = 0 • 3961 7 1 1E 03 INTI 3) = 0.I277939E 01L I NE ( 6) = 0.3503130E 03 INTI 6) = 0.73 366HE 00LINE! 5) = 0.39I87I6E 03 INTI 5) = 0.1310667E 01LINE! 6) = 0•619313 7E 03 INTI 6) 0.7 196362E-•07LINE! 7) = 0. 139I696E 03 INTI 7) = 0.9896690E 00LINE! 8) - 0.1307278E 03 INTI 8) = 0.87736 61E-■06LINE! 9) - 0.60816996 03 INTI 9) = 0.6R86066E 00LINE!10) - 0.9915878E 02 INTI 10) = 0.3I56616E-■06L I NEI 11) - 0.1607172E 03 INTI 11) = 0.1009006E 01LINE!12) - 0.368I592E 03 INTI 12) = 0.1268909E 01LI ME(L 3) - 0.6038696E 03 IN T I I 3 ) - 0.72293/06 00LINE!16) - 0.36231I0E 03 INTI 16) - 0.1319556E 01LINE! 15) - 0.1368689E 03 INTI 15) = 0.95 75103E 00

ENERGY INTENSITY DE/DWl DE7DW2 0E/DW3 DE/DJ12 3E/DJ13 DE/DJ230BS3RV3DFRi5wU3i>CY

619.3137 0.0000 0.9999 0.99 96 -0.9995 -0.0000 0.0166 0.0268608. 1699 0.68 86 0.9767 0.0232 0.0001 -0.6506 0.6983 0.0126 4o8,0603.8696 0.7229 0.9783 0.0211 0.0000 -0.66 38 -0.68 33 -0.0115 *05-7396.1711 I. 27 79 0.976 7 0.0232 0.0001 0. 3696 0.6 9 86 0.0132 596.5391.8716 1.3105 0.9788 0.0211 0.000 I 0.3562 -0.6832 -0.3109 592.0368. 159? 1.2689 0.0232 0.9766 0.0001 -0.3696 0.0097 0.6999 568.2362.3110 I.3196 0.0211 0.9737 0.0002 -0.3562 -0.0086 -0.6756 562.5356.1606 0.6782 0.0232 0.9766 0.0001 0.6506 0.0099 0.5005 556.2350.3130 0.7336 0.0211 0.9787 0.0002 0.6638 -0.0085 -0.6768 550.5180.7278 o.ooot 0.955 7 -0.9553 0.9996 -0.2966 -0.0012 -0.0251165.0168 1.0639 0.0001 0.0002 0.999 7 0.0000 0.6917 0.6863160.7172 I.0090 0.0022 -0.00 19 3.9997 0.0068 -0.6898 0.66221 39. 1696 0.9895 -0.0021 0.002 3 3.9998 -0.0068 0.6 7 35 -0.6890136.8689 0.9575 0.0001 0.0002 3.9998 -0.0000 -0.5081 -0.513199.1583 0.0000 -0.9555 0.9557 0.999 9 0.2966 -0.0151 -0.0017

F.

IHC217I

TRACERACK FOLLOWS- ROUTINE ISM RED. 16

o-3>i

i.'si

jK'J

in.i

;1 -s

'ujt

ujj

x

ov

mjo

wj

o|VJ

r* 1—r* r- r* r“ I—r* r- i—r* r" r- r* r- —1c. —1M>►—r-“ p— M*00 00 00 OO00 00 00 00 UJ ftss ftMr—1 MSM*MSPMmm MSM. M•— X *—y -T~>0 uj J* O', uTi ur COCOCO-si -N X 0 rn 44 * ' " " 7' 2 V 2! mil 32 n 00 F—mO' UJ x 0 COUJ O COUJ UJ X 0 Co UJ UJ ac rr. rr. m rn m m m m m m m n m m m 0• • • • • ft • • ft ft ft ft • ft ft m —* »—s —. -*» —S—*—s —S*——►—S—S 0 II II — MlOJ 'OJ 4 p- Oj u* OJUJ 00 UJ UJ oJ h—OJ 30 r— h— r—►— x> un4 re X x -*0 00 4 UJ UJ cc ro X -u -j UJ un 4> sOOJ f—0 X X -si O' ur UJ 00 J— r- “C lo -0 o -0 0 -sj JS 0 un unCO uJ un un 00 < s —>s-s w w *—>S-* —• S- SMSP—•* rn 00 c 00-sj O' -o un p—COX 4* 0 COUJ un un X I , C Mft O' m

; r- UJ X un1—1 1 > ft ft "O 12 11 II II 11 II II II 11 II II II II II 11 II —10 00 0» a—1 . rr. 0 0 MS

o o e r—p-• e O O 00 00 F—j—c 0 0 m 0 O a O 0 0 O 0 O 0 0 O c 0 O O 0 0 1• • • • • ft • • • • • • • • ft ft • • • ft ft ft ft ft ft ft ft ft • • —♦o o X O r—*0 O O 0 O a X 0 0 0 on r—• OJ.00 ro r—r—OOhs mm OJ ro 00 00 00 r-* ~n m 1o o X O O 0 00 -sj X un -0 00 4s 0 uJ CO-0 O' UJ 00 CO un Js X O' un —0 un Js 7Z -n Xoo OJ •< O u~ u- OJ X UJ 00 O CO4* un 0 —1 UJ Os' O' X X COUJ UJ 0 Uj UJ /S 0 O' O' rr y n aNi M»/—• O UT. p-s -J :4 p—X X r—X UJ c ■< Uwro UJ UJ 4 - UJ h-* UJ 00 UJ0J r—Us 00 c_ 00 73 —s

1 X UJ fSJ X 4> -si oo X UJ X 4» X UJ -si cz F—* (✓> -c-sj un un CO c C un -si -sj oo un4*uo COX ITUJ II r"CO40 on c- -si -si ur. O' un X 0 X UJ 4 p- y 1i w m (Ti .rr. T. m m T. m m n m m m m m n 11 m p—o o >—>C 0 0 0 a 0 O 0 0 rr. 1 — /i ««• • • • • • • ft • ft • • ft • ft "•s 0 O 0 O 0 c 0 O iO 0 0 0 0 0 0 rr rn UjV o o O O Oo UJ00 oj O' uu COCOCOX cr UJ *0 UJ UJ UJ UJ uu UJ UJ UJ UJ UJ UJ (UJ 00 00 1U0 Js _£nO 0 X s X) 0 J' un 0 UTi X 5: O' OX o -si X O p- '.JJU1 UJ un un _js ur 4' X f— > -4 4 XCO -J unO X Uj 4 OO -*4 UJ 0 CO 1—4* : 2: ■ • 0>0 00 -si —sPM mm Ml mm mm MSMSmm mm mm 0 w "Tj*

0 ‘T‘ CT 'Z 2! zz z* z V 7Z z z z MS0 0 mmm —i —1—1 —g —i —1—H—1 —1—1 —1 -H—1■H .7 >C3 o o O 0 O c O 0 0 0 0 0 O 0 —S«—*—S—S——s —s —•— ———•—* —1 y• • • ft • • • ft ft • • ft • • ft 0 I—i—♦h-» h“ h— m UJ rr,ro o o O 0 00 COCOCOUJ c* UJ UJ UJ X 2: un 4s UJ 0J 1—0 X X -J COun JS UJ 00 2 C_ m

O' o O' 0 O' 0 uTi c 0 un 4* X 4*X 00 S» w Mi­ w S——*w S—M— SMW 00 11p—w o O 0 0 un 4 ur. 4s X ; FMUJ UOoo vn o* O O', r—uJ CO UJ r* COCONj -sj 0 11 II 11 II ll II II II II ll II II 11 II II -nmmII UOa m r— MSm 0 a 0 0 O 0 0 0 O c 0 0 0 0 c 4 0"s. • • • ft ft ft • ft • ft ft ft ft ft ft O rr,

o o CO O O O 0 0 0 O c 0 0 0 c 0 X ro 00 l“* 00 4*UJ X 1—00 00 fmt 4 f— > • si• • • • • • • • ft • ft ft ft ft ft jr 0 O 4' X CO 1—*un t—•X ■sT0 ro X X r— OX X*J X X X 0 —»0 O 0 0 0 0 X S>J 00 -sj X un -si unro 0 X X X O' 4 Uj O m un O l—X o x 0 0 X 0 0 0 O 0 0 0 0 X 0 UJOJ O' M X X mm X h- 00 X O' -sj sOI • C OCOcc -g X X CC►—0 (—O 0 t“*0 I—*-si X O UJ JO00 f— 40 UJ X C' X O' O 4 O’. -sj OO' a? 0 O' CO UJ 0 00 Oop—40 0 00 4*0 X CO X 0 X 00 X 0 ,00 hs un r—*X O' 4 0

rr< ur 00 X -S i h—O' 4*00 ur. 4' 0 ►—O' <X> ru 0"sr“—1 rrs rn m m m m m m m m m m m m ,m 1 ! r>L. 0 0 0 0 0 0 0 0 O 0 0 0 O Oo c 0 0 0 c 0 O 0 O 0 c O r— c 1—* »— »—*0 00 oo’o un F— r- F— F-*r—ft • • • • • • ft ft • ft • ft ft • OJX o O 0 0 X X 0 0 O 0 O X X OCOc- m- H- 0 O' cc -u p- *—00 OOCO -Si O'4 -s w-‘UJ 0 0 cc p—t—•J> 4" cc un 0r—o ro 0J 0 p-»0 4 4 UJ un COCO4*0O

1o o c O 0 0 0 O O C 0 O 0 0 0mc• • • • • • • • • • • • ft • ft X.o un >—■»1—JO0 *—*»—p—00 p—'OJrv Us' 0 r*O' OJ X 00 0 —s -g O O un x;un U1 UJo oj un O 4 UJ»—un ur X -si -U 0

00 X O COCCp-» 4 O' 1—UJ CO4«UJ h—

cr O' C 0 O c 0 C 0 0 O 0 0 arr,• • • • • • • ft • • ft ft • ft ft >so U1 O F—' 4 O 00 uJ 00 00 UJr-* 00 r— 0 0o 00 X 00 -sj un -u 00 -g 0 00 O 0 X 4> XO' OJ h——S O' Oo J' X CO0 —g 4s J— * UJ un 00

JO o O UJ 4 40 X*

40 0 Uj X CO00 O' UJ

ro0\VH•roVJl

ro roD \“vlvo o « •

VOJ i-*

otx) tX)w cn c SM •< W

___ _ . __ - - . . .. - - ------ —

r— r* r - r - r— r - r~ r* r* r - r - r* r - r“ r - -H c— —iF— taM r—« F- 1— i—* ro ro ro ro IO ro ro f o u. IM F* F-* MM MM MM t—« F . MM F* IF FF 2C F* r XIO UJ S ' UT X ur x o O' O' cc sU;- rr. ^c ~7 IT" *C 2T 2 CC “> 2:C V rn ro M- n ,X OJ o o o OJ o O' UJ Lw o u O' t o ro T 5 n m m rp m m m m m rr m r c m rn o• • • • • • • • • • • • • • • m F“» —«. •-« —. «-» —« •MV F» F FM FM. —• o ii H FF FF-C' OJ Uv u* rvj F— r— F-» o r— o X 71 r—• h— i— r - F— r> 21 X)X -O UJ F— X cc T3 UJ un ro o r* un c c u*. U' ro r— o 03 X -o O' un UJ IO F r - -o 1"0 CO ro CO S3 IO cc sO r-> o F— X O o -< w w w w W •M MF w *-F •W w n ro C r oCO -p* ro i-^ un UJ x ro vO X -0 X M X -H

r - UJ -o X•-F > • • ■c i

II II 11 II II II II II II II 11 II It II II O X > Xm o o F .

o c o o r— f-\ O o ro ro r— ►— o o o m o O o o O o c o o c o o o c o o cr o > 1• • • • • • • • • • • • • • • » • • • • • • • • • • • • • » •no o nD sC ff o o o X X o o o un p— t o ro F— ro r-~ f— uJ ro ro ro ro F— *x rn 1

o ■F, CO c /—» o LT o o un -P' o o u . O' ■o o wJ JO X un -p» sO X un X un CC —1 XU- F— F-* d X sC FF ro UJ ur. -u •o UJ -p1 — U-' u- O' sC O O' ro UJ o ro u> O s£ X X m y rr. cIO sC OJ Ui wJ 20 wJ uo sC IO o ro o K u- ►— o UJ J> o M UJ X o h* O F— IO o <_ O —i

-o -o IO UJ un X X F-» u i un X sO UJ X r** r— X -<X I—» X O' X ro uc :ro r o s0 ro H X X m UJ 11 r—

“>• IO ro X - o O' ^F X X x vC X z a: iO rr. rr m rr. r r rr. rr. m m m rr\ rr. rn m m n II rr, r—

o a o c o O cc o o o o a o o m FF 73 F• • • • • • • • • • • • • • • o o o o o o c* o o o o o o c o m m UJr-« o F - FF cc. r— wU ur. UJ O' U“ O' o O wJ UJ wJ UJ Uj UJ UJ Uw UJ U- ‘UJ UJ UJ UJ UJ cn ro 1-V; ro ro o CC o _*>» uJ d -c* ur. UJ un c* X X-• s r—< ro -> FF Uj X VjJ O' UJ un ro u*. ,M > X X Xcc o -u •o FF sC CO F* s0 sD UJ F-* o sD • • >

o ro o —tF*t t—. F-* MM M F I F . mMMM MM M o o X

a D-. 21 nc. cc i : cr z 2 2: 2 z z MM o c MMm -H —<—1 “H—i—1-H ■H —n —1—1 2 >

o o c d a cc c» O Cj c* o o Cl N F . -—*■ mm F-M FM%F F F •—* y «cC• * • • • • • • • • • • • • • —h r- f—• h— r— J— r r u> mFF c f— I— c ►—* ur O' -ps un O' UJ -p* 'UJ UD 2C un -2s UJ ro o n0 X -J X un UJ ro r-M Cm «•

o |NJ ro c cc u j O' o Uj un 4> O' -c* O ro W W- • f %j W w> MF w •—«* w MF W on IO IIU.' o X •P* c d i— O' r— cr ro -u ro o FF UJ X-P' UJ O' < J -J U2 d CO O CO X <x X UJ 11 11 11 ii II II II II II II II (1 II II II -M

IF II XZD rr. |F* FFm o O o o O o o o O o Cj o Q o a un ■ CC

1 s • • • • • • • • • • • • • • • o mo o O o o o O o o O o o o o o o sC ro UJ y-4 >£ f—* Js F— t— ro M un M > • F• • « « • • • • • • • • • • • o o r^, X * 4 UJ JS J2 X UJ F— UJ X ro M ou s£ vJC vC sC o r j c c o O c o o o UJ i -ps un f—• ro ro sX X -u o un o m o : Hw uj d UU sC o s__. o o /—■, c o o uc X Ui cc -O UJ o a UJ un UJ Uj ro UJ un • o cJC sX - o w d 00 o o r— 5 r— cc r— -«u O' o O' ro X 'sJJ cc r— uc X M* UJ ro Mj cun "O OJ o O'. ■JO cc Uj ro F - f-F UJ ro o vj2 X un - o o U1 IO O' r o X X un X o

m u» X ro X X -o o vO -o -P' ro o 3 ?N m m .Tl m m rn rn rr, im ■ rr,

i m m m m• rn o

Ou . o o

1o o o o o o o

io o o o o ; o

o c O c - o o C- O O O CC o o O cc r— o i—• o i— h - ; 0 un F- ro r— F - M*• • • • • • • • • • • • • • • ro : isC cc o o o sC o Njj CC c o o vC o o-SJ o fO .V cc -o sC -u o o ro t o U2 -o ou* c >k «c* e SjJ 20 o h— ur. x 4> o .“O F-» FF FF ►— X -J o h- f—• >j2 “Fj o ,

omi i i I I

o o o o o o o o o o o o 0 0 O• 1• * • • • • • • • • • • , • •M l X F— o o r o ! M iO , o »—• UJ f o ; uj co ' -J cc X UJ O X 1—* FJ X X ' X Xo o X X -s. J> X o M o O ■ O' J>

F-M X o -C'1ro r— UJ UJ 4> o x UJ

o1

o o1

c1

o1 !

O ; o1

o1

cc O o

0

-0

o• • • • • • • ' • • • • • • ; • •o X o o J ' o ro UJ , o IO u*' M- M - ►-■ o4> J—* -S' X X X 4> IO UJ J> r o sD J>i O UJX X C' o UJ O 4> vC 1— UJ O O.- ■No . UJ - o ro u; X u , X -o r— O 4> O': Ul

ryOsvw•rovn

r o roOs~-Jvo o • •vj* -*■

IM

►jJ O to CO L*J CO«v- L‘AJC to M < f. w o aK

szk

ClS-2»5-Dl-T-RUrYt-l,3-nXM’HtANE,S SIOEIIOOHC

THE INPUT PARAMETERS WERE Wl = 267.150 VJ2 = 265.650 W3 = 150.000

J12 = -13.000 J13 = 9.200 J23 = 3.700THE CALCULATED FREQUENCIES AND INTENSITIES ARE

LINE! 1) LINE! 2) LINE! 3) LINE! A) LINE! 51 LtNEl _6) LINE! 7) LINE! 8) LINE! 9) LINE!10) LIME! II) LINE! 12) LIME! 13) LINE! 1A) LINE!15)

0.1562316E 03 0.2563003E 03 0.2701667E 03 0.2503A06E 03 0•2632A 32E 03 0.38_32209E_03_ 0.1502718E 03 0. 16317A5E 03 0.2831521E 03 0.136A053E 03 0 . 1A93079E 03 0. 2692856E _03 0.2762273E 03 0.26332A7E 03 0. 1A33A70E 03

INTI 1) = INTI 2) = INTI 3) = INTI A) = INTI 5) = JNTl 6 )_= INTI 7) = INTI 8) = INTI 9) = INTI 10) = I NT I I1) = INTI 12) = INTI 13) = INTI IA ) = INTI 15) =

0.11138UE 01 0.5767052E-01 0. 1828521E 01 0.6A89601E-02 0.2107320E 01 0.IA539A0E-O5 0•9625657E 00 0.52378 16E-01 G . A2 7293 IE-01 0.33250A7E-01 0.9 A A A 6 A 0 E 00 0.18 50810E__01 0.230 32 6 A E - 02 0.210A158E 010.3935A06E 00,

ENERGY INTENSITY OE/DVil DE/UW2 DE/DW3 0E/0J12 DE/DJ13 0E/DJ23383.2209 0.0000 0.9969 C .9995 -0.996A -0.0001 0.0786 0.0317283. 1521 0.0A2 7 0.6380 0.3A05 .. 0.0015 -0.9 7 36 0.3600 0.1957276.2273 0.0023 0.A567 0.5A31 0.0002 -0.9980 -0.2196 -0.2813270. 1667 1.8285 0.6577 0.3AC5 0.0018 0.0259 0.36A0 0.1958269.2856 1.8508 0.3A09 0.6592 -0.0001 -0.0256 0.1732 0.3199263.32 A 7 2. 10A2 0 .5 A 19 0.A566 0.0015 -0.0018 -0.2A32 -0.2029263.2A32 2.1073 0. A 5 6 A 0.5 A 3 2 O.OOOA 0.0015 -0.2155 -0.2812256.3003 0.0577 0.3A06 0.65 92 ' 0.0001 0.9738 0.1773“ 0.3201250.3A06 0.0065 0. 5 A 16 0.A567 0.0018 0.9976 -0.2391 -0.2027163.17A5 0.052A 0. 1175 -0.1159 0.998A -0.9720 0.0659 -0.1172156.2316 I.1130 0.0017 0.0002 0.9981 0.0003 0.A587 0 . A 8 AI150.2718 0.9626 0.2027 -C.2023 0.9997 0.02A2 0.0A2 3 -0.03871A 9. 3079 0 . 9 A A 5 -0.1996 0.2023 0.9967 - 0 . 0 2 A 0 -0.1208 0.00711A 3. 3 A 7 0 C.89 35 0.00 IA 0.0003 0.993 3 -0.CC02 -0.5372 -0.5158136.A053 0.0333 -0. I 1AA 0. 116A 0.9980 0.9721 -0.1AA5 0.0855

0BS2HV3D?R2.;U21sGY

270.1269.5265.25

126

CIS-2,5-DI-T-BUTYL-i, 3-OXATHlANE,S SIDE!LOOMC

THE INPUT PARAMETERS WERE Wl = 266.650 U2 = 266.150 W3 = 150.000

J12 = -L3.0C0 J13 = LO. 200 J23 = 2.700THE CALCULATED FREQUENCIES AMD INTENSITIES ARE

LINE! 1) = 0. 1562006E 03 INTI 1) = 0.1113050E 01LINE! 2) 0.2563215E 03 INTI 2) = 0 .62 78676E--01LINE! 3) = 0.2701765E 03 INTI 3) = 0. 182A16AE 01LINE! A) = 0.250191AE 03 INTI A) = C.3750423E -01LIME! 5) = 0.263A282E 03 INTI 5) = 0.20755A6E 01LINE! 6) — 0.3832783E 03 INTI 6) = 0.9586056E--06LINE! 7) = 0. 150070AE 03 INTI 7) = 0.92 34042E 00LINE! 8) = 0. 16 33072E 03 INTI H) = G. 9767AA9E--01LINE! 9) = 0.2831572E 03 INTI 9) = 0 . A I 71204E--01LINEI10) 0. 1362153E 03 INTI 10) = 0.61275 16E -01 •LINE(11) = 0. 1A9A522E 03 INTI 11) = 0.91176A3E 00LINEI12) = 0.2693022E 03 I f J T I 12 ) = 0.1851132E 01LINEI13) = 0.276A075E 03 INTI 13) = 0.221 79 79E--01LINE! 1A) = 0.2631707E 03 INTI LA) = 0.208A979E 01LINEI 15) = 0. 1A33206E 03 IM TI 15) = 0.892BA10E 00

0jS3R73DENERGY INTENSITY UE/DWl DE/0W2 0E/DW3 DE/DJ 12 DE/DJ13 DE/DJ23 FR2'.:USi»GY

383.2783 0.0000 0.9962 0.9997 -0.9959 -0.0002 0.0875 0.0228283. 1572 0 . 0 A1 7 0.6602 0.3383 0.0015 ’-0.9724 0.3613 0.1960276.4075 0.0222 0 * 3 8 A 2 0.6156 0.0002 -0.9362 -0. 1824 -0.3203270.1765 1.82A2 0.6598 0.338 A 0.0019 0.0266 0.3660 0.1953 270.1269.3022 I.8511 0.3385 0.6615 0.0000 -0.0262 0.1754 0.3164 269.5263.A282 2.0755 0.3838 0.6156 0.0006 0.0123 -0.1777 -0.3210 265.25263.1707 2.0850 0.61AI 0.38A 3 0.0016 -0.0134 -0.2762 -0.1679256.3215 0.0628 0.3381 0.6615 0.0003 0.9728 0.1801 0 .3157250. 191 A 0.0375 0.6137 0.38 A3 0.0020 0.9855 -0.2715 -0.168616 3.30 72 0.0977 0.0A78 -O.OA58 0.9980 -0.959A 0.0961 -0.1478156.2006 I. 1130 0.00 21 0.0001 0.9978 0.0007 0.A539 0. 4889150.070A 0 . 9 2 3 A 0.2777 -0.27 71 0.999A 0.0134 0.0023 0.00461 A9.A522 0.9118 0.2738 0.27 7 A 0.9965 -0.0132 -0.0898 -0.02741A 3. 3206 0.8928 0.0017 0.0002 0.9981 -0.0004 -0.5414 -0.5118136.2153 0.0613 0.OA39 0 .0 A 6 I 0.9979 0.9596 -0. 1836 0.1250

M ___

CIS-2, 5-Dl-T-PUTYL-l,3-OXArHlANE,S 5 I 0 E ( 100MC

THE INPUT PARAMETERS kERE .

WI = 266 .AGO W2 = 266. AOO W3 = 150.000J 12 = -13 .000 J 1 3 = 10. 700 J2 3 = 2.100THE CALCULATED FREQUENCIES AND INTENSITIES ARE

LINEI 1) _ 0* 1561320E 03 INTI 1) = 0.U116A3E 01-------------------------------- ---------------------------

LINE! 2) = 0.25630A2E 03 INTI 2) - 0 . 6690365E--01LINEI 3) = 0.270162IE 03 INTI 3) = C.1821A61E 01LINEI A) - 0.2500820E 03 INTI A) = U.62A7026E--01LINEI 5) = 0•2636096E 03 INTI 5) = 0.20A9176E 01LINEI 6) = 0.38 33123E 03 INTI 6) = 0.6A7A9A0E -06LINE! 7) = 0.1A99096E 03 INTI 7) = 0.898 1395E 00LINEI 8) = 0.163A37AE 03 INTI 8) = 0.1266396E 00LINEI 9) = 0.2831399E 03 INTI 9) = 0.A213136E -01LINEI10) = 0.136G510E 0 3 INTllO) = 0.788927 IE -01LINEI 11) ■ = 0.1A95796E 03 INTI 11) = 0.891 576 7E 00LINEI12) 0. 2692820E 03 INTI 12) = u. 185100GE 01LINE!13) = 0.276585AE 03 INTI 13) = 0. 39A9562E'-01LINEI1A) = 0.26 30 576E 03 INTI I A) = 0.2067382E 01LINEI16) = 0. 1 A33552E 03 I N T I 15 ) = 0.8931235E 00

ENERGY INTENSITY DE/DWl DE/DW2 DE/DW3 DE/DJ12 DE/DJ13 DE/DJ23383. 3123 0.0000 0.9957 0.9998 -0.9956 -0.0003 0.0920 0.0176283.1399 C.0A21 0.66 30 0.3355 0.0015 -0.9710 0.3627 0.19522 76.585A 0.0395 0.3A88 0.6509 0.0003 -0.9763 -0.16A3 -0.3396270. 1621 1.8215 0.6625 0.3356 0.0019 0.0275 0.3677 0. 19A0269.2820 1.8510 0.3356 0.66A3 0.0001 -0.0270 0.1757 0.315A263.6096 2.0A92 0.3A8A 0.6509 0.000 7 0.0222 -0.1593 -0.3A09263.0576 2.067A 0.6A93 0 . 3 A 9 0 0.0017 -0.0231 -0.2922 -0.1510256. }.)A2 0.0669 0.3351 0.66 A A 0.0005 0.9 716 0.1808 0.31A2250.0820 0.0625 0.6A88 0. 3A91 0.002 I 0.9755 -0.2872 -0.1522163.A37A 0.1266 0.0156 -0.013A 0.99 78 -0.9A85 0.111A -0.1632156. 1320 1.1116 0.002A 0.0000 0.9976 0.0009 0.A515 0.A9181A9.9096 0.8981 0.3161 -0.315 3 0.9992 0.C0A7 -0.0165 0.025A1A9.5796 0.8916 -0.3110 0.315A 0.996A -O.OOAA -0.0755 -0.0A301 A 3. 3552 0.89 31 0.0019 0.0001 0.9980 -0.0006 -0.5A 35 -0.509A136.0518 0.0 7 89 -O.GllA 0.0136 0.9978 0 .9 A ft 8 -C.203A 0 . 1A 5 6

05S3RVSDFRSiUEKCI

270.1269.5265.25

H*N>00

oro

r- r— -r- r* r- r- r- r ~ r ~ X P“ X X X XX rt* x X ro ro ro ro ro ro ro ro OJ 1— » *-« X xt X X X X X X X X

rsj O j xO O- 0“ 01 on O O' cr O' Xi cc 0 rr. 2.’ i- -2 z iT 2 2: 2 2cr ^J 0 >0 O' ro 0 O' OJ oJ O w O' ro OJ m m m rr* m m rr; m m m m m m m m• • • • • • • • • • • • • • • m —■» •X — * -X -X X X X X X X X rt* X

X' OJ O' Srt ro X OJ O' r— OJ O CO -0 r-> 73 ►— »— r— X X0 x O' nC x on oJ X sC ro 0 0 CO 0 OJ 0 0*' -p' OJ ro X O CO X O' on J' OJ no X ’-0 -0 0 X X O -r* un O' 0 •x _£«k O' xj •< W — • X X ""rt X X

O' 00 OJ O' O' 0 wJ 0 ro 0 \J\ r* O

V 11 11 11 ll II II II II II if 11 II ii fl If

C C 0 0 X O 0 0 ro ro x r—* 0 O n•Xm 0 0 O O O 0 0 0 0 0 0 0 0 0 0

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

O O sO X O 0 O r—» O vC O) 0 O 0 on ro IO XJ X X l>0 X X ‘OJ ISO ISJ ISJ INJ XO O CO 0 O O 0 O O O O 0 O 0 OJ O' X O' OJ rsj 00 on O J s O O' on O' on -C*l\j x CO O' Ol -P* ro O. O c ro *— >— • 0 — r OJ OJ O' sC vC 0s rsj rsj 0 OJ OJ O vO O' O ' 1X nT nC O' •X x 0 •-* -0 CO <01>— OJ J' 0 -c OJ OJ 0 C' cc X Co sC X X OJ 00 O' rsj

x> fO CO 0 O' 0 o sn O OJ O OO 0 X XX U1 0 X 0 X X 0 X J' O' -C' -C' on 00f— * 0 O'* iNJ O' sC X on CO 0 OJ O' 0 OJ '

a rn IT, rr. m iT. rr, m m rr, nr m rn m rn r n ;0 0 0 O O 0 0 O 0 0 0 0 O 0 m ;• • • • • • • • • • • • • • • X 0 O 0 0 O 0 0 0 0 0 0 0 0 0 OC.'i c 0 Q 0* j' J' 0*1 rt* O'. -C* OT 0 O o^ OJ v j w*j OJ vJ OJ o» OJ OJ OJ OJ OJ OJ OJ0 «T‘ or or c. O re 0 -x NJ •X ro •x ro 0 jr>— • O O' •0 0 OJ O' >0 rsj -X 0 O NJ vC X »—J*. X ro 4J 0 0 xO 0 X X x IO ro OJ j'

1—^ rt X rt* X X X *rt X rt* rt* XO 2 C 2T 2 2 2 C

—? "/ z >

m —i -X X X X X X X X X X X X X X0 O 0 0 0 0 0 0 O 0 O 0 0 0 X — » — * X x x X x X x X

• • • • • • • • • • • • • • • cn x- f— ► r— X X X0 O 0 0 0 0 on -C' U “. 4> -P" 3C on OJ fo X O O OJ X O' on -r* OJ rsj Xc O 01 on 0 0 -X OJ ro -XOJ O' ro O' sC ro W *—» w — »X X *-* WX W W w *—•rv cr X x c. x X 0 •x rt“ 0 sC •x O sOx 01 0. CC un X ■X O CO •X X CO on 0 II 11 II II II II 11 II II II II II 11 II 11

arr, 0 0 0 O 0 0 0 e 0 0 0 0 0 O 0X • • * • • • • • • • • • • • •

0 0 0 x 0 O 0 0 O 0 0 0 0 0 0 a no X X 0 10X -e* 0 X rs) fSJ X rsj X• * • • • • • • • • • • • • • i*! 0 O OJ 0 ‘X X -C' X 0 O' X O ■05 X »—sC w 0 O s£ 0 0 O 0 0 c 0 OJ 1— 0 OJ 0 CO 10 /*> ISJ O' rsj 0 X O rsj 0O w w O O «£ 0 0 O 0 0 0 0 0 0 0 cn Oj 0 COcc INJ O on 0 UJ OJ no OJ on» ro -OO X COx O O X 0 ►— 0 h- -X ro X X on O OJ X X O X X X X O'O' 00 -P* O O' CO 0 ro 1—J J' 0 ro -p' 0 \j\ 00 ro COJ* sO on O' on OJ ro on -c*

m F-“ Ou ISJ ro cc U1 O' 0 * G OJ O X rsjX rr, m m m rn m1 m1 m1 m (m m m1 m m

■m

1 t 1 1 1 1 1 1wC. 0 0 10 0 0 10 10 10 0 O 0 10 0 10 00 0 O O 0 O O 0 O 0 0 0 0 O 0 O ro X 0 ro (>0ro O ' o n X rsj X ro X

• • • • • • 0 • • • • • 0 • 0 ro0 0 O O 0 O O s0 O 0 0 0 0 00 0 O O 0 > £ O s D O 0 0 0 c «w0CO 0 O O 0 a O O 0 0 0 n0 0OJ 0 x x 0 OJ ro x -0 00 >£ s0 ro >— 0

I I I l Io o o o o o o o

l o mI I V*O O O O O I O O

uin uiO n C ^ w w ^ ojO ojo uiwxOJX\>JUJ!Sjr0.p'a30'OrsJroCC,vO

X —o', ro

o 11 > xr> 1 c x x oj > •—« o m o o o

73mO u.cr x m ojo 11mon

> x 2 •o no o

x o

— 1m2T u- on ro x oj xx iim00>73rr, on

Xt: "7"

rn

11 rt2:*0

NJ /*—O' XO'• *00 730 fc»

mX

T~ X(SJ 73

OnII

rm73m

rsjO'0•

00w-w11

X-C'O•OO

oo

LT.

Iro«•onl0

1—<I

UA'cr—i -< r* 1

1ax->

p

*n<•

i/>

t/i

oo

Io o • •OO IS)

I—£n l\> CO

O O • •o -e*© -4V/! 30

II IO O O O O O Oh B'O'HO'O'CMJION>Nr-00''3a ^ j i M o a o w

ro ro roC\ 0 \ — -J VJJ ' O O

o o rr, •o

>*o

ro vnVJl

0s C_un rvoo UJ

oSu &r-j cn 4-' 1*5 C so M -cJfe'. w

6ti

TR/\NS-2,5Dl-T-nurYL-l,3-0XAril[ANE,0

SUDE,100 MC

»- r~cv-ct- ur nxa o

L- to a3 o ro '? co M to at, O f o

»- if\o\-=r 'o -=rkx nx 0- s o !

NX NX CM CM -3" NX pSf -V ^ NX NX

C\J lOiO —* CM O CO <—•!*0 V* C O s* O' —< O—> «o;o o o o <xj ra\o o o <a o cm m oin in

cm ro o cm -jcn —i —i po o cc in m o c n o o o o o m vocxivoi" O' O O' o o o o o O' o o o < r i n < t > o o o o O ' T i n v j - m o

CM i Om. v o m —i o— o'.in

0 0 0 0 0 0 0 0 0 0 0 0 01 I I I I t I I I

vO vO m •—i o > -3- m- m m cmx t\j n x .m o O' O in o Cin ro «r m so <r in —> o o o o —•m sj- <r o" tn!«r in —i o O o o —<—i in o m o O o o o oI : IULt UJ UJ UJ UJ -j O' cm m in o> r- so

0 a1UJ UJ UJ UJ UJ UJin m o —< m 'J-ro in co in ccun r~- o •—i ccc* x- cm n unr n o x coo O m —< cm

c o O'

UJ UJX (XIcm m CM X

i-j.-iO-X-ON._imXII II II I! II II III II IIII CM UO

N r n c un

UJ UJ UJ UJ UJUJ UJ UJ U J UJ UJ U-1 UJ <3- -C CM

It <-> co cm <r —t in*o ®; r*» O' oro cc! a O' in cm>o m; cn O o(M n o to Ncm o <o in n

M3 —< CM

CO UJ

-o inDC CM vO in inCO CM CM

n it ii

>■ c o h o in s n in c O' *rO O i n N C o n c m n d j -n : a:noinp^inj,M''no^o-cMOj-inoxeC'O-'NnjinII o

UJ O CO (XI CM

ONE CAM EXPRESS ONE’S OBSERVATIONS IN NUMBERS - VAN'T HOFF Trans-2,5-di-t-butyX-1,5-oxathiane, S side, 100 Kc

THE INPUT PARAMETERS WERE Wl = 28A.100 W2 = 276.AGO W3 = 165.000

J L 2 = -13.000 J13 = A.000 J23 = 10.A00THE CALCULATED FREQUENCIES AMD INTENSITIES ARE

LINEI LINEI LINEI LINEI LINEI LINEI L I ME I LINEI LINEI LINE!1C) LINEI II) LINEI 12) LINEI13) LINEI 1A) LINEI 15)

1)2) 3) A) 5) 6 )7)8) 9)

0. 1719117E 03 0.2706956E 03 0.28AA907E 03 0.262118AE 03 0.2786936E 03 0.3962529E 03 0. 16333A5E 03 0. 1799099E 03 0.297A690E 03 0.1A95393E 03 0. 16 6 11A 6 E 03 0.2836736E 03 0.29 16692 E 03 0.27509AGE 03 0 . 15 75 3 A 8 E 03

INTI 1) INTI 2) INTI 3) INTI A) INTI 5) INTI 6) INTI 7) INTI 8) INTI 9) INTI 10) INTI ID INTI 12) INTI 13) IN THAI INTI 15)

0.1 131012E 01 0.323A709E-01 0.18366A9E 01 0.26 3201 IE 00 0.186781AE OL 0.31132A5E-05 0.93250A6E 00 0.A9653I3E-0I 0.5019722E-01 0.2793853E-01 0.9802856E 00 0.1R28A33E 01 C.2236359E 00 0.189 77AAE 01 0.8786295F 00

ENERGY I M T EN SI TY Of:/OWl DE/DW2 DE/DW3 DE/DJ12 DE/DJL3 DE/0J23396.2529 0.0000 0.9995 0.9956 -0.9951 -0.0002 0.0332 0.0932297.A690 0.0502 0.6A71 0.3516 0.0013 -0.9766 0.3577 0.1958291.6692 0.2236 0.8169 0.18 30 0.0000 -0.8867 -0.A1 13 -0.090228A.A907 1.8366 0 . 6 A 7 2 0.3511 0.0017 0.0225 0.3581 0.2012283.6736 1. 8 2 8 A 0.3525 0.6A 70 0.0005 -0.0221 0. 158A 0.3A27278.6936 1.8678 0.8170 0.1826 O.OOOA 0 . 112 A -O.Al10 -0.08A82 7 5.09AO 1.89 77 0. 1827 0.8150 0.0022 -0.1129 -0.0723 -0.3659270.6956 0.0 32 3 0 . 3 5 2 6 0 .6 A 6 5 0.0009 0.9770 0. 1587" 0.3A812 62.118A 0.2632 0. 182 8 0 .8 I A 5 0.002 7 0.8861 -0.0719 -0.3605179.9099 0 . 0 A 9 7 0.AAA 7 -0.A615 0.9968 -0.86A0 -0.086A 0.0178I 71.91 17 1.1310 0.0002 O.C02A 0.9973 0.G006 0. A 8 3 2 0.A50 7166.11 A 6 0. 9 8 0 3 0.1701 -0.1661 0.9960 0.090 5 -0.2858 0.16A7163.33A5 C .9325 -0. 1695 0.1705 0.9991 -0.0903 0.2526 -0.257915 7.5 3A8 0.8 786 0.000 3 0.0019 0.9978 -O.OOGA - 0 . 51 6 A -0.5A39IA9.539 3 0.02 79 1 O • C* 0. A659 0.998 3 0.86A2 0.0532 -0.1110

0BS3R72DFR2,UEi;CY

292.4 & 290.5284 .5285.7279.65 & 277-7 ,275.1_______261 .9

131

ANALYSIS or NUCLEAR MAGNETIC RESONANCE SPECTRUM OF TRANS-2 r 5-Dl-I-DU TYL-1» 3-OXA THlANE » 100 MC

TABLE ENTRY FACTOR = ' 0.0010 "" ...

LIST ENTRY FACTOR = 0.0010

RESOLUTION FACTOR = 0.1000

' INPUT DATA T

NUMBER OF NUCLEI IN SET 1 IS 1

NUMBER OF NUCLEI IN SET 2 IS 1

NUMBER UF~NUCLEI IN SE t 3 1S~ I !

NUMBER OF NUCLEI IN SET A IS 1

NUMBER OF NUCLEI IN SET 5 IS 1

CH[:MicAL SHIFT OF EQUIVALENT SET 1 = 0.42939 9 9 E 03CYCLES/SEC

CHEMICAL SHIFT OF EQUIVALENT SET 2 = 0.3365999E 03CYCLES/SEC

CHEMICAL SHIFT OF EQUIVALENT SET 3 = 0.2840999E 03CYCLES/SEC

CHEMICAL SHITT OF EQUIVALENT SET 4 = 0.2765999E~03CYCLES/SEC

CHEMICAL SHIFT OF EQUIVALENT SET 5 = 0.1650000E 03CYCLES/SEC

COUPLING CONSTANT BETWEEN NUCLEI I AND JI II

I 2 -0.11LOODOE 02I 5 0.3500000E 012 5 0.1120000E 023 4 -0.1310000E 023 5 0.4000000E 014 5 0. 1040000E 02I 3 0.2000000E 01

133

L I NIT 1 2345678 9

10 _ 11

1213141516 " 17-

"" in1920 21 22

_ 2 3 _ 24 2 5-

- 262728 „ 2 9 _

"""3 0313233343536373839404142434445 4 6474849505152

ENfcilGY450.9998450.1997439.8997 4 39.0996438.0996_ 437.2990436.7998436.0996434.4998434.19974 32. 8997__432.4990 426.9990426.2998 425.6997424.9998423.4998 _423.0996 421.7990421.3997416.0997411.9998 405.7993 34 7.5999"347.4990336.4998336.3997325.3997325.2998298.1997296.8997292.5999290.9998290.0997 285.1997_'285.0999283.9998233.8997283.7998283.2998279.4998277.8997275.2998274.8997270.8999 270. 1997 2 62.199 7261.8999 26 1 .7990187.5999 183. 1999178.9999 176.49.99

INTEMSIrr0.0034 0.0016 0.0042 0.0019

__ 0.8552 _ 0.8585 0.8650 0.8766 0.0846 0.8871

0-9013_0.9079 1 .0915 1.0972 1.1068 1.1231 1.1136 1.12241. 138-2 1.1474 0.0024 0.0064 0.0032 3.1744 1.0560 4.420 7 3.5492 1 .0923 1.9064 0.1501 0.0571 0.5 147 0.1848 0.1852 1.0126 1.84 92 3.6277 1.8249 1•8560 3.6791 3.7157 3.7691 3.7628 3.8383 0.0958 0.0369 0.5818 0.2335" 0.2250 0.0490 0.05761.2288 0.0414

INTEGRAL 0.0034 0.0050 0.0092 0.011 I 0.8663 1.7249 2.5398 3.4664 4.35 10 5.2381

6.13947.0473 8.1389 9.2361

10.342911.4660 12.5 795 13.7020" 14.8401 15.9875 15.9900 15.9963 15.9995 19. L739" 20.2307 24.6514 23.2006 30.0929 31.9993 '32- 1493 32.2064 32 . 721 1 32.9059 33.0911 34.9037 36.7529 40.38 05 42.2054 44.0614 47. 7405 51.4562 55-22 53 58.9881 62.8269 62.9227 62.9595 68.5413 63.7748 63-9998 64.0488 64.1064 65.3352 65.3766

OBSERVED FREQUENCY

UNDER H-2 ( 4 5 6 . 3 )

■*57.1436.0434.5452.34 2 6 . 9

425.94 2 4 . 9

-425^-4 2 1 . 4

547.63 3 6 . 4

325.2

2 9 2 . 4

290.52 8 4 . 5

2 6 3 . 7

2 7 9 . 72 7 7 . 7

2 7 5 . 1

2 6 1 . 9

178.7

134

27 336.399 7 3.5492 28.2006 *20 325.3997 I .8923 30.0929 525.229 325.2998 1.9064 31.999330 298.199 7 0.1501 32.149331 296.8997 0.0571 32.206432 292.5999 0.5147 32. 721 I 292.43 3 290.9998 0.1848 32.9059 290.53 4 290.899 7 0-1852 33.091135 285.1997 1.8126 34.9037 284.536 285.0999 1.8492 36.752937 2 8 3.999 8 3.6277 40.3805 255.738 283.8997 1.8249 42.205439 283.7998 1.8560 44.061440 283.2998 3.6791 47.740541 279.4998 3.7157 51.4562 279.742 277.8997 3.7691 55.2253 277.743 275.2998 3.7628 58.9881 275.144 274.0997 3.8388 62.826945 270.8999 0.0958 62.922746 270.1997 0.0369 62.959547 262.1997 0.5818 63.541348 261.899 9 0.2335 63.7748 .. 261.94 9 26 1 .7998 0.2250 63.999850 187.5999 0.0490 64.0488 106.551 183. 1999 0.0576 64.1064 182.152 178.9999 1.2288 65.3352 178.753 176.4999 0.0414 65.376654 I 75.4999 1.1905 66.5670 1 7 5 . 455 173.3999 1.0670 67.6341 175.556 17 1.9999 0.0492 67.6832 171.057 170.2999 1.0067 68.689958 169.4999 1.0209 69.7108 169.559 167.8999 1.U666 70.7774 167.760 167.0999 0.9773 71.7547 167.061 164.6999 0.9430 72.6977 1 6 4 . 462 164.399 9 1.0386 73.736263 162.2999 0.9346 74.6708 162.564 161.1999 0.9 190 75.5898 160.965 159.1999 0.8852 76.475066" 158.3999 "0.898 7 77.3737 1 5 6 . 467 156.0999 0.026 I 77.39986B 155.9999 0.8625 78.2623 155-969 153.4999 0.8672 79.1295 155.570 14 9.999 9 0.8168 79.9463 149 . 371 144.9999 0.0231 79.969472 142.3999 0.0289 79.9983

111iiii 111

ANALYSIS OF NUCLEAR MAGNETIC RESONANCE SPECTRUM OF TRANS 2-T-BUTYL-5-METHYL-lf3-OXATHIANE 100 MC

TABLE ENTRY FACTOR = 0.0010

LIST ENTRY FACTOR = 0.0010

RESOLUTION FACTOR = 0.2000

INPUT DATA

NUMBER OF NUCLEI IN SET I IS 1

NUMBER OF NUCLEI IN SET 2 IS L

NUMBER “0F >1UCL E I IN SET 3 IS I

NUMBER OF NUCLEI IN SET A IS 1

NUMBER OF NUCLEI IN SET 5 IS 1

CHEMICAL SHIFT OF EQUIVALENT SET 1 = 0.9200000E 02CYCLES/SEC

CHEMICAL SHIFT OF EQUIVALENT SET 2 = 0.1580000E 03CYCLES/SEC

CHEMICAL SHIFT OF EQUIVALENT SET 3 = 0.1715000E 03CYCLES/SEC

CHEMICAL SHI FT OF EQUIVALENT SET 4 = 0.2110000G 03CYCLES/SEC

CHEMICAL SHIFT OF EQUIVALENT SET 5 = 0.3010000E 03CYCLES/SEC

COUPLING CONSTANT BETWEEN NUCLEI I AND J I J _ _______

1 2 0.IlOOOOOE 022 3 -0.1300000E 021 3 0.3900000E 011 A 0.1LOOOOOE 02A 5 -0.1190000E 025 I 0.4099999E 015 3 0.2000000E 01

135

136

LINE ENERGY INTENSITYI 325.5999 0.00162 313.9998 0.00203 310.2000 0.8413A 309.7998 0.84395 308.5999 0.85796 308.2000 0.8 64 87 306.2000 0.88018 305 .7998 0.88239 304.3999 0.9024

10 303.9998 0.906411 298.7998 1.089812 298.2000 1.094013 297.2000 1.115114 296.5999 1.125115 294.5999 1.126516 294.3999 1.130217 292.7998 1.162318 292.5999 1.165719 283.9998 0.001020 201. 3999 0.003521 272.5999 0.001422 222.2000 1.042323 222.0000 3.117524 211.2000 4.852925 210.6000 3.107226 199.8000 1.924327 199.6000 1.952228 184.2000 0.464 729 182.6000 0.327030 179.2000 0.8 57 731 177.4000 0.721232 171.2000 3.271833 169.6000 3.319734 167.2000 3.149535 166.8000 3.259536 166.2000 3.451537 164.4000 3.464538 157.4000 3.591339 157.2000 3.630340 154.4000 0. 128641 154.2000 0.155642 153.8000 0.216443 144.6000 0.551044 144.4000 0.505045 144.2000 0.938346' 118.0000 0.048147 112.6000 0.053/48 107.2000 0.034449 106.0000 1.389650 102.0000 1.316651 101.8000 0.039852 101.0000 1.162253 96.8000 1.0941

INTEGRAL OBSERVED FREQUENCY0.00160.00360.8449 510.6 .1 .68882.5467 . 508, 9 5 .3.41154.2916 506.75. 17396.0763 504.9'6.98278.0725 .299.159.1665

10.2816 2 9 1 . 611.406612.5332 295.513.663414.8256 295.415.991315.992315.995815.997217.0396 222.720.157125.0100 2 1 1 .7 '28. 117230.0414 200.531 .993632.4583 165.632.7853 182.133.6430 179.234.3642 177.237.6360 171.140.9556 169.444.1051 166.947.364650.816054.2805 164.557.871961.5022 157.261.6308 154.061.786362.002762.5538

144.2563.058863.997164.045264.098864.133265.522866.839466.879268.041569.1356

54 96.:.’uuo55 95.200056 92.400057 91.400058 91.200059 90.200060 87.200061 86.000062 85.400063 81.600064 80.400065 79.400066 76.600067 76.400068 68.400069 65.8000

.9731 70.1087

.1231 71.2318

.9403 72.1721

.8764 73.0485

.0783 74.1268

.9588 75.0856

.8479 75.9335

.9140 76.8475

.8212 77.6686

.7991 78.4677

.7467 79.2143

.0113 79.2257

.0152 79.2408

.7281 79.9689

.0098 79.9787

.0131 79.9918

0I00100000000000

1111111111

ANALYSIS OF NUCLEAR MAGNETIC RESONANCE SPECTRUM OF CIS-2*5-DI-T-BUTYL-l,3-0XATHIANE, LOO MC

TABLE ENTRY FACTOR = 0.0010

LIST ENTRY FACTOR = 0.0010 )

RESOLUTION FACTOR = 0.1000

In p u t d a ta

NUMBER OF NUCLEI IN SET I IS I

NUMBER OF NUCLEI IN SET 2 IS I

NUMBER OF NUCLEI INTSET~3riS“l

NUMBER OF NUCLEI IN SET A IS 1

NUMBER OF NUCLEI IN SET 5 IS 1

CHEMICAL SHIFT OF EQUI VALENT S E T I = 0.399 09 9 9 E 03CYCLE S/SEC

CHEMICAL SHIFT OF EQUIVALENT SET 2 = 0.3600999E 03CYCLES/SEC

CHEMICAL SHIFT OF EQUIVALENT SET 3 = 0.2676A99E 03CYCLES/SEC

CHEMICAL SHIFT OF EQUIVALENT SET A = 0.2651A99E 03CYCLES/SEC

CHEMICAL SHIFT OF EQUIVALENT SET 5 = O.IAOOOOOE 03CYCLES/SEC

COUPLING CONSTANT BETWEEN NUCLEI I AND J _ „ _ 1 _ H

1 2 -0.120 000 0 E 0 21 _ 5 0.A2S0000E 012 5 0.59000D0E 013 A -0.I300000E 023 5 0.8200000E 01A 5 O.A700000E 01

139

llllllllll

1HC217I

ANALYSIS OF NUCLEAR MAGNETIC RESONANCE SPECTRUMCIS--2.5-Dl-T-BUTYL-l,3-0XATHIANE, 100 MC

NE ENERGY INTENSITY INTEGRAL OBSSRVSD FREQUENCY1 408.1997 2.7545 2.7545 408 .02 403.8997 2.8917 5.6462 4 0 3 .73 396.1997 5.1118 10.7580 596.34 391.8997 5.2418 15.9998 592.05 368.1997 5.0757 21.0755 368 .26 362.2998 5.2781 26.3536 562.57 356.1997 2.7128 29.0664 556 .28 350.2998 2.9336 32.0000 350.59 283.0999 0.1768 32.1768

10 276.1997 0.0122 32.189011 270.0999 7.3691 39.5581 270.112 269.2998 7.4309 46.9390 269 .513 263.2998 8.3801 55.3691 oAx op;14 263.1997 8.4155 63.784615 256.2998 0.2101 63.994716 250.2999 0.0054 64.0001 ”17 158.1999 0.0208 64.0209 160.018 153.8999 0.0200 64.0409 155*619 152.3999 0.0196 64.0605 154.220 151.2999 1.1571 65.2175 153.521 148.0999 0.0189 65.2364 149.822 146.9999 1.1155 66.3519 149.023 145.3999 1.0930 67.4449 148.524 145.2999 1.0320 68.4769 147.225 144.2999 1.0133 69.490226 141.0999 1.0551 70.5453 143.727 140.9999 0.9974 71.5427 145.028 140.0999 0.9800 72.522829 139.4999 0.9 781 73.500830 138.4999 0.9612 74.4621 141.331 138.3999 0.9385 75.400632 1 35.2000 0.9464 76.347033 134.2000 0.9307 77.2777 C£. 15734 134.0999 0.9097 78.187435 132.4999 0.8930 79.0803 Intensity.i s o f f36 131.4999 0.0137 79.094037 12 8.2 999 0.8664 79.960438 127.2000 0.0133 79.973739 125.5999 0.0131 79.986740 121.2999 0.0127 79.9995

1LL0WS RUUTINE ISN REG . 14

IBCOM 82012480

MAIN 00002B 70

OF

ENTRY POI NT = 50005488

C'

" table entry f a c t o r'(LIST ENTRY FACTOR =

r RESOLUTION FACTOR =

C

c

ANALYSIS OF NUCLEAR MAGNETIC RESONANCE SPECTRUM OF CIS-2,5-DI-T-QUTYL-l,3-OXATHIANE, 100 MC

0.0010 • 0.00100.1000

INPUT DATA

NUMBER OF NUCLEI IN SET I IS 1

NUMBER OF NUCLEI IN SET 2 IS 1

NUMBEir OF" NUCLE I T M S E T 3 f S I

NUMBER OF NUCLEI IN SET A IS 1

NUMBER OF NUCLEI IN SET 5 IS 1

CHEMICAL SHI FT OF EQUIV ALE~NT~SEf~f 0~.399~ 99 9 E~03CYCUE~S /SEC

CHEMICAL SHIFT OF EQUIVALENT SET 2 = 0.3600999E 03CYCLES/SEC

CHEMICAL SHIFT OF EQUIVALENT SET 3 = 0.2681A99E 03CYCLES/SEC

CHEMICAL SHIFT OF E QUIV AL ENT SET 4 = 0.26A6A99E 03CYCLES/SEC

CHEMICAL SHIFT OF EQUIVALENT SET 5 = O.IAOOOOOE 03CYCLES/SEC

COUPLING CONSTANT BETWEEN NUCLEI I AND J __ I H _ '

' .. 1 2 -0. 1200000E 02 ' ' ' “1 5 0.A250000E 012 5 0.5900000E 013 A -0.I300000E 023 5 0.7200000E 01A 5 0.5700000E 01

141ANALYSIS OF NUCLEAR MAGNETIC RESONANCE SPECTRUM OF

CIS-2,5-UI-T-BUTYL-lt3-0XATHIANE, 100 MC

LINE12345 ~ 678 9

1011121314151617181920 21 22232425262728293031323334353637383940

ENERGY408.1997403.8997396.1997391.8997368.1997362.2998356.1997 350.2990283.0999276.2998270.0999 2 69.2998263.2998263.1997256.2998250.1999158.2999153.9999152.4999151.2999148.1999146.9999145.3999145.1999144.4999141.1999 140.8999 140. 1999139.3999 138.699 9138.3999135.0999134.3999134.0999 132.5999 131 .3999 "128.2999127.0999125.5000121.2000

INTfc2.2.5.5.5.5.2.2.0.0.7.7.8. 8. 0. 0. 0.'0. 0. 1. 0. 1. 1. 1. 1. 1. 1. 0. 0.

" 0. 0. 0. 0. 0. 0.

" 0. 0. 0. 0. 0.

NS I I Y 7545 891 7 1118 2418 0757 2781 7127 9336 18110994 3840 4269 3319 2927 1935 0908 003200 31 .003115760030116009340440029805550090995 9 9894 9768 9386 9574 9457 9098 8930 0022 8664 0022 0021 0021

INTEGRAL2.75455.646210.758015.999821.075526.353729.066432.0000 32. 1812 32.2805 39.6645 47.0914 55.4233 63.7159 63.909464.0001 64.0034 64.0065 64.0096 65.1671 65.1701 66.2860 67.3794 68 . 42 34 69.4532 70.5087 71.5177 72.5136 73.5031 74.4799 75.4185 76.3759 77.3217 78.2315 79.1245 79.1267 79.9931\ 79.9953 79.9975 79.9995

OBSERVED PRfiviUEMOY408.0 405.7 596.3592.0 568.2 W . 5556.5550.5

270.1 '259.5 "265.25

160.0

155.6154.2155.5 149.8

149.0148.5

147.2145.7145.0

141.5

ca. 157Intensity is still off.

Ulllllll

142

APPENDIX 4

INFRARED SPECTRA

The ir spectra of the 2-alkyl-3-mercapto-l-propanols and the cis- and trans-isomers were obtained from carbon tetrachloride solutions. The ir spectra of 2,5-dimethyl-l,3- oxathiane (12) and 2-t^-butyl-5-methyl-l,3-oxathiane (16) were obtained from liquid smears.

TRA

NSM

ITTA

NC

E (%

)

Figure 30IR spectrum of 3-mercapto-2-methyl-l-propanol (28)

WAVELENGTH (MICRONS)3 4 5 6 7 8 9 10 11 12 13 14 15

100100

1000 900 800 700(J500) 4o(.y2000

CM-l

Figure 31IR spectrum of 2-ethyl-3-mercapto-l-propanol (43)

WAVELENGTH7 8

(MICRONS)9 10 1 1 12 13 14

100 1 I._J-.-J___ .1.1. ... i , I , i i .. j .. ,_l--- . 1. . i ,, 1 ,r_l___'.

-■- ■

. ■ -- ;.. - : : ;: :

A-

rA----

't'l _r * ; :( / ■ : 1A ......^\ fW/’ : - h . -/ li : 1 - • l_n:- • :■ .

ri r A 7 C! i / i /i

i / 1 " i /i! J i- ■i 8 jv ■- I i r1 - II •• - - •• /j I . :r :

I I : j\ 1 1 1 I . . J 1111 (137-1254)

15100

80 80

60

40

20

<t

% 40 Z<asf—

20

4000 300Q[f 2000 (1500ted# CM-l

1000 900 800 700

4>■P*

TRA

NSM

ITTA

NC

E (%

)

Figure 32IR spectrum of 2-isopropyl-3-mercapto-l-propanol (45)

WAVELENGTH (MICRONS)12

ICO100

— I*

1000 900 8 800 7004000 3 2000 C M -lUl

IR spectrum of 2-t^-butyl-3-mepcapto-l-propanol (37)

WAVELENGTH (MICRONS)

100100

1000 900 800 7004000 30003<5l? 2000 (1500ft* &/ CM-l

$

ABSO

RBAN

CE

WAVELENGTH (MICRONS)3.0 4.0

Figure 3410- IR spectrum of 2,5-dimethyl-1,3-oxathiane (12)

. 204

30-

40-

.50-

.60-

1.0-

4000 3500 3000 2500 2000 1500cm

10.0 15.0 20.0 25.00 .0-

Figure 34 continued -

10 -

20 -

30 -

40 -

50 -60 -70 -

1300 1200 1100 1000 800 600900 700 500 400 148

Figure 35IR spectrum of cis-5-ethyl-2-methyl-l,3-oxathiane (13c)

100

WAVELENGTH (MICRONS)8 9' 10 ■ 11 12 13 14 151 ■ I ■ -L__ ____ L _ j___ I...-i

£080 £

Ai

it40

20

nd

■ \

P I 111) (137-1)94)

4000 3000^, : 2000 00 CM-l1000 900 800 700

■P'VO

TRA

NSM

ITTA

NC

E (%

)

Figure 36

IR spectrum of trans-5-ethyl-2-methyl-l,3-oxathiane (13t)

WAVELENGTH (MICRONS)

100

M 111) flJ7 t55<!

4000 2000I

1000 900 800 700f1500CM-l

r

Ulo

Figure 37IR spectrum of cis_-5-isopropyl-2-methyl-l,3-oxathiane (I4c)

WAVELENGTH (MICRONS)

100100

M 1111 037)334)

1000 900 800 7004000 3000 15002000CM-l

IO/_ ' 1 »t WOMWM

I

Figure 38IR spectrum of trans-5-isopropyl-2-methy1-1,3-oxathiane (14t)

(MICRONS)WAVELENGTH

100100

20

1000 9004000 3000 800 70015002000CM-l

Lnto

«»

Figure 39IR spectrum of cis-5-t-butyl-2-methyl-1.3-oxathiane (15c)

WAVELENGTH (MICRONS)8 10 11 12 13 14 15

100

80

Z 60<h-

co 40 Z <O '

*20

1 , 1 , I 1 I 1- J - 1 1 1 ___1.1___ L. —I____----- - ——A --------- 1

A t — — *\jS < ! a _ 1 ri _ / /1 r fAr'*V. i n / \v y [• 1 \ J I j

1r;

j

: :- -

: - : ' : ; -

- ■ 1- 1 -

*r| ' ' ;1 . j .

1 '■■'I'” - 1 — 1112 (137-1254)1

10

4000 3000 c 7 2000CM-l

1000 900 800 700

TRA

NSM

ITTA

NC

E (%

)

Figure 40IR spectrum of trans-5-t-butyl-2-methyl-l.3-oxathiane (I5t)

WAVELENGTH (MICRONS)

100100

1000 900 800 7004000 1500/coj, &

2000CM-l

TRA

NSM

ITTA

NC

E (Vo)

Figure 41IR spectrum of 2-t-butyl-5-methyl-l,3-oxathiane (16)

WAVELENGTH (MICRONS)

8 9' 10 1 1 12 13 14 15100 100

— V-H-

— \

if----

I-

7001000 900 8002000CM-l

cnCn

Figure 42IR spectrum of trans-2-_t-butyl-5-methyl-1,3-oxathiane (16t)

WAVELENGTH (MICRONS)

100100

Z 60

£

PR 1112 (137-1254)

4000 3 0 d Q ^ v 2000 g lo p O 1000 900 800 700CM-l

LnCT\

Figure 43IR spectrum of cis-2-t-butyl-5-ethyl-1,3-oxathiane (17c)

WAVELENGTH (MICRONS)

100100

Z 60

40

1000 900 8004000 3000 70015002000 CM-l

Figure 44IR spectrum of trans-2-t-butyl-5-ethyl-1,3-oxathiane (17t)

WAVELENGTH (MICRONS)

100100

Z 60

1000 900 800 7004000 3000 15002000 CM-li-*in

Figure 45IR spectrum of cis-2-t-butyl-5-isopropyl-l,3-oxathiane (18c)

(MICRONS)WAVELENGTH

100100

LU 'Z 60<I-</)

1000 900 800 7004000 3000 15002000 CM-luiVO

IRAN

SMII

lAN

Ct

(%)

Figure 46IR spectrum of trans-2-t-butyl-5-isopropy1-1,3-oxathiane (18t)

(MICRONS)WAVELENGTH

100100

40

1000 900 800 7004000 3000 2000 1500 CM-l

Figure 47IR spectrum of cis-2,5-di-t-butyl-l,3-oxathiane (19c)

WAVELENGTH (MICRONS)

100100

LLI

4000 30001 1000 900 800 7002000CM-l

Figure 48IR spectrum of trans-2,5-di-t-butyl-1,3-oxathiane (19t)

(MICRONS)WAVELENGTH

100 100—

M -i

4000 30003<>Z7./ 1000 9002000 (1500/< O/. 800 700CM-lO'K>

APPENDIX 5

MASS SPECTRA

Figure 49Mass spectrum of 3-mercapto-2-methyl-l-propanol (28)

100

90-

70-

60- MeHS PH

40-

30-

20-

10“

20 30 40 50 60 70 80 90 100 110 120

164

Figure 50Mass spectrum of 2,5-dimethyl-l,3-oxathiane (12)

100 i

90 -

CHcis + trans

70-M.W. 132

60 -CH

50-

40"

30-

20 -

10 -

m/e 165

Figure 51Mass spectrum of trans-5-ethyl-2-methyl-l,3-oxathiane (13t)

100

90 - Et80 -70 -

60 - Me50 -40 -

30 -

20 -

10 -

m / (

166

Figure 52Mass spectrum of trans-5-isopropyl-2-methyl-1, 3-oxathiane (14t)

1001i-Pr90-

70-Me

60'

40-

30'

10 '

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200'm/e

167

Figure 53Mass spectrum of cis-5-t-butyl-2-methyl-1,3-oxathiane (15c)

lOO-it-Bu

80- cis70-

Me60-

40-30-

20-

io-

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

m/e

168

Figure 54Mass spectrum of trans-5-t-butyl-2-methyl-1,3-oxathiane (15t)

100

trans

CH60 -

4030 "

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200m/e

169

Figure 55Mass spectrum of 2-_t-butyl-5-methyl-1,3-oxathiane (16)

1 0 0 -i

90- CH,

cis + trans

70 - M.W. 174t-Bu

50 -

40-

10 -

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 18010m/e

170

Figure 56Mass spectrum of cis-2-t-butyl-5-ethyl-1,3-oxathiane (17c)

Et100-,

CIS

80-t-Bu70-

60-50-40-

30“20“

10-

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200m/e

171

Figure 57Mass spectrum of trans-2-1-butyl-5-e thyl-1,3-oxathiane (17t)

Et100

90-

70- t-Bu

50-

30-

10 "

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200m/e

172

Figure 58Mass spectrum of cis-2-t-butyl-5-isopropyl-1,3-oxathiane (18c)

i-Pr

70-60-50-

40-

30-20-

10-

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210m/ e

173

Figure 59Mass spectrum of trans-2-t-butyl-5-isopropyl-l,3-oxathiane (18t)

100 -t i-Pr90 -

trans80 -70 - t-Bu60-

50-40-

30-

20 -

10 -

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210m/ e

174

100-|

90- 80-

70- 60-

50-

40- 30-

20 -

10-

10

Figure 60iMass spectrum of cis-2,5-di-t-butyl-l,3-oxathiane (19c)

IL l,

t-Bu

V st-Bu

ILl A ■■ ll[ '-i ■

CIS

111 I 1' 1 i r -I— •— r20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220m/ e

175

Figure 611Mass spectrum of trana-2,5-di-t^“butyl-l,3-oxathiane (19t)

10(ht-Bu90-

80-70-

t-Bu60-

50-40-30-

20-

10-

10 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220m/ e

176

177

BIOGRAPHICAL DATA

Name: Patricia Ann White (Mrs. Edward White v)

Date of Birth: September 20, 1941Place of Birth: DuBois, Pennsylvania

Secondary Education: Meadville Area High SchoolMeadville, Pennsylvania

Collegiate Education: Massachusetts Institute ofTechnology 1959 - 1963 S.B.

Honors: NASA Fellow 1964 - 1967