computing sparse pagerank vectors by basis pursuitcomputing sparse pagerank vectors by basis pursuit...

Download Computing Sparse PageRank Vectors by Basis PursuitComputing Sparse PageRank Vectors by Basis Pursuit Michael Saunders Systems Optimization Laboratory, Stanford University Joint work

If you can't read please download the document

Upload: others

Post on 23-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Computing Sparse PageRank Vectorsby Basis Pursuit

    Michael SaundersSystems Optimization Laboratory, Stanford University

    Joint work with

    Holly Jin, LinkedIn Corp

    Linear Algebra and Optimization SeminarStanford University, January 23, 2008

    SOL, Stanford University Jan 23, 2008 Slide 1/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Outline

    1 Abstract

    2 Sparse solutions

    3 PageRank

    4 Web matrices

    5 Sparse PageRank

    6 BP solvers

    7 Numerical results

    8 Preconditioning

    9 Summary

    SOL, Stanford University Jan 23, 2008 Slide 2/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Outline

    1 Abstract

    2 Sparse solutions

    3 PageRank

    4 Web matrices

    5 Sparse PageRank

    6 BP solvers

    7 Numerical results

    8 Preconditioning

    9 Summary

    SOL, Stanford University Jan 23, 2008 Slide 2/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Outline

    1 Abstract

    2 Sparse solutions

    3 PageRank

    4 Web matrices

    5 Sparse PageRank

    6 BP solvers

    7 Numerical results

    8 Preconditioning

    9 Summary

    SOL, Stanford University Jan 23, 2008 Slide 2/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Outline

    1 Abstract

    2 Sparse solutions

    3 PageRank

    4 Web matrices

    5 Sparse PageRank

    6 BP solvers

    7 Numerical results

    8 Preconditioning

    9 Summary

    SOL, Stanford University Jan 23, 2008 Slide 2/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Outline

    1 Abstract

    2 Sparse solutions

    3 PageRank

    4 Web matrices

    5 Sparse PageRank

    6 BP solvers

    7 Numerical results

    8 Preconditioning

    9 Summary

    SOL, Stanford University Jan 23, 2008 Slide 2/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Outline

    1 Abstract

    2 Sparse solutions

    3 PageRank

    4 Web matrices

    5 Sparse PageRank

    6 BP solvers

    7 Numerical results

    8 Preconditioning

    9 Summary

    SOL, Stanford University Jan 23, 2008 Slide 2/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Outline

    1 Abstract

    2 Sparse solutions

    3 PageRank

    4 Web matrices

    5 Sparse PageRank

    6 BP solvers

    7 Numerical results

    8 Preconditioning

    9 Summary

    SOL, Stanford University Jan 23, 2008 Slide 2/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Outline

    1 Abstract

    2 Sparse solutions

    3 PageRank

    4 Web matrices

    5 Sparse PageRank

    6 BP solvers

    7 Numerical results

    8 Preconditioning

    9 Summary

    SOL, Stanford University Jan 23, 2008 Slide 2/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Outline

    1 Abstract

    2 Sparse solutions

    3 PageRank

    4 Web matrices

    5 Sparse PageRank

    6 BP solvers

    7 Numerical results

    8 Preconditioning

    9 Summary

    SOL, Stanford University Jan 23, 2008 Slide 2/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Abstract1

    Many applications (statistics, signal analysis, imaging)seek sparse solutions to square or rectangular systems

    Ax ≈ b x sparse

    Basis Pursuit Denoising (BPDN) seeks sparsity by solvingmin 12‖Ax − b‖

    2 + λ‖x‖1

    Personalized PageRank eigenvectors involve square systems(I − αHT )x = v H, v sparse

    where 0 < α < 1 He ≤ e x ≥ 0, sparse

    Perhaps BPDN can find a very sparse approximate x

    SOL, Stanford University Jan 23, 2008 Slide 3/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Abstract1

    Many applications (statistics, signal analysis, imaging)seek sparse solutions to square or rectangular systems

    Ax ≈ b x sparse

    Basis Pursuit Denoising (BPDN) seeks sparsity by solvingmin 12‖Ax − b‖

    2 + λ‖x‖1

    Personalized PageRank eigenvectors involve square systems(I − αHT )x = v H, v sparse

    where 0 < α < 1 He ≤ e x ≥ 0, sparse

    Perhaps BPDN can find a very sparse approximate x

    SOL, Stanford University Jan 23, 2008 Slide 3/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Abstract1

    Many applications (statistics, signal analysis, imaging)seek sparse solutions to square or rectangular systems

    Ax ≈ b x sparse

    Basis Pursuit Denoising (BPDN) seeks sparsity by solvingmin 12‖Ax − b‖

    2 + λ‖x‖1

    Personalized PageRank eigenvectors involve square systems(I − αHT )x = v H, v sparse

    where 0 < α < 1 He ≤ e x ≥ 0, sparse

    Perhaps BPDN can find a very sparse approximate x

    SOL, Stanford University Jan 23, 2008 Slide 3/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Abstract1

    Many applications (statistics, signal analysis, imaging)seek sparse solutions to square or rectangular systems

    Ax ≈ b x sparse

    Basis Pursuit Denoising (BPDN) seeks sparsity by solvingmin 12‖Ax − b‖

    2 + λ‖x‖1

    Personalized PageRank eigenvectors involve square systems(I − αHT )x = v H, v sparse

    where 0 < α < 1 He ≤ e x ≥ 0, sparse

    Perhaps BPDN can find a very sparse approximate x

    SOL, Stanford University Jan 23, 2008 Slide 3/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Abstract2

    Original problem:

    Solve Ax = b A square, sparse

    Approximate solution:

    Solve Ax ≈ b x sparse

    Sometimes x ≥ 0 naturally (e.g. PageRank)

    Apply optimization to choose nonzero xj one by one

    SOL, Stanford University Jan 23, 2008 Slide 4/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Abstract2

    Original problem:

    Solve Ax = b A square, sparse

    Approximate solution:

    Solve Ax ≈ b x sparse

    Sometimes x ≥ 0 naturally (e.g. PageRank)

    Apply optimization to choose nonzero xj one by one

    SOL, Stanford University Jan 23, 2008 Slide 4/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Abstract2

    Original problem:

    Solve Ax = b A square, sparse

    Approximate solution:

    Solve Ax ≈ b x sparse

    Sometimes x ≥ 0 naturally (e.g. PageRank)

    Apply optimization to choose nonzero xj one by one

    SOL, Stanford University Jan 23, 2008 Slide 4/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Abstract2

    Original problem:

    Solve Ax = b A square, sparse

    Approximate solution:

    Solve Ax ≈ b x sparse

    Sometimes x ≥ 0 naturally (e.g. PageRank)

    Apply optimization to choose nonzero xj one by one

    SOL, Stanford University Jan 23, 2008 Slide 4/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Sparse solutions to Ax = b

    SOL, Stanford University Jan 23, 2008 Slide 5/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Sparse xLasso(ν) Tibshirani 1996

    min 12‖Ax − b‖2 st ‖x‖1 ≤ ν A =

    Basis Pursuit Chen, Donoho & Saunders 1998

    min ‖x‖1 st Ax = b A = fast operator

    (Ax , ATy are efficient)

    BPDN(λ) Same paper

    min λ‖x‖1 + 12‖Ax − b‖2 fast operator, any shape

    ‖x‖1 is closest convex approximation to ‖x‖0

    SOL, Stanford University Jan 23, 2008 Slide 6/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Sparse xLasso(ν) Tibshirani 1996

    min 12‖Ax − b‖2 st ‖x‖1 ≤ ν A =

    Basis Pursuit Chen, Donoho & Saunders 1998

    min ‖x‖1 st Ax = b A = fast operator

    (Ax , ATy are efficient)

    BPDN(λ) Same paper

    min λ‖x‖1 + 12‖Ax − b‖2 fast operator, any shape

    ‖x‖1 is closest convex approximation to ‖x‖0

    SOL, Stanford University Jan 23, 2008 Slide 6/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Sparse xLasso(ν) Tibshirani 1996

    min 12‖Ax − b‖2 st ‖x‖1 ≤ ν A =

    Basis Pursuit Chen, Donoho & Saunders 1998

    min ‖x‖1 st Ax = b A = fast operator

    (Ax , ATy are efficient)

    BPDN(λ) Same paper

    min λ‖x‖1 + 12‖Ax − b‖2 fast operator, any shape

    ‖x‖1 is closest convex approximation to ‖x‖0

    SOL, Stanford University Jan 23, 2008 Slide 6/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    BP and BPDN algorithms

    min λ‖x‖1 + 12‖Ax − b‖2

    OMP Davis, Mallat et al 1997 GreedyBPDN-interior Chen, Donoho & S, 1998, 2001 Interior, CGPDSCO, PDCO Saunders 1997, 2002 Interior, LSQRBCR Sardy, Bruce & Tseng 2000 Orthogonal blocksHomotopy Osborne et al 2000 Active-set, all λLARS Efron, Hastie, Tibshirani 2004 Active-set, all λSTOMP Donoho, Tsaig, et al 2006 Double greedyl1 ls Kim, Koh, Lustig, Boyd et al 2007 Primal barrier, PCGGPSR Figueiredo, Nowak & Wright 2007 Gradient ProjectionSPGL1 van den Berg & Friedlander 2007 Spectral GP, all λ

    SOL, Stanford University Jan 23, 2008 Slide 7/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Basis Pursuit Denoising (BPDN)Pure LS

    minx , r

    12‖r‖

    2 st r = b − Ax

    If x not unique, need regularization

    Tikhonov(λ)

    minx , r

    λ‖x‖2 + 12‖r‖2 st r = b − Ax

    BPDN(λ)

    minx , r

    λ‖x‖1 + 12‖r‖2 st r = b − Ax

    Smaller ‖x‖, bigger ‖r‖

    SOL, Stanford University Jan 23, 2008 Slide 8/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Basis Pursuit Denoising (BPDN)Pure LS

    minx , r

    12‖r‖

    2 st r = b − Ax

    If x not unique, need regularization

    Tikhonov(λ)

    minx , r

    λ‖x‖2 + 12‖r‖2 st r = b − Ax

    BPDN(λ)

    minx , r

    λ‖x‖1 + 12‖r‖2 st r = b − Ax

    Smaller ‖x‖, bigger ‖r‖

    SOL, Stanford University Jan 23, 2008 Slide 8/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Basis Pursuit Denoising (BPDN)Pure LS

    minx , r

    12‖r‖

    2 st r = b − Ax

    If x not unique, need regularization

    Tikhonov(λ)

    minx , r

    λ‖x‖2 + 12‖r‖2 st r = b − Ax

    BPDN(λ)

    minx , r

    λ‖x‖1 + 12‖r‖2 st r = b − Ax

    Smaller ‖x‖, bigger ‖r‖

    SOL, Stanford University Jan 23, 2008 Slide 8/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Basis Pursuit Denoising (BPDN)Pure LS

    minx , r

    12‖r‖

    2 st r = b − Ax

    If x not unique, need regularization

    Tikhonov(λ)

    minx , r

    λ‖x‖2 + 12‖r‖2 st r = b − Ax

    BPDN(λ)

    minx , r

    λ‖x‖1 + 12‖r‖2 st r = b − Ax

    Smaller ‖x‖, bigger ‖r‖

    SOL, Stanford University Jan 23, 2008 Slide 8/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Basis Pursuit Denoising (BPDN)Pure LS

    minx , r

    12‖r‖

    2 st r = b − Ax

    If x not unique, need regularization

    Tikhonov(λ)

    minx , r

    λ‖x‖2 + 12‖r‖2 st r = b − Ax

    BPDN(λ)

    minx , r

    λ‖x‖1 + 12‖r‖2 st r = b − Ax

    Smaller ‖x‖, bigger ‖r‖

    SOL, Stanford University Jan 23, 2008 Slide 8/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Let r = λy

    BPprimal(λ) minx , y‖x‖1 + 12λ‖y‖

    2 st Ax + λy = b

    BPdual(λ) miny−bTy + 12λ‖y‖

    2 st ‖ATy‖∞ ≤ 1

    Suggests regularized LP problems:

    LPprimal(λ) minx , y

    cTx + 12λ‖y‖2 st Ax + λy = b, x ≥ 0

    LPdual(λ) miny−bTy + 12λ‖y‖

    2 st ATy ≤ c

    Friedlander and S 2007–2008: New active-set Matlab codes

    SOL, Stanford University Jan 23, 2008 Slide 9/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Let r = λy

    BPprimal(λ) minx , y‖x‖1 + 12λ‖y‖

    2 st Ax + λy = b

    BPdual(λ) miny−bTy + 12λ‖y‖

    2 st ‖ATy‖∞ ≤ 1

    Suggests regularized LP problems:

    LPprimal(λ) minx , y

    cTx + 12λ‖y‖2 st Ax + λy = b, x ≥ 0

    LPdual(λ) miny−bTy + 12λ‖y‖

    2 st ATy ≤ c

    Friedlander and S 2007–2008: New active-set Matlab codes

    SOL, Stanford University Jan 23, 2008 Slide 9/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Let r = λy

    BPprimal(λ) minx , y‖x‖1 + 12λ‖y‖

    2 st Ax + λy = b

    BPdual(λ) miny−bTy + 12λ‖y‖

    2 st ‖ATy‖∞ ≤ 1

    Suggests regularized LP problems:

    LPprimal(λ) minx , y

    cTx + 12λ‖y‖2 st Ax + λy = b, x ≥ 0

    LPdual(λ) miny−bTy + 12λ‖y‖

    2 st ATy ≤ c

    Friedlander and S 2007–2008: New active-set Matlab codes

    SOL, Stanford University Jan 23, 2008 Slide 9/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Let r = λy

    BPprimal(λ) minx , y‖x‖1 + 12λ‖y‖

    2 st Ax + λy = b

    BPdual(λ) miny−bTy + 12λ‖y‖

    2 st ‖ATy‖∞ ≤ 1

    Suggests regularized LP problems:

    LPprimal(λ) minx , y

    cTx + 12λ‖y‖2 st Ax + λy = b, x ≥ 0

    LPdual(λ) miny−bTy + 12λ‖y‖

    2 st ATy ≤ c

    Friedlander and S 2007–2008: New active-set Matlab codes

    SOL, Stanford University Jan 23, 2008 Slide 9/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Let r = λy

    BPprimal(λ) minx , y‖x‖1 + 12λ‖y‖

    2 st Ax + λy = b

    BPdual(λ) miny−bTy + 12λ‖y‖

    2 st ‖ATy‖∞ ≤ 1

    Suggests regularized LP problems:

    LPprimal(λ) minx , y

    cTx + 12λ‖y‖2 st Ax + λy = b, x ≥ 0

    LPdual(λ) miny−bTy + 12λ‖y‖

    2 st ATy ≤ c

    Friedlander and S 2007–2008: New active-set Matlab codes

    SOL, Stanford University Jan 23, 2008 Slide 9/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    PageRank

    SOL, Stanford University Jan 23, 2008 Slide 10/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    PageRankLangville and Meyer 2006

    H =

    1/3 1/3 1/3

    1/2 1/20 0 0 0

    1/2 1/2

    Hyperlink matrix He ≤ e

    v = 1ne or ei Teleportation vectoror personalization vector

    eTv = 1

    S = H + avT Stochastic matrix Se = e

    G = αS + (1− α)evT Google matrixα = 0.85 say

    Ge = e

    eigenvector ≡ linear systemGT x = x ≡ (I − αHT )x = v

    In both cases, x ← x/eTx (and x ≥ 0)

    SOL, Stanford University Jan 23, 2008 Slide 11/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    PageRankLangville and Meyer 2006

    H =

    1/3 1/3 1/3

    1/2 1/20 0 0 0

    1/2 1/2

    Hyperlink matrix He ≤ e

    v = 1ne or ei Teleportation vectoror personalization vector

    eTv = 1

    S = H + avT Stochastic matrix Se = e

    G = αS + (1− α)evT Google matrixα = 0.85 say

    Ge = e

    eigenvector ≡ linear systemGT x = x ≡ (I − αHT )x = v

    In both cases, x ← x/eTx (and x ≥ 0)

    SOL, Stanford University Jan 23, 2008 Slide 11/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    PageRankLangville and Meyer 2006

    H =

    1/3 1/3 1/3

    1/2 1/20 0 0 0

    1/2 1/2

    Hyperlink matrix He ≤ e

    v = 1ne or ei Teleportation vectoror personalization vector

    eTv = 1

    S = H + avT Stochastic matrix Se = e

    G = αS + (1− α)evT Google matrixα = 0.85 say

    Ge = e

    eigenvector ≡ linear systemGT x = x ≡ (I − αHT )x = v

    In both cases, x ← x/eTx (and x ≥ 0)

    SOL, Stanford University Jan 23, 2008 Slide 11/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    PageRankLangville and Meyer 2006

    H =

    1/3 1/3 1/3

    1/2 1/20 0 0 0

    1/2 1/2

    Hyperlink matrix He ≤ e

    v = 1ne or ei Teleportation vectoror personalization vector

    eTv = 1

    S = H + avT Stochastic matrix Se = e

    G = αS + (1− α)evT Google matrixα = 0.85 say

    Ge = e

    eigenvector ≡ linear systemGT x = x ≡ (I − αHT )x = v

    In both cases, x ← x/eTx (and x ≥ 0)

    SOL, Stanford University Jan 23, 2008 Slide 11/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    PageRankLangville and Meyer 2006

    H =

    1/3 1/3 1/3

    1/2 1/20 0 0 0

    1/2 1/2

    Hyperlink matrix He ≤ e

    v = 1ne or ei Teleportation vectoror personalization vector

    eTv = 1

    S = H + avT Stochastic matrix Se = e

    G = αS + (1− α)evT Google matrixα = 0.85 say

    Ge = e

    eigenvector ≡ linear systemGT x = x ≡ (I − αHT )x = v

    In both cases, x ← x/eTx (and x ≥ 0)

    SOL, Stanford University Jan 23, 2008 Slide 11/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    PageRankLangville and Meyer 2006

    H =

    1/3 1/3 1/3

    1/2 1/20 0 0 0

    1/2 1/2

    Hyperlink matrix He ≤ e

    v = 1ne or ei Teleportation vectoror personalization vector

    eTv = 1

    S = H + avT Stochastic matrix Se = e

    G = αS + (1− α)evT Google matrixα = 0.85 say

    Ge = e

    eigenvector ≡ linear systemGT x = x ≡ (I − αHT )x = v

    In both cases, x ← x/eTx (and x ≥ 0)

    SOL, Stanford University Jan 23, 2008 Slide 11/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Web matrices

    SOL, Stanford University Jan 23, 2008 Slide 12/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Web matrices H

    Name n (pages) nnz (links) i (v = ei )csStanford 9914 36854 4 cs.stanford.eduStanford 275689 1623817 23036 cs.stanford.edu

    6753 calendus.stanford.eduStanford-Berkeley 683446 7583376 6753 unknown

    All data collected around 2001

    Cleve MolerSep KamvarDavid Gleich

    (I − αHT )x = v

    SOL, Stanford University Jan 23, 2008 Slide 13/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Power method on GTx = xStanford, n = 275000, v = e6753 (calendus.stanford.edu)

    Time (secs) vs α = 0.1 : 0.01 : 0.99

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    10

    20

    30

    40

    50

    60

    α

    SOL, Stanford University Jan 23, 2008 Slide 14/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Power methodStanford-Berkeley, n = 683000, v = e6753

    Time (secs) vs α = 0.1 : 0.01 : 0.99

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    20

    40

    60

    80

    100

    120

    140

    160

    180

    α

    SOL, Stanford University Jan 23, 2008 Slide 15/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Exact x(α)csStanford, n = 9914, v = e4 (cs.stanford.edu)

    xj(α), j = 1 : n

    0 1000 2000 3000 4000 5000 6000 7000 80000

    0.05

    0.1

    0.15

    0.2

    0.25

    Stanford alpha=0.850 v=e(4) xtrue=P\v

    α = 0.85SOL, Stanford University Jan 23, 2008 Slide 16/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Exact x(α)Stanford, n = 275000, v = e23036 (cs.stanford.edu)

    xj(α), j = 1 : n

    α = 0.85

    SOL, Stanford University Jan 23, 2008 Slide 17/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Sparsity of x(α)Stanford, n = 275000, v = e23036 (cs.stanford.edu)

    x > 250 ∗ (1/n) x > 500 ∗ (1/n)

    0 20 40 60 80

    0

    50

    100

    150

    nz = 46380 10 20 30 40 50 60 70 80 90

    0

    10

    20

    30

    40

    50

    60

    70

    80

    nz = 3076

    α = 0.1 : 0.01 : 0.99 (90 values)SOL, Stanford University Jan 23, 2008 Slide 18/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    x > 1000 ∗ (1/n) x > 2000 ∗ (1/n)

    0 10 20 30 40 50 60 70 80 90

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    nz = 23050 10 20 30 40 50 60 70 80 90

    0

    5

    10

    15

    20

    25

    30

    35

    40

    nz = 1909

    α = 0.1 : 0.01 : 0.99 (90 values)

    SOL, Stanford University Jan 23, 2008 Slide 19/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Sparse PageRank

    SOL, Stanford University Jan 23, 2008 Slide 20/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Sparse PageRank

    (I − αHT )x = v v sparse

    Regard as

    Ax = v v = ei say

    Apply active-set solver to

    minx , r λeTx + 12‖r‖

    2 st Ax + r = v , x ≥ 0

    SOL, Stanford University Jan 23, 2008 Slide 21/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Sparse PageRank

    (I − αHT )x = v v sparse

    Regard as

    Ax = v v = ei say

    Apply active-set solver to

    minx , r λeTx + 12‖r‖

    2 st Ax + r = v , x ≥ 0

    SOL, Stanford University Jan 23, 2008 Slide 21/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    BP solvers

    SOL, Stanford University Jan 23, 2008 Slide 22/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    LPprimal solver

    minx , y eTx + 12λ‖y‖

    2 st Ax + λy = v , x ≥ 0

    Seems to proceed in a greedy wayStarts with x = 0, chooses one xj at a times nonzero xj ⇒ s iterations

    B = columns of A with xj > 0 A =

    Main work per itn:Form z = ATySolve BTB dx = cB − BTyForm dy = B dx

    SOL, Stanford University Jan 23, 2008 Slide 23/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    LPprimal solver

    minx , y eTx + 12λ‖y‖

    2 st Ax + λy = v , x ≥ 0

    Seems to proceed in a greedy wayStarts with x = 0, chooses one xj at a times nonzero xj ⇒ s iterations

    B = columns of A with xj > 0 A =

    Main work per itn:Form z = ATySolve BTB dx = cB − BTyForm dy = B dx

    SOL, Stanford University Jan 23, 2008 Slide 23/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    LPprimal solver

    minx , y eTx + 12λ‖y‖

    2 st Ax + λy = v , x ≥ 0

    Seems to proceed in a greedy wayStarts with x = 0, chooses one xj at a times nonzero xj ⇒ s iterations

    B = columns of A with xj > 0 A =

    Main work per itn:Form z = ATySolve BTB dx = cB − BTyForm dy = B dx

    SOL, Stanford University Jan 23, 2008 Slide 23/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    LPprimal solver

    minx , y eTx + 12λ‖y‖

    2 st Ax + λy = v , x ≥ 0

    Seems to proceed in a greedy wayStarts with x = 0, chooses one xj at a times nonzero xj ⇒ s iterations

    B = columns of A with xj > 0 A =

    Main work per itn:Form z = ATySolve BTB dx = cB − BTyForm dy = B dx

    SOL, Stanford University Jan 23, 2008 Slide 23/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    LPprimal solver

    minx , y eTx + 12λ‖y‖

    2 st Ax + λy = v , x ≥ 0

    Seems to proceed in a greedy wayStarts with x = 0, chooses one xj at a times nonzero xj ⇒ s iterations

    B = columns of A with xj > 0 A =

    Main work per itn:Form z = ATySolve BTB dx = cB −BTy Update QB =

    (R0

    )without Q

    Form dy = B dx

    SOL, Stanford University Jan 23, 2008 Slide 23/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    LPdual solver

    miny −vTy + 12λ‖y‖2 st ATy ≤ e

    B = columns of A corresponding to BTy = e (active constraints)

    Main work per itn:Solve min ‖Bx − g‖Form dy = (g − Bx)/λForm dz = ATdy

    Selects B in same greedy manner as LPprimal in almost same order

    SOL, Stanford University Jan 23, 2008 Slide 24/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    LPdual solver

    miny −vTy + 12λ‖y‖2 st ATy ≤ e

    B = columns of A corresponding to BTy = e (active constraints)

    Main work per itn:Solve min ‖Bx − g‖Form dy = (g − Bx)/λForm dz = ATdy

    Selects B in same greedy manner as LPprimal in almost same order

    SOL, Stanford University Jan 23, 2008 Slide 24/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    LPdual solver

    miny −vTy + 12λ‖y‖2 st ATy ≤ e

    B = columns of A corresponding to BTy = e (active constraints)

    Main work per itn:Solve min ‖Bx − g‖Form dy = (g − Bx)/λForm dz = ATdy

    Selects B in same greedy manner as LPprimal in almost same order

    SOL, Stanford University Jan 23, 2008 Slide 24/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    LPdual solver

    miny −vTy + 12λ‖y‖2 st ATy ≤ e

    B = columns of A corresponding to BTy = e (active constraints)

    Main work per itn:Solve min ‖Bx − g‖ Update QB =

    (R0

    )without Q

    Form dy = (g − Bx)/λForm dz = ATdy

    Selects B in same greedy manner as LPprimal in almost same order

    SOL, Stanford University Jan 23, 2008 Slide 24/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    LPdual solver

    miny −vTy + 12λ‖y‖2 st ATy ≤ e

    B = columns of A corresponding to BTy = e (active constraints)

    Main work per itn:Solve min ‖Bx − g‖ Update QB =

    (R0

    )without Q

    Form dy = (g − Bx)/λForm dz = ATdy

    Selects B in same greedy manner as LPprimal in almost same order

    SOL, Stanford University Jan 23, 2008 Slide 24/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Numerical results with BP solvers

    SOL, Stanford University Jan 23, 2008 Slide 25/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Sparsity of xBP(α)Stanford, n = 275000, v = e23036 (cs.stanford.edu)

    xPower > 1000 ∗ (1/n) xBP > 1 ∗ (1/n)

    0 10 20 30 40 50 60 70 80 90

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    nz = 23050 10 20 30 40 50 60 70 80 90

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    nz = 2382

    α = 0.1 : 0.01 : 0.99 (90 values)

    xPower > 1 ∗ (1/n) has λ = 4e-36000 rows, 155000 nonzeros

    SOL, Stanford University Jan 23, 2008 Slide 26/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Sparsity of xBP(α)Stanford, n = 275000, v = e23036 (cs.stanford.edu)

    xPower > 1000 ∗ (1/n) xBP > 1 ∗ (1/n)

    0 10 20 30 40 50 60 70 80 90

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    nz = 23050 10 20 30 40 50 60 70 80 90

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    nz = 2382

    α = 0.1 : 0.01 : 0.99 (90 values)

    xPower > 1 ∗ (1/n) has λ = 4e-36000 rows, 155000 nonzeros

    SOL, Stanford University Jan 23, 2008 Slide 26/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Stanford web, n = 275000α = 0.85v = e23036 (cs.stanford.edu)

    Direct solve:xtrue = A\v

    Basis Pursuitλ = 2e-376 nonzero xj

    SOL, Stanford University Jan 23, 2008 Slide 27/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Power method vs BPStanford, n = 275000, v = e23036 (cs.stanford.edu)

    Time (secs) for each α

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    10

    20

    30

    40

    50

    60

    70

    BPDirectPower

    α = 0.1 : 0.01 : 0.99 (90 values)λ = 4e-3

    SOL, Stanford University Jan 23, 2008 Slide 28/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Power method vs BPStanford-Berkeley, n = 683000, v = e6753 (unknown)

    Time (secs) for each α

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    20

    40

    60

    80

    100

    120

    140

    160

    180

    BPDirectPower

    α = 0.1 : 0.01 : 0.99 (90 values)λ = 5e-3

    SOL, Stanford University Jan 23, 2008 Slide 29/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Varying α and λ

    minx , r

    λ‖x‖1 + 12‖r‖2 st (I − αHT )x + r = v

    H = 9914× 9914 csStanford webv = e4 (cs.stanford.edu)α = 0.75, 0.85, 0.95λ = 1e-3, 2e-3, 4e-3, 6e-3

    Plot nonzero xj in the order they are chosen

    SOL, Stanford University Jan 23, 2008 Slide 30/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    csStanford v = e4 α = 0.75 min λeTx + 1

    2‖r‖2

    0 10 20 30 40 50 60 700

    0.05

    0.1

    0.15

    0.2

    0.25

    Stanford alpha=0.750 v=e(4) x(active)

    0 10 20 30 40 50 600

    0.05

    0.1

    0.15

    0.2

    0.25

    Stanford alpha=0.750 v=e(4) x(active)

    λ = 1e-3 λ = 2e-3

    0 5 10 15 20 25 30 350

    0.05

    0.1

    0.15

    0.2

    0.25

    Stanford alpha=0.750 v=e(4) x(active)

    0 5 10 15 20 250

    0.05

    0.1

    0.15

    0.2

    0.25

    Stanford alpha=0.750 v=e(4) x(active)

    λ = 4e-3 λ = 6e-3

    SOL, Stanford University Jan 23, 2008 Slide 31/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    csStanford v = e4 α = 0.85 min λeTx + 1

    2‖r‖2

    0 10 20 30 40 50 60 70 80 90 1000

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    csStanford alpha=0.850 v=e(4) x(active)

    0 10 20 30 40 50 600

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    Stanford alpha=0.850 v=e(4) x(active)

    λ = 1e-3 λ = 2e-3

    0 5 10 15 20 25 30 350

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    Stanford alpha=0.850 v=e(4) x(active)

    0 5 10 15 20 250

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    Stanford alpha=0.850 v=e(4) x(active)

    λ = 4e-3 λ = 6e-3

    SOL, Stanford University Jan 23, 2008 Slide 32/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    csStanford v = e4 α = 0.95 min λeTx + 1

    2‖r‖2

    0 20 40 60 80 1000

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08Stanford alpha=0.950 v=e(4) x(active)

    0 10 20 30 40 50 60 700

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08Stanford alpha=0.950 v=e(4) x(active)

    λ = 1e-3 λ = 2e-3

    0 5 10 15 20 25 30 350

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08Stanford alpha=0.950 v=e(4) x(active)

    0 5 10 15 200

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08Stanford alpha=0.950 v=e(4) x(active)

    λ = 4e-3 λ = 6e-3

    SOL, Stanford University Jan 23, 2008 Slide 33/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    SPAI: Sparse Approximate Inverse

    SOL, Stanford University Jan 23, 2008 Slide 34/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    SPAI Preconditioning

    A plausible future application

    Find sparse X such that AX ≈ I

    Find sparse xj such that Axj ≈ ej for j = 1 : nEmbarrassingly parallel use of sparse BP solutions

    SOL, Stanford University Jan 23, 2008 Slide 35/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    SPAI Preconditioning

    A plausible future application

    Find sparse X such that AX ≈ IFind sparse xj such that Axj ≈ ej for j = 1 : n

    Embarrassingly parallel use of sparse BP solutions

    SOL, Stanford University Jan 23, 2008 Slide 35/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    SPAI Preconditioning

    A plausible future application

    Find sparse X such that AX ≈ IFind sparse xj such that Axj ≈ ej for j = 1 : nEmbarrassingly parallel use of sparse BP solutions

    SOL, Stanford University Jan 23, 2008 Slide 35/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Summary

    SOL, Stanford University Jan 23, 2008 Slide 36/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    (I − αHT )x ≈ v

    Comments

    Sparse v sometimes gives sparse x

    LPprimal and LPdual work in greedy manner

    Greedy solvers guarantee sparse x (unlike power method)

    Not sensitive to α

    Sensitive to λ but we can limit iterations

    Could be 10, 100, . . . times faster than power method

    Questions

    Run much bigger examples

    Which properties of I − αHT lead to success of “greedy”cf. Andersen, Chung, and Lang ≈ 2005:Local graph partitioning using (approximate) PageRank vectors

    SOL, Stanford University Jan 23, 2008 Slide 37/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    (I − αHT )x ≈ v

    Comments

    Sparse v sometimes gives sparse x

    LPprimal and LPdual work in greedy manner

    Greedy solvers guarantee sparse x (unlike power method)

    Not sensitive to α

    Sensitive to λ but we can limit iterations

    Could be 10, 100, . . . times faster than power method

    Questions

    Run much bigger examples

    Which properties of I − αHT lead to success of “greedy”cf. Andersen, Chung, and Lang ≈ 2005:Local graph partitioning using (approximate) PageRank vectors

    SOL, Stanford University Jan 23, 2008 Slide 37/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    (I − αHT )x ≈ v

    Comments

    Sparse v sometimes gives sparse x

    LPprimal and LPdual work in greedy manner

    Greedy solvers guarantee sparse x (unlike power method)

    Not sensitive to α

    Sensitive to λ but we can limit iterations

    Could be 10, 100, . . . times faster than power method

    Questions

    Run much bigger examples

    Which properties of I − αHT lead to success of “greedy”cf. Andersen, Chung, and Lang ≈ 2005:Local graph partitioning using (approximate) PageRank vectors

    SOL, Stanford University Jan 23, 2008 Slide 37/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    (I − αHT )x ≈ v

    Comments

    Sparse v sometimes gives sparse x

    LPprimal and LPdual work in greedy manner

    Greedy solvers guarantee sparse x (unlike power method)

    Not sensitive to α

    Sensitive to λ but we can limit iterations

    Could be 10, 100, . . . times faster than power method

    Questions

    Run much bigger examples

    Which properties of I − αHT lead to success of “greedy”cf. Andersen, Chung, and Lang ≈ 2005:Local graph partitioning using (approximate) PageRank vectors

    SOL, Stanford University Jan 23, 2008 Slide 37/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    (I − αHT )x ≈ v

    Comments

    Sparse v sometimes gives sparse x

    LPprimal and LPdual work in greedy manner

    Greedy solvers guarantee sparse x (unlike power method)

    Not sensitive to α

    Sensitive to λ but we can limit iterations

    Could be 10, 100, . . . times faster than power method

    Questions

    Run much bigger examples

    Which properties of I − αHT lead to success of “greedy”cf. Andersen, Chung, and Lang ≈ 2005:Local graph partitioning using (approximate) PageRank vectors

    SOL, Stanford University Jan 23, 2008 Slide 37/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    (I − αHT )x ≈ v

    Comments

    Sparse v sometimes gives sparse x

    LPprimal and LPdual work in greedy manner

    Greedy solvers guarantee sparse x (unlike power method)

    Not sensitive to α

    Sensitive to λ but we can limit iterations

    Could be 10, 100, . . . times faster than power method

    Questions

    Run much bigger examples

    Which properties of I − αHT lead to success of “greedy”cf. Andersen, Chung, and Lang ≈ 2005:Local graph partitioning using (approximate) PageRank vectors

    SOL, Stanford University Jan 23, 2008 Slide 37/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    (I − αHT )x ≈ v

    Comments

    Sparse v sometimes gives sparse x

    LPprimal and LPdual work in greedy manner

    Greedy solvers guarantee sparse x (unlike power method)

    Not sensitive to α

    Sensitive to λ but we can limit iterations

    Could be 10, 100, . . . times faster than power method

    Questions

    Run much bigger examples

    Which properties of I − αHT lead to success of “greedy”cf. Andersen, Chung, and Lang ≈ 2005:Local graph partitioning using (approximate) PageRank vectors

    SOL, Stanford University Jan 23, 2008 Slide 37/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    (I − αHT )x ≈ v

    Comments

    Sparse v sometimes gives sparse x

    LPprimal and LPdual work in greedy manner

    Greedy solvers guarantee sparse x (unlike power method)

    Not sensitive to α

    Sensitive to λ but we can limit iterations

    Could be 10, 100, . . . times faster than power method

    Questions

    Run much bigger examples

    Which properties of I − αHT lead to success of “greedy”

    cf. Andersen, Chung, and Lang ≈ 2005:Local graph partitioning using (approximate) PageRank vectors

    SOL, Stanford University Jan 23, 2008 Slide 37/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    (I − αHT )x ≈ v

    Comments

    Sparse v sometimes gives sparse x

    LPprimal and LPdual work in greedy manner

    Greedy solvers guarantee sparse x (unlike power method)

    Not sensitive to α

    Sensitive to λ but we can limit iterations

    Could be 10, 100, . . . times faster than power method

    Questions

    Run much bigger examples

    Which properties of I − αHT lead to success of “greedy”cf. Andersen, Chung, and Lang ≈ 2005:Local graph partitioning using (approximate) PageRank vectors

    SOL, Stanford University Jan 23, 2008 Slide 37/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Thanks

    Shaobing Chen and David Donoho

    Michael Friedlander (BP solvers)

    Sou-Cheng Choi and Lek-Heng Lim (ICIAM 07)

    Amy Langville and Carl Meyer (splendid book)

    David Gleich

    Holly Jin

    SOL, Stanford University Jan 23, 2008 Slide 38/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Thanks

    Shaobing Chen and David Donoho

    Michael Friedlander (BP solvers)

    Sou-Cheng Choi and Lek-Heng Lim (ICIAM 07)

    Amy Langville and Carl Meyer (splendid book)

    David Gleich

    Holly Jin

    SOL, Stanford University Jan 23, 2008 Slide 38/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Thanks

    Shaobing Chen and David Donoho

    Michael Friedlander (BP solvers)

    Sou-Cheng Choi and Lek-Heng Lim (ICIAM 07)

    Amy Langville and Carl Meyer (splendid book)

    David Gleich

    Holly Jin

    SOL, Stanford University Jan 23, 2008 Slide 38/38

  • Abstract Sparse solutions PageRank Web matrices Sparse PageRank BP solvers Numerical results Preconditioning Summary

    Thanks

    Shaobing Chen and David Donoho

    Michael Friedlander (BP solvers)

    Sou-Cheng Choi and Lek-Heng Lim (ICIAM 07)

    Amy Langville and Carl Meyer (splendid book)

    David Gleich

    Holly Jin

    SOL, Stanford University Jan 23, 2008 Slide 38/38

    AbstractSparse solutionsPageRankWeb matricesSparse PageRankBP solversNumerical resultsPreconditioningSummary