confinement, quark mass functions and chiral-symmetry ...efb22.if.uj.edu.pl/talks/biernat.pdfpion...

22
Confinement, quark mass functions and chiral-symmetry breaking in Minkowski space Elmar P. Biernat Franz Gross (JLab), Teresa Pe˜ na (CFTP/IST), Alfred Stadler (U. ´ Evora) Centro de F´ ısica Te´ orica de Part´ ıculas (CFTP), Instituto Superior T´ ecnico (IST), Lisbon September 9, 2013 EFB22 Krak´ ow Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 0 / 12

Upload: others

Post on 24-Apr-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Confinement, quark mass functions andchiral-symmetry breaking in Minkowski space

Elmar P. Biernat

Franz Gross (JLab), Teresa Pena (CFTP/IST), Alfred Stadler (U. Evora)

Centro de Fısica Teorica de Partıculas (CFTP), Instituto Superior Tecnico (IST), Lisbon

September 9, 2013

EFB22 Krakow

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 0 / 12

A Model for all Mesons (talk by A. Stadler)

• Aim: a self-consistent model for all qq mesons initiated by F. Gross and J. Milana[Gross, Milana; PRD 43, 1991]

properties:

1 Poincare covariancelight quarks require relativistic treatment

2 confinementlinear: suggested from nonrelativistic potential models and lattice QCDstudies[e.g. ’Cornell-Potential’; Godfrey, Isgur; PRD 32, 1985; Bernard et al.; PRD 62, 2000]

3 spontaneous chiral symmetry breaking (SχSB)existence of massless Goldstone pion in chiral limit of vanishing current(bare) quark mass and dynamical generation of constituent (dressed) quarkmass from self-interactionsNambu-Jona-Lasinio-type mechanism, see e.g. Dyson-Schwinger approach

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 1 / 12

Bound-State Equation in Covariant Spectator Theory

(CST) (talk A. Stadler)[Gross, Relativistic Quantum Mechanics and Field Theory, 2004;

Savkli, Gross; PRC 63, 2001]

• Bethe-Salpeter equation

• CST: propagator pole contributionsapproximate sum of ladder andcrossed ladders

• light equal-mass quarks and deeplybound states like pion:charge-conjugation symmetricfour-channel Gross equation

Im k0

Re k0

µ

µ

2× =

+

+

+

Γ Γ1+

Γ2+

Γ1−

Γ2−

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 2 / 12

qq Interaction Kernel (talk A. Stadler)

[Gross, Pena, Stadler, EB; in preparation]

• Manifestly-covariant Minkowski-space generalization of nonrelativisticlinear+constant potential V (r) = σr − C

• ‘linear-plus-constant’ potential kernel:

〈VLφ〉(p) ∝ σh(p2)h[(p − P)2]∫

d3k2Ek

1

(p−k)4h[(k − P)2]

[

φ(k)− φ(pR)]

〈VCφ〉(p) = − Cmh(p2)h((p − P)2)φ(p)

• use phenomenological form factors h(p2) ∼ 1/(Λ2 − p2)α for each off-shell quarkline at interaction vertex[Gross, Riska, PRC 36, 1987; Surya, Gross, PRC 53, 1996]

h(p2) h(p2) h2(p2)S(p)S(p)

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 3 / 12

Quark Self-Energy

[Gross, Pena, Stadler, EB; in preparation]

• Works of Gross, Milana, Savkli: quark’s self-interactions with kernel neglected

• our improved self-consistent model: account for self-interaction in dressed quark

propagator S(k) = 1/k−m0−Σ(k)+iǫ

= Z (k2) M(k2)+/k

k2−M2(k2)+iǫ

Σ(k) = A(k2) + /kB(k2)

• calculate dynamical CST quark mass function M(k2) from one-body CST equationfor self-energy

1

2

1

2+

+

=

S S0

S0 S

SS0 Σ−

Σ+

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 4 / 12

Pion and Chiral Symmetry

• Pion requires consistency with chiral symmetry: NJL-type mechanism for SχSB

• note: linear confining kernel part does not contribute to

1 scalar part A (dynamical quark mass) of one-body CST equation2 two-body CST equation in chiral limit for zero mass pion

⇒ decoupling of confinement from chiral-symmetry breaking![Gross, Milana; PRD 45, 1992]

⇒ Lorentz structure of linear confining potential can have scalar component:[Ikeda, Iida; PoS, Lattice 2010. Koike, PLB 216, 1989. Tiemeijer, Tjon; PRC 42, 1990; PLB 277, 1992; PRC 48, 1993]

VL ∝ σ[λ11 ⊗ 12 − (1− λ)γµ1 ⊗ γ2µ]VL

VC ∝ Cγµ1 ⊗ γν

2

[

gµν − (1− ξ)(p−k)µ(p−k)ν

(p−k)2

]

VC

ξ gauge parameter

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 5 / 12

NJL-Mechanism for SχSB• chiral limit (m0 = 0): scalar part (s.p.) of one-body equation for A and

bound-state equation for a massless pion are identical

12

12+=

S−1(p)s.p. A(p2)

−1

P = 0

P = 0

P = 0

= +12

12

P = 0 P = 0 P = 0= 12 + 1

2

γ5A

γ5A0 γ5A0

γ5G γ5G0 γ5G0

⇒ a massless pion state exists! Goldstone pion in chiral limit associated withspontaneous chiral symmetry breaking

• m0 > 0: the equation for A ensures that there is no solution of the bound-state

equation for a massless pion [Gross, Milana; PRD 43, 1991]

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 6 / 12

Mass function (Preliminary)• scalar-vector mixing parameter λ = 2: linear confining potential does not

contribute to self energy

• constant interaction only contributes to A

⇒ mass function M(p2) = C(6+2ξ)

8mh2(m2)h2(p2) +m0

• M(m2) = m determines constituent quark mass m

• 3 parameters C , Λ = 2.04 GeV and mχ = 0.31 GeV fixed by fit to lattice QCDdata at negative p2 in chiral limit

Lattice QCD data from Bowman et al., PRD, 71, 2005 extrapolated to chiral limit

ç

ç

ç

çç

çç

çççç

ç

ççççç

ç

ç

ç

ç

ççççç

ç

çççç

ç

ç

ççç

ççç

ç

çççç

ç

ç

çç

ççççççççç

ç

ççççççç

ç

ç

ç

ç

çççççççç

ççç

ç

ççççççççççççççççççççççç

ççççççç

ççç

ç

ççççççççççççççç

ç

ççç

çççççç

ççç

ççççç

ç

çççççççççççççççççççç

ççççççççççççççç

çççç

çç

çççç

çççççç

ç

ççççççç

ççç

ççççç

ç

ç

ç

ç

ç

ççç

ç

ççççç

çç

ç

ç

çççç

çç

ç

ç

çççççç

ç

ççç

ç

çç

ç

çç

ççç

-10 -5 00.0

0.1

0.2

0.3

0.4

p 2 H GeV2 L

MH

p2LH

GeVL

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 7 / 12

Mass Functions for Finite m0 (Preliminary)Lattice QCD data: [Bowman et al., PRD, 71, 2005]

m0 = 0.016 GeV

ç

ç

ç

çç

çç

ççç

ç

ç

çç

ççç

çç

ç

ççççççç

ççççççççç

ççç

ççççççç

ç

ççççççççççççççççççç

ç

ç

ç

ç

çççççççççç

ç

ççççççççççççççççççççççç

çç

ççççç

çç

çççççççççççççç

ççç

çççççççççççççççççççççççççççç

çççç

ç

ççççççççççç

ç

ççççççççççççç

çç

ççç

ç

çççççççççç

çççç

ç

ç

ç

çççç

ç

ç

ç

çççççççççççç

çç

ç

çççç

ç

çç

ç

ç

çççççç

ç

ççç

ç

çç

ç

çç

ççç

-10 -5 00.0

0.1

0.2

0.3

0.4

p 2 H GeV2 L

MH

p2LH

GeVL

m0 = 0.032 GeV

ç

ç

ççç

çç

ççççççç

ççççççççççççç

çççççççççççççççççççççççççççççç

çççççççç

ç

ççççççççççççççççççççççççççççççççççççççççççççççççç

çççççç

ççççç

çççççççççççç

ç

ççç

ç

ççççç

ç

çççç

ç

ççççççççççççççç

çççççç

çççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççç

-10 -5 00.0

0.1

0.2

0.3

0.4

p 2 H GeV2 L

MH

p2LH

GeVL

m0 = 0.047 GeV

çç

ççç

çç

ççççç

ççççç

çççç

ççççç

ç

çççççççççççç

ç

çççç

ççççççççççççççççççççç

çç

ç

ç

çççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççç

ççççççççççççç

ççççççççççççççç

çççççççççççççççççççççççç

ççççççççççççççççççççççççççççççççççççç

çççççççççççççççççççççç

ç

ç

ççççççççççççç

-10 -5 00.0

0.1

0.2

0.3

0.4

p 2 H GeV2 L

MH

p2LH

GeVL

m0 = 0.063 GeV

ç

ç

ççç

ç

ççççççç

ççççççç

ççççççççççççççççççççççççççççççççççççççç

ççççççççççççççççççççççççççççççççççççççççççççççççççç

ççççççççççççççççççççççççç

ççççççççççççççççç

çççççççççççççççççççç

çççççççççççççççççççççççççççç

ççççççççççççççççç

çççççççççççççççççççççççççççççççççççç

çççççççç

-10 -5 00.0

0.1

0.2

0.3

0.4

p 2 H GeV2 L

MH

p2LH

GeVL

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 8 / 12

Pion Form Factor [Gross, Pena, Stadler, EB; in preparation]

Electromagnetic pion current in relativisticimpulse approximation: e.g.

γ

π

q

q

π

qjµ

h(p2) h(p′2)jµ

S(p) S(p′)h2S(p) h′2S(p′)

h−1jµh′−1

(reduced) off-shell quark currentjµR=f (γµ + κ iσµνqν

2m) + δ′Λ′γµ + δγµΛ + gΛ′γµΛ

Λ(′) =M(p(′))−/p

(′)

2M(p(′)); f , δ(′), g chosen such that jµR satisfies Ward-Takahashi identity

⇒ pion current conserved[Surya, Gross, PRC 53, 1996]

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 9 / 12

Pion Vertex near Chiral Limit

[Gross, Pena, Stadler, EB; in preparation]

P = 0 P = 0 P = 0

PPP

=

=

+

+

1

2

1

2

1

2

1

2

mπ 6= 0

⇒ approximated pion vertex function Γ(p,P) ∼ γ5h(p2)

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 10 / 12

Pion Form Factor: Results (Preliminary)

κ = 0.6, mπ = 0.38 GeV

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

Q 2 H GeV2 L

FH

Q2L

0 0.1 0.2 0.3

1.

0.8

0.6

Q 2 H GeV2 L

FH

Q2L

data: [Amendolia et al., NPB 277,1986; Brown et al., PRD 8, 1973. Bebek et al. PRD 9, 1974; PRD 13, 1976; PRD 17, 1978.Huber et al., PRC 78, 2008.]

⇒ our model for quark structure can give reasonable results for pion structure

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 11 / 12

Summary/Outlook

• CST model in Minkowski space for qq bound-states with confinement andspontaneous chiral symmetry breaking

• quark mass function from interaction kernel that is covariant generalization oflinear-plus-constant potential, parameters fixed from lattice QCD data

• qualitative study of pion form factor with simple vertex function: reasonable results

To do:

1 λ 6= 2 and (re)adjust quark parameters

2 π-π scattering, πγγ transition formfactor

γ

πγ

3 solve full bound-state equation and fit light meson spectrum

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 12 / 12

Acknowledgements/Support

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 13 / 12

Appendix: Relativistic Two-Body Equations

• Bethe-Salpeter equation (BSE): manifestly covariant (four-dimensional) two-bodyequation with both particles off mass shell

• if kernel V =∑

(all two-particle irreducible diagrams) ⇒ exact result forscattering amplitude M

• usual approximation to kernel: one-boson exchange ⇒ BSE gives exact sum ofladder diagrams (ladder approximation)

• sum of ladder and crossed ladder diagrams: BS kernel must include all irreduciblecrossed ladder diagrams ⇒ very involved!

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 14 / 12

Gross (Spectator) Equation

[Gross, PR 186, 1969]

• φ3-theory: sum of box and crossed box diagrams is approximated by heavy particlepole contribution of box diagram

+

cancellation in all orders and exact in heavy mass limit ⇒one-boson-exchange kernel with heavy particle on-mass shell produces exact sumof all ladder and crossed ladder diagrams![proof: Gross, Relativistic Quantum Mechanics and Field Theory, 2004]

• Gross (CST) equation with one-boson-exchange kernel:

= +M M

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 15 / 12

Covariant Spectator Theory

[review: Stadler, Gross; Few Body Syst.49, 2011]

• Gross equation sums all ladder and crossed ladder diagrams more efficiently thanBSE

• 3-dimensional integration over intermediate momenta (instead of 4-dimensionalintegration in BSE) ⇒ ’quasi-potential’ approach

• work in (physical) Minkowski space

• manifest Lorentz covariance

• four-momentum conservation at vertex

• ∃ one-body limit: Gross equationm→∞

−→ relativistic one-body equation for lightparticle in effective potential of heavy massive particle[Gross; PRC 26,1982]

• cluster separability and off-shell propagation (of light particle) ⇒ beyond quantummechanics

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 16 / 12

Quark-antiquark interaction

interaction between static quarks:

• Lattice QCD studies: linear behaviour at large distancesBernard et al; PRD 62, 2000

• perturbative QCD: Coulomb-like at small distances ⇒ nonrelativistic Cornellpotential gives good description of heavy quark systems e.g. Eichten et al.; PRL 34, 1975

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 17 / 12

Linear Confining Potential

• Aim: formulate covariant model for quark-antiquark bound states with interactionkernel that is a covariant generalization of non-relativistic linear-plus-constantinteraction

• linear confining potential between two non-relativistic quarks: VL ∼ r

• transform to momentum space:

VL = limη→0 VL,η ∼ limη→0

[

1(~q2+η2)2

− δ3(~q)∫

d3q′ 1(~q′2+η2)2

]

[Gross, Milana; PRD 43, 1991]

• δ function subtraction has 2 effects:

1 in limit η → 0 it regularizes 1/q4 singularity and reduces kernel integration inSchrodinger equation to well-defined Cauchy principal value integral:

limη→0

d3kVL,η(~p − ~k)ψ(~k) = PV∫

d3k 1

(~p−~k)4

[

ψ(~k)− ψ(~p)]

[Leitao, EB, Stadler, Pena; in preparation]

2 condition that VL vanishes at origin satisfied:∫

d3qVL = 0

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 18 / 12

Covariant Generalizations

• Find covariant generalization?

• first guess: Bethe-Salpeter kernel by replacing ~q → qµ:

limη→0

[

1(q2+η2)2

− δ4(q)∫

d4q′ 1(q′2+η2)2

]

⇒ problem: does not give correct non-relativistic limit because of q′0-integration!

• find covariant equation that reduces in nonrelativistic limit to Schrodingerequation?

• most natural choice for heavy-light systems: replace ~q2 → −q2 and restrict one(heavier) quark to mass shell⇒ energy transfer vanishes in heavy quark limit m → ∞

⇒ (one-channel) Gross equation by keeping only dominant contribution from

positive-energy pole of heavier quark

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 19 / 12

Gross-Milana Model

[Gross, Milana; PRD 43, 1991; PRD 45, 1992; PRD 50, 1994]

• one-channel Gross equation for vertex function: for heavy-light mesons

Γ(p,P) = −∫

d3k

2Ek[VL(p, k) + VC (p, k)]ΘΛ(k)Γ(k ,P)S(P − k)Θ

=

P−p

p p k

P−p P−k

VL(p, k) ∼ limη→0

[

1(q2+η2)2

− Epδ3(~p − ~k)

d3k′

E ′

k

1(q′2+η2)2

]

• for equal-mass quarks m1 = m2: pole of antiquark cannot be ignored ⇒two-channel Gross equation:

= +

good for loosely bound states (W ∼ 2m)

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 20 / 12

Appendix: Proof of Confinement

[Savkli, Gross; PRC 63, 2001]

• if W > m1 +m2 ⇒ bound state could (in principle) decay into free quarks?this should be prevented by confinement!⇒ vertex function vanishes if both quarks are on-shell (since subtraction termbecomes singular)

= 0

• δ-subtraction term provides a self-consistent description of confinement

Elmar Biernat (CFTP/IST Lisbon) Quark mass function September 9, 2013 21 / 12