concrete cracking check

61
7/31/2019 Concrete Cracking Check http://slidepdf.com/reader/full/concrete-cracking-check 1/61  Lecture 34 - Elastic Flexural  Analysis for Serviceability November 20, 2001 CVEN 444

Upload: aleemmohammed

Post on 05-Apr-2018

223 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 1/61

 Lecture 34 - Elastic Flexural 

 Analysis for Serviceability

November 20, 2001

CVEN 444

Page 2: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 2/61

 Lecture Goals 

• Serviceability

• Crack width

• Moments of inertia

Page 3: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 3/61

 Introduction

Ultimate Limit States Lead to collapseServiceability Limit States Disrupt use of Structures

but do not cause collapse

 Recall: 

Page 4: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 4/61

 Introduction 

Types of Serviceability Limit States

- Excessive crack width

- Excessive deflection

- Undesirable vibrations

- Fatigue (ULS)

Page 5: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 5/61

Crack Width Control  

Cracks are caused by tensile stresses due to loads moments,shears, etc..

Page 6: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 6/61

Crack Width Control  

Cracks are caused by tensile stresses due to loads moments,shears, etc..

Page 7: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 7/61

Crack Width Control 

Bar crack development.

Page 8: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 8/61

Crack Width Control  

Temperature crack development

Page 9: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 9/61

Crack Width Control  

• Appearance (smooth surface > 0.01 to 0.013

public concern)

• Leakage (Liquid-retaining structures)

• Corrosion (cracks can speed up occurrence of 

corrosion)

Reasons for crack width control?

Page 10: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 10/61

Crack Width Control  

• Chlorides ( other corrosive substances) present

• Relative Humidity > 60 %• High Ambient Temperatures (accelerates

chemical reactions)

• Wetting and drying cycles• Stray electrical currents occur in the bars.

Corrosion more apt to occur if (steel oxidizes rust )

Page 11: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 11/61

 Limits on Crack Width 

0.016 in. for interior exposure

0.013 in. for exterior exposure

max.. crack width =

ACI Code’s Basis 

Cracking controlled in ACI code by regulating the

distribution of reinforcement in beams/slabs.

Page 12: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 12/61

 Limits on Crack Width 

Gergely-Lutz Equation

Crack width in units of 0.001 in.Distance from NA to bottom

(tension) fiber, divided by

distance to reinforcement.

=(h-c)/(d-c)

Service load stress in

reinforcement in ksi

= =

 

f s =

3cs 076.0 Ad  f    =

Page 13: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 13/61

 Limits on Crack Width 

Gergely-Lutz Equation

Distance from extreme tension

fiber to center of reinforcement

located closest to it, (in.)

effective tension area of 

concrete surrounding tensionbars (w/ same centroid)

divided by # bars. (for 1 layer

of bars A = (2dc

b)/n

dc =

A =

3cs 076.0 Ad  f    =

Page 14: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 14/61

 Limits on Crack Width

ACI Code Eqn 10-5 ( limits magnitude of z term )

Note: = 0.076 z

( =1.2 for beams)

Interior exposure: critical crack width = 0.016 in.

( = 16 ) z = 175k/in

Exterior exposure: critical crack width = 0.013 in.

( = 13 ) z = 145k/in

3cs   Ad  f  z =

Page 15: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 15/61

 Limits on Crack Width

Tolerable Crack Widths

Tolerable

Crack Width

Dry air or protective membrane - 0.016 in.

Humidity, moist air, soil - 0.012 in.

Deicing chemicals - 0.007 in.

Seawater and seawater spray - 0.006 in.

wetting and drying

Water-retaining structures - 0.004 in.

(excluding nonpressure pipes)

Exposure Condition

Page 16: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 16/61

 Limits on Crack Width

Thin one-way slabs: Use =1.35 

z = 155 k/in (Interior Exposure)

z = 130 k/in (Exterior Exposure)

f s = service load stress may be taken as

1.55 – average load factor

- strength reduction

. factor for flexure

 

 

 

 =

0.90

1.5560.0 y

ys

 f  f  f 

Page 17: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 17/61

 Example-Crack

Given: A beam with bw= 14 in. Gr 60 steel 4 #8

with 2 #6 in the second layer with a #4 stirrup.

Determine the crack width limit, z for exteriorand interior limits (145 k/in and 175 k/in.).

Page 18: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 18/61

 Example-Crack

Compute the center of the steel for the given bars.

) )s

2 2

2

4#8 bars 2#6 bars

4 0.79 in 2 0.44 in

4.04 in

 A =

=

=

Page 19: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 19/61

 Example-Crack

The locations of the center of the bars are

b1 stirrup

b b2

2 b

cover d2

1.0 in.1.5 in. 0.5 in.2

2.5 in.

2.5 in. 2 2

1.0 in. 0.75 in.2.5 in. 1.0 in.

2 2

4.375 in.

d  y

d d 

 y d 

=

=

=

=

=

=

Page 20: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 20/61

 Example-Crack

Compute the center of the steel for the given bars.

) ) ) )

i i

i

2 2

2

2.5 in. 4 0.79 in 4.375 in. 2 0.44 in

4.04 in

2.91 in.

 y A y

 A=

=

=

Page 21: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 21/61

 Example-Crack

Compute number of equivalent bars, n. Use the

largest bar.

Compute the effective tension area

2

i2

bar

4.04 in 5.110.79 in

 An

 A= = =

) ) 22 2.91 in. 14 in.2

15.93 in5.11

 yb A

n= = =

Page 22: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 22/61

 Example-Crack

The effective service load stress is

Compute the effective tension area

)s y0.60 0.6 60 ksi 36 ksi f f = = =

) ) )23 3

s c 36 ksi 2.5 in. 15.93 in122.9 k/in.

 z f d A= =

=

Page 23: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 23/61

 Example-Crack

The limits magnitude of z term.

122.9 k/in. < 145 k/in. - Interior exposure

122.9 k/in. < 175 k/in. - Exterior exposure

Crack width is

or = 0.0112 in.

) )

0.076

0.076 1.2 122.9

11.2

w z  =

=

=

Page 24: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 24/61

 Deflection Control  

Visual Appearance

( 25 ft. span 1.2 in. )

Damage to Non-structural Elements

- cracking of partitions

- malfunction of doors /windows

(1.)

(2.)

Reasons to Limit Deflection 

visiblegenerallyare *

250

1l 

Page 25: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 25/61

 Deflection Control  

Disruption of function

- sensitive machinery, equipment

- ponding of rain water on roofsDamage to Structural Elements

- large ’s than serviceability problem 

- (contact w/ other members modify

load paths)

(3.)

(4.)

Page 26: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 26/61

 Allowable Deflections 

ACI Table 9.5(a) = min. thickness unless ’s are

computed

ACI Table 9.5(b) = max. permissible computeddeflection

Page 27: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 27/61

 Allowable  Deflections 

 Flat Roofs ( no damageable nonstructural elements

supported)

)

180instLL

l

Page 28: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 28/61

 Allowable  Deflections 

 Floors ( no damageable nonstructural elements

supported )

)

180instLL

l

Page 29: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 29/61

 Allowable Deflections 

 Roof or Floor elements (supported nonstructural elementslikely damaged by large ’s) 

480

l

Page 30: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 30/61

 Allowable Deflections 

 Roof or Floor elements ( supported nonstructural elementsnot likely to be damaged by large

’s ) 

240

l

Page 31: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 31/61

 Allowable Deflections 

Deflection occurring after attachment of 

nonstructural elements

Need to consider the specific structures

function and characteristics. 

allow 

Page 32: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 32/61

 Moment of Inertia for Deflection Calculation 

For (intermediate values of EI)gtecr I  I  I 

Brandon

derived cr

a

a

cr

gt

a

a

cr

e *1* I  M 

 M 

 I  M 

 M 

 I 

 

 

 

 

-

 

 

 

 

=

Cracking Moment =Moment of inertia of transformed cross-section

Modulus of rupture =

t

gr

 y

 I  f 

c5.7 f 

Mcr =Igt =

f r =

Page 33: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 33/61

 Moment of Inertia for Deflection Calculation 

cr

a

a

crgt

a

a

cre *1* I 

 M 

 M  I 

 M 

 M  I 

 

 

 

 -

 

 

 

 =

Distance from centroid to extreme tension fiber

maximum moment in member at loading stage for

which Ie

( ) is being computed or at any previous

loading stage

Moment of inertia of concrete section neglect

reinforcement

yt =

Ma =

Ig =

Page 34: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 34/61

 Moment of Inertia for Deflection Calculation 

)

3

a

crcrgcre

cr

3

a

crg

3

a

cre

or

*1*

 

 

 

 -=

 

 

 

 -

 

 

 

 =

 M 

 M  I  I  I  I 

 I 

 M 

 M  I 

 M 

 M  I 

Page 35: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 35/61

 Moment Vs curvature plot 

 EI  M 

 EI 

 M ===

 

   slope

Page 36: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 36/61

“Moment Vs Slope” Plot  

The cracked beam starts to lose strength as the amountof cracking increases

Page 37: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 37/61

 Moment of Inertia 

For normal weight concrete

)psi 33 c

1.5

cc f  E   =

For wc = 90 to 155 lb/ft3 

)psi 57000 cc f  E  =

(ACI 8.5.1)

Page 38: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 38/61

 Deflection Response of RC Beams (Flexure) 

A- Ends of Beam Crack B - Cracking at midspan

C - Instantaneous

deflection under serviceload

C’ - long time deflection

under service loadD and E - yielding of 

reinforcement @ ends &

midspan

Note: Stiffness (slope) decreases

as cracking progresses

Page 39: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 39/61

 Deflection Response of RC Beams (Flexure) 

The maximum moments for distributed load actingon an indeterminate beam are given. 

 

 

 

  =12

2wl M   

 

 

 =

12

2

wl M   

   =

24

2

wl M 

Page 40: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 40/61

 Deflection Response of RC Beams (Flexure) 

For Continuous beams

ACI 9.5.2.4

ACI Com. 435

Weight Average

) ) )e21emideavge 25.050.0 I  I  I  I  =

) ) )

= e21emideavge 15.070.0

:continousends2

 I  I  I  I 

) ) )

= 1emideavge 15.085.0

:continousend1

 I  I  I 

)

2end@

1end@midspan@

ee2

ee1

emide

 I  I 

 I  I 

 I  I 

=

=

=

Page 41: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 41/61

Uncracked Transformed Section 

Part (n) =E j /Ei Area n*Area yi yi*(n)A

Concrete 1 bw*h bw*h 0.5*h 0.5*bw*h2

A’s n A’s (n-1)A’s d’ (n-1)*A’s*d’

As n As (n-1)As d (n-1)*As*d

An* ii An y **

=

*ii

*

iii *

 An

 An y y

 Note: (n-1) is to remove area

of concrete

Page 42: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 42/61

Cracked Transformed Section 

 

 

 

 

== s

s

i

ii 2nA yb

d nA y

 yb

 A

 A y y

Finding the centroid of singly Reinforced RectangularSection

022

0

2

2

ss2

ss

2

ss

2

=-

=-

 

 

 

 

 

 

 

 =

b

d nA y

b

nA y

d nA ynA yb

d nA y

 yb ynA yb

Solve for the quadratic for  y

Page 43: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 43/61

Cracked Transformed Section 

022 ss2 =-

b

d nA y

b

nA y

 Note: 

c

s

 E 

 E n =

Singly Reinforced Rectangular Section

)2

s

3

cr

3

1 yd nA yb I  -=

Page 44: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 44/61

Cracked Transformed Section 

) )0

212212 ssss2 =-

--

b

d nA An y

b

nA An y

 Note:

c

s

 E 

 E n =

Doubly Reinforced Rectangular Section

) ) )2

s

2

s

3

cr 1

3

1 yd nAd  y An yb I  ---=

Page 45: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 45/61

Uncracked Transformed Section 

) ) ) )           

     

steel

2

s

2

s

concrete

2

3

gt

11 

212

1

d  y And  y An

h ybhbh I 

----

 

 

 

 -=

 Note:  3

g

12

1 bh I  =

Moment of inertia (uncracked doubly reinforced beam)

Page 46: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 46/61

Cracked Transformed Section 

Finding the centroid of doubly reinforced T-Section

) )

) )0

212 

2122

w

ss

2

we

w

sswe2

=

--

-

--

b

d nA Ant bb

 y

b

nA Anbbt  y

Page 47: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 47/61

Cracked Transformed Section 

Finding the moment of inertia fora doubly reinforced T-Section

)

) ) )         

     

steel

2

s

2

s

beam

3

w

flange

2

e

3

ecr

1

3

1

212

1

 yd nAd  y An

t  ybt 

 yt b yb I 

---

-

 

 

 

 -=

Page 48: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 48/61

 Reinforced Concrete Sections - Example 

Given a doubly reinforced beam with h = 24 in, b = 12 in.,

d’ = 2.5 in. and d = 21.5 in. with 2# 7 bars in compression

steel and 4 # 7 bars in tension steel. The material

properties are f c = 4 ksi and f y= 60 ksi.

Determine Igt, Icr , Mcr(+), Mcr(-), and compare to the NA of 

the beam.

Page 49: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 49/61

 Reinforced Concrete Sections - Example 

The components of the beam

)

)

2 2

s

2 2

s

c c

2 0.6 in 1.2 in

4 0.6 in 2.4 in

1 k 57000 57000 4000

1000 lb

3605 ksi

 A

 A

 E f 

= =

= =

= =

=

Page 50: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 50/61

 Reinforced Concrete Sections - Example

The compute the n value and the centroid, I uncracked

n area (in2) n*area (in2) yi (in) yi *n*area (in2) I (in4) d (in) d2*n*area(in4)

A's 7.04 1.2 8.448 2.5 21.12 - -9.756 804.10

As 7.04 2.4 16.896 21.5 363.26 - 9.244 1443.75

Ac 1 288 288 12 3456.00 13824 -0.256 18.89

313.344 3840.38 13824 2266.74

s

c

29000 ksi8.04

3605 ksi

 E n

 E = = =

Page 51: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 51/61

 Reinforced Concrete Sections - Example 

The compute the centroid and I uncracked

3i i i

2

i i

2 4 4

i i i i

4

3840.38 in12.26 in.313.34 in

I 13824 in 2266.7 in

16090.7 in

 y n A

 y n A

 I d n A

= = =

= =

=

Page 52: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 52/61

 Reinforced Concrete Sections - Example

The compute the centroid and I for a cracked doublyreinforced beam.

) )0

212212 ssss2 =-

--

b

d nA An y

b

nA An y

) ) ) )

) ) ) ) )

2 2

2

2 2s

2

2 7.04 1.2 in 2 8.04 2.4 in

12 in.

2 7.04 1.2 in 2 8.04 2.4 in 21.5 in.0

12 in.

4.624 72.664 0

 y y

 y y

- =

- =

Page 53: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 53/61

 Reinforced Concrete Sections - Example 

The compute the centroid for a cracked doubly reinforced

beam.

2

4.624 72.664 0 y y - =

) )2

4.624 4.624 4 72.664

26.52 in.

 y-

=

=

Page 54: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 54/61

 Reinforced Concrete Sections - Example

The compute the moment of inertia for a cracked doublyreinforced beam.

) ) )2

s

2

s

3

cr 1

3

1 yd nAd  y An yb I  ---=

) )

) ) ) ) ) )

3

cr

22

22

4

112 in. 6.52 in.

3

7.04 1.2 in 6.52 in. 2.5 in.

8.04 2.4 in 21.5 in. 6.52 in.

5575.22 in

 I  =

-

-

=

Page 55: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 55/61

 Reinforced Concrete Sections - Example

The critical ratio of moment of inertia

4

cr

4g

cr g

5575.22 in

0.34616090.7 in

0.35

 I 

 I 

 I I 

= =

Page 56: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 56/61

 Reinforced Concrete Sections - Example 

Find the components of the beam ) ) )

)

) )

c c

s

s s s

2

s s s c

0.85 0.85 4 ksi 12 in. 0.85 34.68

2.5 in. 0.00750.003 0.003

0.0075 217.529000 0.003 87

217.50.85 1.2 in 87

261

100.32

C f ba c c

cc c

 f E c c

C A f f  c

c

 

 

= = =

- = = -

= = - = -

= - = -

= -

Page 57: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 57/61

 Reinforced Concrete Sections - Example 

Find the components of the beam

) )

) ) )

)

2

c s

2

2

2.4 in 60 ksi 144 k  

261144 k 34.68 100.32 34.68 43.68 261 0

43.68 43.68 4 261 34.68

2 34.68

3.44 in.

T C C 

c c cc

c

= =

=

= - - - =

=

=

The neutral axis

Page 58: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 58/61

 Reinforced Concrete Sections - Example 

The strain of the steel

Note: At service loads, beams are assumed to act

elastically.

)

)

s

s

3.44 in. 2.5 in.0.003 0.0008 0.00207

3.44 in.

21.5 in. 3.44 in. 0.003 0.0158 0.002073.44 in.

 

 

- = =

- = =

3.44 in.

y 6.52 in.

c =

=

Page 59: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 59/61

 Reinforced Concrete Sections - Example 

Using a linearly varying and s = E along the NA is the

centroid of the area for an elastic center

The maximum tension stress in tension is

r c7.5 7.5 4000

474.3 psi 0.4743 ksi

 f f = =

=

 My

 I 

s  = -

Page 60: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 60/61

 Reinforced Concrete Sections - Example 

The uncracked moments for the beam

) )

)

)

)

4

r

cr

4

rcr

0.4743 ksi 16090.7 in650.2 k-in.

24 in. 12.26 in.

0.4743 ksi 16090.7 in

622.6 k-in.12.26 in.

 My I  M 

 I y

 f I  M 

 y

 f I  M   y

s s 

-

= =

= = =-

= = =

Page 61: Concrete Cracking Check

7/31/2019 Concrete Cracking Check

http://slidepdf.com/reader/full/concrete-cracking-check 61/61

 Homework-12/2/02

Problem 8.7