conformal symmetry and pion form factor: soft and hard contributions ho-meoyng choi(kyungpook...

19
Conformal symmetry and pion form factor: Soft and hard contributions Ho-Meoyng Choi(Kyungpook Nat’l Univ.) 2007 APCTP Workshop on Frontiers in Nuclear and Neutrino Physics anti-de Sitter space geometry /conformal field theory(AdS/CFT) Correspondence[Maldacena,1998] QCD (with massless quark) Brodsky and de Teramond [PRL 96, 201601(06), PRL 94, 201601(05)] Light-front holographic wavefunction LF display confinement at large inter-quark separation(z large) and conformal symmetry at short distances(z small). 2 / / / 1 ~ ) 1 ( 8 ) ( Q F x x x CFT Ads CFT Ads ring amplitude z LF holographic mapping QCD: LFQM + PQCD Refs: PRD 74, 093010(06); PRD74, xx(07, Feb.)[hep-ph/0701177][Choi and Ji] z=0

Upload: theodora-hunter

Post on 29-Dec-2015

219 views

Category:

Documents


1 download

TRANSCRIPT

Conformal symmetry and pion form factor: Soft and hard contributions Ho-Meoyng Choi(Kyungpook Nat’l Univ.)

2007 APCTP Workshop on Frontiers in Nuclear and Neutrino Physics

anti-de Sitter space geometry/conformal field theory(AdS/CFT)Correspondence[Maldacena,1998]

QCD (with massless quark)

Brodsky and de Teramond[PRL 96, 201601(06), PRL 94, 201601(05)]

Light-front holographic wavefunction LF display confinement at large inter-quark separation(z large) and conformal symmetry at short distances(z small).

2/

/

/1~

)1(8

)(

QF

xxx

CFTAds

CFTAds

String amplitude z LFholographic mapping

QCD:LFQM+PQCD

Refs: PRD 74, 093010(06); PRD74, xx(07, Feb.)[hep-ph/0701177][Choi and Ji]

z=0

Outline

1. Introduction on Light-Front(LF) formulation2. Light-Front Quark Model(LFQM) description3. LFQM prediction of pion form factor: (I) Quark distribution amplitude(DA) (II) Soft(LFQM) and hard(PQCD)

contributions to pion form factor (III) Comparison of LFQM and Ads/CFT

correspondence results on DA and form factor

(IV) transition form factor (V) and Gegenbauer moments of pion4. Conclusion

Comparison of equal-t and equal LF-=t+z/c(=x+=x0+x3) coordinates

Equal t Equal

p·q=p0q0-p·q

p·q=(p+q-+p-q+)/2-p·q

(p±=p0±p3)

p+: longitudinal mom. p-=LF energy

p2= m2

p0=p2+m2

p2=m2

p-=(p2+m2)/p+ (P+:

positive)

z=x3

ct=x0

ct+z=x0+x3=x+

=c

x+

Poincare’ group(translations P, rotations L and boost K)Kinematic generators: P and L for ET(6) P+,P, L3 and K for LF(7)

Light front(LF)

tt’

=t+z/cz

t

v

ct’=(ct+z)z’=(z+ct)

=v/c and =1/(1-2)1/2

’ = e= cosh= sinh

t=0 is not invariant under boost!=0 is invariant under boost!

LFxk

x(=k+/P+)

1-x

Advantages of LF: (1) Boost invariance

Advantages of LF: (2) Vacuum structure

k1

k2

k3

k1+k2+k3=0

k1+

k2+

k3+

k1+ + k2

+ + k3+=0

Equal t Equal Not allowed !since k+>0

t

Physical LF vacuum(ground state) in interacting theory is trivial(exceptzero mode k+=0)!

k0=k2+m2 k-=(k2+m2)/k+

Advantages of LF: (3) Covariant vs. time-ordered diagram

LF valence

LF nonvalence

Electromagnetic Form factor of a pseudoscalar meson (q2=q+q--q2

<0 region) in LF

<p+q‘J+(0)|p>F(Q2) =[dx][d2k]

n(x,k’nx,k)

in q+=0 frame

ee’

P P+q

=

q2=-Q2

x,k+(1-x)qx,k

n n

n+2

n

+

q+

P=(P+,M2/P+,0), q=(0,2P.q/P+,q) in q+=0

Model DescriptionPRD59, 074015(99); PLB460, 461(99) by Choi and Ji

coul

z

JJnlm

JJnlm

V

andkk

zz

2

QQ

QQ2

hyp0QQ

222

QQ22

Q22

QQQ

m3m

S2S

3r

4- ]br[br a

(r)V(r)VV

k where

]Vkmkm[H

1/4 for 1—

-3/4 for 0-+

H0=M0

x

mk

x

mkM

mmM

pvpu

x

i

iinlm

1

])([2

),(),(

)/2kexp(-k4

)k,(x

)k(x,)k,(x),k,(x

22

221

220

221

20

2251100

22z3/2

3/4

i

JJ,iii

JJ,

21

z

21

z

1),(16

2

1003

21

0

kxkd

dx zJJ

Normalization:

Fixing Model Parameters by variational principle

Input for Linear potential: mu=md=220 MeV, b=0.18 GeV2

+ splitting

fix

a=-0.724 GeV, qq=0.3659 GeVand =0.313

0|]V[H| 00

Central potential V0(r) vs. rPhys. Rev. D 59, 074015(99) by Choi and Ji

Ground state meson spectra[MeV]PLB 460, 461(99); PRD 59, 074015(99) by Choi and Ji

Model Parameters and Decay

constants PRD 74(07) (Choi and Ji)

159.80(1.4)(44)161[155]0.3886[0.3419]0.45 [0.48]

130.70(10)(36)130[131]0.3659[0.3194]0.22 [0.25]

fexp[MeV]fth[MeV]qQ[GeV]mQ[GeV]

246[215](fL)188[173](fT)

220(2)(fL)160(10)[SR:Ball]

0.22 [0.25] 0.3659[0.3194]

K* 0.45 [0.48] 0.3886[0.3419] 256[223](fL)210[191](fT)

217(5)(fL)170(10)[SR:Ball]

Linear[HO]

2/)(

2/)(

)()()(

)()()(

**

**

L

KKT

K

L

KKT

Kfff

Sum-rule[Leutwyler, Malik]:

K

*[For heavy meson sector: hep-ph/0701263(Choi)] important for LCSRpredictions for B to or K*

Quark DA and soft form factor for pion

PRD 59, 074015(99); PRD74,093010 [Choi and Ji]PRD74, 093010(06)[Choi and Ji]

22

),(16

),(3

2

kkx

kdx

F(Q2)~exp(-m2/4x(1-x)2)

Comparison of LFQM respecting conformal symmetry with the Ads/CFT prediction

F(Q2)~exp(-m(Q2)2/4x(1-x)2)

e- e-

M M

e- + M e- + M

q

x

1-x

y

1-y

TH

),(),,,,(),(]][[)( *332 kxlkqyxTlyldkdQF MHMPQCDM

Hard contribution to meson form factor

where

(x,k)=R(x,k)x (spin w.f.) (,) +(,)

PQCD analysis of pion form factor

D1 D2 D3=D1 D4 D5 D6=D4

kg

A1 A2 A3

B1 B2 B3

),( 1 kx

),( 2 kx

),( 11 lqyy

),( 22 lqyy

q

dx][dy](x,Q2)TH(x,y,Q2)(y,Q2)leading twist

Suppresion of DA at the end points leads to enhancement(suppression) of soft(hard) form factor!

Soft(LFQM) and hard(PQCD) contribution to pion form factor

PRD74, 093010(06)[Choi and Ji]

HO Linear

(,) +(,)

(,)

(,)

AdS/CFT=(16/9) x PQCD

PQCD

Transition Form Factor

x,kT

1-x,-kT

0,qT

1,qT

2222

221

0

2

1

0

2

'

)1()(~)(

)1(6

),(

2

mk

mx

km

kkddxQF

xx

Qxdx

f

FQ

RNLO

LO

PQCD

Ads/CFT =(4/3) PQCD

Linear(LO)

HO(LO)

NLO

L. Del Debbio[Few-Body Sys. 36,77(05)]

(Lattice)

(CLEO Collab.)

(E791 Collab.)

(asymp)

(Transverse lat.)

(Chernyak and Zhitnitsky)

<2>

Second moment of pion

Our results[PRD75(07):Choi and Ji]

<2>= 0.24 for linear =0.22 for HO

Ours

1

0 21

1

2/3

1

0 )(

)12(),(

)1(6)(

)12()(1)(),(

1),(

xxxxdx

and

xxx

where

xCaxx

dxx

nn

as

nnnas

VP

Gegenbauer moments

1-error ellipse

twist-two

Gegenbauer moments a2 and a4 for pion

twist-four

asymp.

CZ

Ours:a2[a4]= 0.12[-0.003] for

linear=0.05[-0.03]for HO

424

22

77

8

35

8

35

35

1

35

12

aa

a

LCSR-based CLEO-data analysis

Conclusions and Discussions

1. We investigated quark DA and electromagnetic form factor of pion

using LFQM.

2. Our LFQM is constrained by the variational principle for QCD-motivated effective Hamiltonian

establish the extent of applicability of our LFQM to wider ranging hadronic phenomena.

(a) Our quark DA is somewhat broader than the asymptotic one and quite comparable with AdS/CFT prediction

(b) In massless limit, our gaussian w.f. leads to the scaling behavior F~1/Q2 consistent with the Ads/CFT prediction

(c) We found correlation between the quark DA and (soft and hard) form factors

(d) Our and Gegenbauer moments of pion are quite comparable with other model predictions

such as (1) Electromagnetic form factors of PS and

V[PRD56,59,63,65,70 ](2) Semileptonic and rare decays of (PS to PS) and (PS to V)[PRD58,59,65,67,72; PLB460,513](3) Deeply Virtual Compton Scattering and Generalized Parton Distributions(GPDs)[PRD64,66](4) PQCD analysis of meson pair production in e+e- annihilations[PRD 73]