comsol conf15 gre presentation forcinetti renato

18
Carcangiu Sara - Forcinetti Renato - Montisci Augusto DIEE - University of Cagliari – Sardinia - Italy

Upload: danny-durham

Post on 31-Jan-2016

13 views

Category:

Documents


0 download

DESCRIPTION

s

TRANSCRIPT

Page 1: Comsol Conf15 GRE Presentation Forcinetti Renato

Carcangiu Sara - Forcinetti Renato - Montisci Augusto

DIEE - University of Cagliari – Sardinia - Italy

Page 2: Comsol Conf15 GRE Presentation Forcinetti Renato

Outline

o Introduction

• Main problems of known MHD generators

• Main features of the proposed device

• Principle of functioning

o FEM analysis

o Numerical Results

o Conclusions & Future work

Page 3: Comsol Conf15 GRE Presentation Forcinetti Renato

Introduction

Schematic view of the MHD conversion principle

WIKIPEDIA

https://en.wikipedia.org/wiki/Magnetohydrodynamic_generator#/media/File:MHD_generator_(En).png

Page 4: Comsol Conf15 GRE Presentation Forcinetti Renato

• Drawbacks of classical MHD generators:

• Advantages of the proposed device

• Need of very high external Magnetic Field

• Seeding Recovery

• High temperatures are needed to ionize fluid

• Deterioration of electrodes

• Need for flowing working fluid

• No external Magnetic Field

• High Performance at Low Temperatures

• No Superconducting Coils

• No seeding

• Quasi - Static working fluid

Page 5: Comsol Conf15 GRE Presentation Forcinetti Renato

Stack – Capacitordetail

Principle of functioning

Generator layout

Setup functional scheme

Page 6: Comsol Conf15 GRE Presentation Forcinetti Renato

Meshed model with boundary layer detail

FEM Thermo – acoustic analysis

Inlet Pressure

Viscous layer

Page 7: Comsol Conf15 GRE Presentation Forcinetti Renato

Governing equations

Variables

Acoustic pressure (p)

Particle velocity (u)

Temperature (T)

Density (ρ)

Page 8: Comsol Conf15 GRE Presentation Forcinetti Renato

Variables

Acoustic pressure (p)

Particle velocity (u)

Temperature (T)

Density (ρ)

Initial valuesp=0 ; u=0 ; ρ=0

Sound hard boundary

Axial simmetry

Inlet Pressure

Outlet PressureP=0

Boundary conditions & Study

Page 9: Comsol Conf15 GRE Presentation Forcinetti Renato

Velocity profiles from literature

FEM Thermo – acoustic analysis

Meaningful parametersfor a given gas

Frequency

Radius of the duct

Pressure

Rs

Shear wave number

H. Tijdeman. On the propagation of sound waves in cylindrical tubes.

Journal of Sound and Vibration, Vol. 39 (1975), pp. 1-33.

Page 10: Comsol Conf15 GRE Presentation Forcinetti Renato

Velocity distribution (Rd=3.5cm; f=0.01 - 1000 Hz)

FEM Thermo – acoustic analysis

Page 11: Comsol Conf15 GRE Presentation Forcinetti Renato

Velocity distribution - Animation(Color map: velocity amplitude; Arrow : Acoustic velocity vector)

FEM Thermo – acoustic analysisPost-processing

Page 12: Comsol Conf15 GRE Presentation Forcinetti Renato

Geometry and materials used

FEM Multiphysics analysis

Inlet

Meshed Model

Physic-controlled mesh

Extra fine (2091 elements)

Generator layout

Page 13: Comsol Conf15 GRE Presentation Forcinetti Renato

Governing equationsVariables

Acoustic pressure (p)

Particle velocity (u)

Temperature (T)

Density (ρ)

Electric potential (V)

Particles position

Page 14: Comsol Conf15 GRE Presentation Forcinetti Renato

Variables

Acoustic pressure (p)

Particle velocity (u)

Temperature (T)

Density (ρ)

Electric potential (V)

Particles position

Dielectricshielding

Initial valuesp=0 ; dp/dt=0

Sound hard boundaryAxial simmetry

Electric potential

Acoustophoretic Force

Electric Force

Inlet Acoustic pressure

Boundary conditions & Study

+Bounce

Release: N=10^3

Page 15: Comsol Conf15 GRE Presentation Forcinetti Renato

FEM Multiphysics analysis

Electric potential (Color Map) & Electric field lines

Page 16: Comsol Conf15 GRE Presentation Forcinetti Renato

FEM Multiphysics analysis

Particles tracing: Animation

Page 17: Comsol Conf15 GRE Presentation Forcinetti Renato
Page 18: Comsol Conf15 GRE Presentation Forcinetti Renato