computing multiple solutions of partial differential equations€¦ · computing multiple solutions...

84
Computing multiple solutions of partial differential equations Patrick E. Farrell 1 S. P. MacLachlan, T. J. Atherton, J. H. Adler, A. Majumdar, . . . 1 University of Oxford December 10, 2019 P. E. Farrell (Oxford) Deflated continuation December 10, 2019 1 / 26

Upload: others

Post on 23-May-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Computing multiple solutions of partial differential equations

Patrick E. Farrell1

S. P. MacLachlan, T. J. Atherton, J. H. Adler, A. Majumdar, . . .

1University of Oxford

December 10, 2019

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 1 / 26

Page 2: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Introduction

Section 1

Introduction

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 2 / 26

Page 3: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Introduction

Can you conduct an experiment twice . . .

and get two different answers?

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 3 / 26

Page 4: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Introduction

Can you conduct an experiment twice . . .

and get two different answers?

Axial displacement test of an Embraer aircraft stiffener.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 3 / 26

Page 5: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Introduction

Can you conduct an experiment twice . . .

and get two different answers?

Two different, stable configurations.P. E. Farrell (Oxford) Deflated continuation December 10, 2019 3 / 26

Page 6: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Introduction

Mathematical formulation

Compute the multiple solutions u of an equation

f(u, λ) = 0

f : V × R→ V ∗

as a function of a parameter λ.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 4 / 26

Page 7: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Introduction

Mathematical formulation

Compute the multiple solutions u of an equation

f(u, λ) = 0

f : V × R→ V ∗

as a function of a parameter λ.

Aircraft stiffener

u displacement, λ loading, f hyperelasticity

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 4 / 26

Page 8: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Introduction

Mathematical formulation

Compute the multiple solutions u of an equation

f(u, λ) = 0

f : V × R→ V ∗

as a function of a parameter λ.

Aircraft stiffener

u displacement, λ loading, f hyperelasticity

Today

u director field or Q-tensor, f Oseen–Frank or Landau–de Gennes

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 4 / 26

Page 9: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

The classical algorithm

Section 2

The classical algorithm

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 5 / 26

Page 10: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

The classical algorithm

Branch switching

λ

u

Starting solution

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 6 / 26

Page 11: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

The classical algorithm

Branch switching

λ

u

Step I: continuation

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 6 / 26

Page 12: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

The classical algorithm

Branch switching

λ

u

Step II: continuation

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 6 / 26

Page 13: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

The classical algorithm

Branch switching

λ

u

Step III: detect bifurcation point

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 6 / 26

Page 14: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

The classical algorithm

Branch switching

λ

u

Step IV: compute eigenvectors and switch

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 6 / 26

Page 15: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

The classical algorithm

Branch switching

λ

u

Step V: continuation on branches

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 6 / 26

Page 16: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

The classical algorithm

Branch switching

λ

u

A disconnected diagram.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 6 / 26

Page 17: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

The classical algorithm

Branch switching

Disconnected diagrams

The algorithm only computes branches connected to the initial datum.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 6 / 26

Page 18: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

The classical algorithm

This work

Disconnected diagrams

An algorithm that can compute disconnected bifurcation diagrams.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 7 / 26

Page 19: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

The classical algorithm

This work

Disconnected diagrams

An algorithm that can compute disconnected bifurcation diagrams.

Scaling

The computational kernel is exactly the same as Newton’s method.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 7 / 26

Page 20: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Section 3

Deflation

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 8 / 26

Page 21: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

The core idea

Deflation

Fix parameter λ. Given

I a Frechet differentiable residual F : V → V ∗

I a solution r ∈ V , F(r) = 0, F ′(r) nonsingular

construct a new nonlinear problem G : V → V ∗ such that:

I (Preservation of solutions) F(r) = 0 ⇐⇒ G(r) = 0 ∀ r 6= r;

I (Deflation property) Newton’s method applied to G will never convergeto r again, starting from any initial guess.

Find more solutions, starting from the same initial guess.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 9 / 26

Page 22: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

The core idea

Deflation

Fix parameter λ. Given

I a Frechet differentiable residual F : V → V ∗

I a solution r ∈ V , F(r) = 0, F ′(r) nonsingular

construct a new nonlinear problem G : V → V ∗ such that:

I (Preservation of solutions) F(r) = 0 ⇐⇒ G(r) = 0 ∀ r 6= r;

I (Deflation property) Newton’s method applied to G will never convergeto r again, starting from any initial guess.

Find more solutions, starting from the same initial guess.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 9 / 26

Page 23: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

The core idea

Deflation

Fix parameter λ. Given

I a Frechet differentiable residual F : V → V ∗

I a solution r ∈ V , F(r) = 0, F ′(r) nonsingular

construct a new nonlinear problem G : V → V ∗ such that:

I (Preservation of solutions) F(r) = 0 ⇐⇒ G(r) = 0 ∀ r 6= r;

I (Deflation property) Newton’s method applied to G will never convergeto r again, starting from any initial guess.

Find more solutions, starting from the same initial guess.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 9 / 26

Page 24: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

The core idea

Deflation

Fix parameter λ. Given

I a Frechet differentiable residual F : V → V ∗

I a solution r ∈ V , F(r) = 0, F ′(r) nonsingular

construct a new nonlinear problem G : V → V ∗ such that:

I (Preservation of solutions) F(r) = 0 ⇐⇒ G(r) = 0 ∀ r 6= r;

I (Deflation property) Newton’s method applied to G will never convergeto r again, starting from any initial guess.

Find more solutions, starting from the same initial guess.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 9 / 26

Page 25: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

The core idea

Deflation

Fix parameter λ. Given

I a Frechet differentiable residual F : V → V ∗

I a solution r ∈ V , F(r) = 0, F ′(r) nonsingular

construct a new nonlinear problem G : V → V ∗ such that:

I (Preservation of solutions) F(r) = 0 ⇐⇒ G(r) = 0 ∀ r 6= r;

I (Deflation property) Newton’s method applied to G will never convergeto r again, starting from any initial guess.

Find more solutions, starting from the same initial guess.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 9 / 26

Page 26: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Finding many solutions from the same guess

F

F

F

Starting setup

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 10 / 26

Page 27: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Finding many solutions from the same guess

F

F

F

F

Step I: Newton from initial guess

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 10 / 26

Page 28: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Finding many solutions from the same guess

F

F

F

F

Step II: deflate solution found

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 10 / 26

Page 29: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Finding many solutions from the same guess

F

F

F

F

F

Step I: Newton from initial guess

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 10 / 26

Page 30: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Finding many solutions from the same guess

F

F

F

F

F

Step II: deflate solution found

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 10 / 26

Page 31: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Finding many solutions from the same guess

F

F

F

F

F

F

Step I: Newton from initial guess

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 10 / 26

Page 32: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Finding many solutions from the same guess

F

F

F

F

F

F

Step II: deflate solution found

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 10 / 26

Page 33: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Finding many solutions from the same guess

F

F

F

F

F

F

Step III: termination on nonconvergence

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 10 / 26

Page 34: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Finding many solutions from the same guess

F

F

F

F

F

FF

Step III: termination on nonconvergence

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 10 / 26

Page 35: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Construction of deflated problems

A nonlinear transformation

G(u) =M(u; r)F(u)

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 11 / 26

Page 36: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Construction of deflated problems

A nonlinear transformation

G(u) =M(u; r)F(u)

A deflation operator

We say M(u; r) is a deflation operator if for any sequence u→ r

lim infu→r

‖G(u)‖V ∗ = lim infu→r

‖M(u; r)F(u)‖V ∗ > 0

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 11 / 26

Page 37: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Construction of deflated problems

A nonlinear transformation

G(u) =M(u; r)F(u)

A deflation operator

We say M(u; r) is a deflation operator if for any sequence u→ r

lim infu→r

‖G(u)‖V ∗ = lim infu→r

‖M(u; r)F(u)‖V ∗ > 0

Theorem (F., Birkisson, Funke, 2014)

This is a deflation operator for p ≥ 1:

M(u; r) =

(1

‖u− r‖p + 1

)P. E. Farrell (Oxford) Deflated continuation December 10, 2019 11 / 26

Page 38: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Deflated continuation

λ

u

Starting solution

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 12 / 26

Page 39: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Deflated continuation

λ

u

Step I: continuation

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 12 / 26

Page 40: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Deflated continuation

λ

u

Step II: continuation

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 12 / 26

Page 41: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Deflated continuation

λ

u

Step III: deflate

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 12 / 26

Page 42: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Deflated continuation

λ

u

Step III+: solve deflated problem

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 12 / 26

Page 43: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Deflated continuation

λ

u

Step III: deflate

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 12 / 26

Page 44: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Deflated continuation

λ

u

Step III+: solve deflated problem

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 12 / 26

Page 45: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Deflated continuation

λ

u

Step IV: continuation on branches

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 12 / 26

Page 46: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Deflation

Deflated continuation

λ

u

A disconnected diagram.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 12 / 26

Page 47: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Computations

Section 4

Computations

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 13 / 26

Page 48: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Computations

Newton–Krylov

A question

How do we solve the deflated problem?

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 14 / 26

Page 49: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Computations

Newton–Krylov

A Newton step

JF (u)∆uF = −F (u)

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 15 / 26

Page 50: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Computations

Newton–Krylov

A Newton step

JF (u)∆uF = −F (u)

A deflated Newton step

JG(u)∆uG = −G(u)

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 15 / 26

Page 51: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Computations

Newton–Krylov

A Newton step

JF (u)∆uF = −F (u)

A deflated Newton step

JG(u)∆uG = −G(u)

Deflated residual

G(u) = M(u; r)F (u)

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 15 / 26

Page 52: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Computations

Newton–Krylov

A Newton step

JF (u)∆uF = −F (u)

A deflated Newton step

JG(u)∆uG = −G(u)

Deflated Jacobian

JG(u) = M(u; r)JF (u) + F (u)M ′(u; r)T

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 15 / 26

Page 53: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Computations

Newton–Krylov

A Newton step

JF (u)∆uF = −F (u)

A deflated Newton step

JG(u)∆uG = −M(u)F (u)

Deflated Jacobian

JG(u) = M(u; r)JF (u) + F (u)M ′(u; r)T

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 15 / 26

Page 54: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Computations

Newton–Krylov

A Newton step

JF (u)∆uF = −F (u)

A deflated Newton step

JG(u)∆uG = −G(u)

Sherman–Morrison–Woodbury

∆uG = τ∆uF

where τ ∈ R is a simple function of J−1F F,M, and M ′.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 15 / 26

Page 55: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Computations

Newton–Krylov

Scaling of deflated continuation

With a good preconditioner, you can do bifurcation analysis at scale.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 16 / 26

Page 56: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications

Section 5

Applications

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 17 / 26

Page 57: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: Carrier’s problem

Carrier’s problem (Carrier 1970, Bender & Orszag 1999)

ε2y′′ + 2(1− x2)y + y2 − 1 = 0, y(−1) = 0 = y(1).

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 18 / 26

Page 58: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: Carrier’s problem

0.05 0.1 0.25 0.7−200

−150

−100

−50

0

50

100

150

200

ε

y′(−

1)‖y‖2

Solutions of ε2y′′+2(1− x2)y+ y2 −1 = 0

Pitchfork bifurcation

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 18 / 26

Page 59: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: Carrier’s problem

0.05 0.1 0.25 0.7−200

−150

−100

−50

0

50

100

150

200

ε

y′(−

1)‖y‖2

Solutions of ε2y′′+2(1− x2)y+ y2 −1 = 0

Pitchfork bifurcationFold bifurcation

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 18 / 26

Page 60: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: Carrier’s problem

0.05 0.1 0.25 0.7−200

−150

−100

−50

0

50

100

150

200

ε

y′(−

1)‖y‖2

Solutions of ε2y′′+2(1− x2)y+ y2 −1 = 0

Pitchfork bifurcationFold bifurcation

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 18 / 26

Page 61: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: Carrier’s problem

0.05 0.1 0.25 0.7−200

−150

−100

−50

0

50

100

150

200

ε

y′(−

1)‖y‖2

Solutions of ε2y′′+2(1− x2)y+ y2 −1 = 0

Pitchfork bifurcationFold bifurcation

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 18 / 26

Page 62: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: Carrier’s problem

Pitchfork bifurcations

ε ≈ 0.472537

n

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 19 / 26

Page 63: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: Carrier’s problem

Pitchfork bifurcations

ε ≈ 0.472537

n

Connected Computed Asymptotic Relativecomponent ε estimate error

1 0.46886251 0.472537 0.7837%2 0.23472529 0.236269 0.6574%3 0.15703946 0.157512 0.3012%4 0.11798359 0.118134 0.1278%

Computed and estimated parameter values for the first four pitchfork bifurcations.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 19 / 26

Page 64: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: Carrier’s problem

Fold bifurcations

ε ≈ 0.472537

n− 0.8344n

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 19 / 26

Page 65: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: Carrier’s problem

Fold bifurcations

ε ≈ 0.472537

n− 0.8344n

Connected Computed Asymptotic Relativecomponent ε estimate error

2 0.28522538 0.298545 4.670%3 0.17186970 0.173608 1.011%4 0.12421206 0.124634 0.3397%5 0.09762446 0.0977706 0.1497%

Computed and estimated parameter values for the first four fold bifurcations.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 19 / 26

Page 66: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: Freedericksz transition

Description

A classical pitchfork bifurcation. Below a certain electric field threshold,the liquid crystal remains undistorted. Beyond a critical strength V , thedirector twists to align with the field.

Minimise Oseen–Frank energy on a unit square subject to

I n periodic in x and parallel to x-axis along y = 0, y = 1

I Frank constants (K1,K2,K3) = (1, 0.62903, 1.32258) (5CB)

I electric potential φ(x, 0) = 0, φ(x, 1) = V

I permittivity of free space ε0 = 1.42809

I perpendicular dielectric permittivity ε⊥ = 7

I dielectric anisotropy εa = 11.5

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 20 / 26

Page 67: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: Freedericksz transition

Bifurcation diagrams for maximum angular tilt and free energy as a function ofV . The critical voltage is V ∗ ≈ 0.775.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 20 / 26

Page 68: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: Freedericksz transition

Three solutions for V = 1.1.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 20 / 26

Page 69: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: escape and disclination solutions

Minimise Oseen–Frank energy on a unit square subject to

I n radial from the centre

I Frank constants (K1,K2,K3) = (1, 3, 1.2)

I no electric field present

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 21 / 26

Page 70: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: escape and disclination solutions

Two escape and one disclination solution, with energies (9.971, 24.042, 9.971).The energy of the middle solution diverges with mesh refinement.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 21 / 26

Page 71: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: square well filled with nematic LCs

We consider the square wells filled with nematic liquid crystals consideredby Tsakonas et al. (Appl. Phys. Lett, 2007) and Majumdar et al.

Minimise Landau–de Gennes energy on a square subject to

I Q11 ≥ 0 on horizontal edges,

I Q11 ≤ 0 on vertical edges,

I Q12 = 0 on ∂Ω.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 22 / 26

Page 72: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: square well filled with nematic LCs

Bifurcation diagram showing stable states as a function of square edge length D.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 22 / 26

Page 73: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: square well filled with nematic LCs

21 different stationary points, coloured by the order parameter, for D = 1.5µm.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 22 / 26

Page 74: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: geometrically frustrated cholesteric

Description

In the absence of boundaries, the cholesteric adopts a helical structurewith a preferred pitch q0. On an ellipse, the boundary conditions precludethe energetically preferred uniformly twisted state. This frustration isresolved by deformation of the cholesteric layers or the introduction ofdefects, in multiple ways.

Minimise Oseen–Frank energy with cholesteric term in an ellipse subject to

I n = (0, 0, 1) on the boundary

I Frank constants (K1,K2,K3) = (1, 3.2, 1.1)

I no electric field

as a function of cholesteric pitch q0.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 23 / 26

Page 75: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: geometrically frustrated cholesteric

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 23 / 26

Page 76: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: geometrically frustrated cholesteric

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 23 / 26

Page 77: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: geometrically frustrated cholesteric

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 23 / 26

Page 78: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: smectic-A

Pevnyi–Selinger–Sluckin (2014) model

Minimise

J(n) =

∫Ω

a

2δρ2 +

c

4δρ4 +B

∣∣∇∇δρ+ q2n⊗ nδρ∣∣2 +

K

2|∇n|2 dx

subject to n · n = 1, periodic in x, Dirichlet on n for y ∈ 0, 1.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 24 / 26

Page 79: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: smectic-A

Pevnyi–Selinger–Sluckin (2014) model

Minimise

J(n) =

∫Ω

a

2δρ2 +

c

4δρ4 +B

∣∣∇∇δρ+ q2n⊗ nδρ∣∣2 +

K

2|∇n|2 dx

subject to n · n = 1, periodic in x, Dirichlet on n for y ∈ 0, 1.

Difficult discretisation

Finite element discretisation is difficult because δρ ∈ H2(Ω).

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 24 / 26

Page 80: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: smectic-A

Pevnyi–Selinger–Sluckin (2014) model

Minimise

J(n) =

∫Ω

a

2δρ2 +

c

4δρ4 +B

∣∣∇∇δρ+ q2n⊗ nδρ∣∣2 +

K

2|∇n|2 dx

subject to n · n = 1, periodic in x, Dirichlet on n for y ∈ 0, 1.

Difficult discretisation

Finite element discretisation is difficult because δρ ∈ H2(Ω).

Solution: nonconforming Morley element

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 24 / 26

Page 81: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Applications Nonlinear PDEs

Application: smectic-A

δρ for some of 73 solutions found for q = 30, a = −10, c = 10, B = 10−5,K = 0.3.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 25 / 26

Page 82: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Conclusion

Conclusions

I Multiple solutions are ubiquitous and important in liquid crystals.

I Deflation is a useful technique for finding them.

I Deflated problems can be solved efficiently.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 26 / 26

Page 83: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Conclusion

Conclusions

I Multiple solutions are ubiquitous and important in liquid crystals.

I Deflation is a useful technique for finding them.

I Deflated problems can be solved efficiently.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 26 / 26

Page 84: Computing multiple solutions of partial differential equations€¦ · Computing multiple solutions of partial di erential equations Patrick E. Farrell1 S. P. MacLachlan, T. J. Atherton,

Conclusion

Conclusions

I Multiple solutions are ubiquitous and important in liquid crystals.

I Deflation is a useful technique for finding them.

I Deflated problems can be solved efficiently.

P. E. Farrell (Oxford) Deflated continuation December 10, 2019 26 / 26