computer/zed quantitative analysis by gamma-ray spectrometry. vol

38
TID-4500, UC-4 Chemistry u LAWRENCE UVERMORE LABORATORY Unne^atCailomia/lJwnnofB,CaBar&/S4550 UCRL-51061, Vol. IV COMPUTER/ZED QUANTITATIVE ANALYSIS BY GAMMA-RAY SPECTROMETRY. VOL. IV. AUXILIARY PROGRAMS FOR GAMANAL R. Gunnink J. B. Niday MS. date: June 1, 1972 - -NOTICE- Thia report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, ma*es any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com- pleteness or usefulness of any information, ipparatus, product or process disclosed, or represents that Its use would not infringe privately owned rights. eiSTRffiUTlOK Cf TK!S OflCULSEKT iS iKIUHSirf)

Upload: phamduong

Post on 03-Feb-2017

235 views

Category:

Documents


1 download

TRANSCRIPT

TID-4500, UC-4 Chemistry

u LAWRENCE UVERMORE LABORATORY

Unne^atCailomia/lJwnnofB,CaBar&/S4550

UCRL-51061, Vol. IV

COMPUTER/ZED QUANTITATIVE ANALYSIS BY GAMMA-RAY SPECTROMETRY.

VOL. IV. AUXILIARY PROGRAMS FOR GAMANAL

R. Gunnink J. B. Niday

MS. date: June 1, 1972 -

- N O T I C E -Thia report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, ma*es any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com­pleteness or usefulness of any information, ipparatus, product or process disclosed, or represents that Its use would not infringe privately owned rights.

eiSTRffiUTlOK Cf TK!S OflCULSEKT iS iKIUHSirf)

Contents

l Abs t rac t 1 Introduction 1

I The EFFICIENCY P r o g r a m ! The LIBETP P r o g r a m n

\ The LINEARITY P r o g r a m 26 The XDET Prog ram 3 1

f — iii— •I

Other Volumes

VOL. I. Description of the GAMANAL Program (1972) VOL. II. Source Listing of the GAMANAL P r o g r a m (1971) VOL. m . A Use r ' s Guide to GAMANAL (1971) VOL. V. Decay-Scheme Data L ib ra ry for GAMANAL

(planned revision of UCID-15439)

COMPUTERIZED QUANTITATIVE ANALYSIS BY GAMMA-RAY SPECTROMETRY.

VOL. IV. AUXILIARY PROGRAMS FOR GAMANAL

Abstract

This report describes and lists four small programs that are used in conjunction with the GAMANAL program. They are used to prepare a decay scheme library and to determine some of the parameters that characterize the counting systems.

Introduction

The GAMANAL program is primarily intended for complete computer analysis of high-resolution gamma-ray spectra obtained from mixtures of radioactive species such as fission products. For this purpose it examines the pulse-height data for "back­ground" and "peak" regions, fits these peaks with the proper shape functions, and cor­rects for the effects of geometry, attenuation, and detector efficiency in evaluating the photon emission rate and for nonlinearities in the equipment in setting up an energy scale. These intermediate results are listed and plotted and, if no further data reduc­tion is requested, the program goes on to the next spectrum. Otherwise, it proceeds to search a "library" of decay scheme information in order to make tentative assign­ments for each of the peaks. This collection of "candidates" is examined for interac­tions between the photopeaks of the proposed nuclides and is divided into sets of species which interfere with each other at any point. A least-squares solution of the corre­sponding set of simultaneous equations is made and the amounts of various components originally present are calculated and listed, along with their estimated er rors .

The following programs are used to prepare the decay scheme library and to determine the various parameters used to descr :be the linearity and the efficiency of a system.

The EFFICIENCY Program

This auxiliary program fits a polynomial equation to a set of efficiency data for a Ge(Li) detector. The coefficients of the resulting polynomial can then be used to de­scribe the intrinsic efficiency of the detector.

Since we were unable to describe the efficiency adequately over the entire energy region with a single 6th or 7th order polynomial, we have chosen to use separate

- 1 -

equations to descr ibe the low energy region and the high energy region. A crossover energy, generally somewhere between 50 and 200 keV, is selected to give an optimum overal l fit.

JTJie input to th i s p rogram consists of gamma- ray energies , the corresponding intr insic efficiencies, and the associated e r r o r s , if g rea te r than 1%. Also specified a r e the terminal energy for the fitting range of the first polynomial and the starting energy for the fitting of the second polynomial. These specifications should result in an appreciable overlap within which a good c ros sove r energy position can be chosen.

An equation of the following form will be fitted to the data (by the method of leas t -squares) :

In e. N

I a.Un Ety

where

e. = intrinsic efficiency at energy E .

a. = polynomial coefficients

The resulting values of a. are placed on Type 5 cards as explained in Vol. Ill ol this 1 •*

r e p o r t /

J. B. Niday and R. Gunnink, Computerized Quantitative Analysis by Gamma-Ray Spectroscopy. Vol. i n , A User's Guide to GAMANAL, Lawrence Livermore Labora­tory, Rept. UCRL-51061, Vol. Ill (1971).

2 -

FORTRAN EFFICIENCY 1972 AC GOS/03 00.331 M0NITOR402 C.271

4 CODE ANALYSIS 5 6 C THIS PROGRAM CALCULATES COEFFICIENTS TC POLYNOMIAL ECUATIQNS WHICH 7 C ARE SUBSEQUENTLY USED TC DESCRIBE Th£ EFFICIENCY OF A DETECTOR V 9 C FIRST DATA CARD * COL. 2- 9 (FB.3) GAMMA RAY ENERGY (KEV) 10 C CUL. 1C-18 1E9.3I EFFICIENCY VALUE 11 C COL. 19-21 IF3.il PERCENT ERROR 12 C CUL. 22-29 (AH) SOURCE LAOLfc 13 C CUL. 3C-69 15A8I PRUULEM IDENTIFICATION 14 C CUL. 7C-7S (16) ENDING ENERGY FDR 1ST POLYNOMIAL 15 C COL. 76-80 (151 STARTING ENERGY FCR 2NC POLYNOMIAL 16 C ADDITIONAL OATA CARDS • COL. 1-29 SAME AS ABCYE 17 C USE ONE CARD FOR EACH EFFICIENCY MEASUREMENT 18 C USE A BLANK CARD TO SEPARATE PROBLEMS 19 C USE AN ADDITIONAL BLANK CARD TC TERMINATE THE RUN 20 21 22 COMMON ENERGY!SO),EFF(SCIiSOURCE(SOI.ERGLCG150,9),EFFLOGI50). 23 1ERG1I200) , E F F l l 2 0 0 > , E R G 2 < 3 0 0 l , E F F 2 < 3 a 0 1 , I C < S l i X < 9 ) . B ( 5 0 , 9 ) , B ( S O > , 24 2Wf9) ,Vt9 l ,EFFSTD(Sa)>PCTOfcV(50) f hIOEFF{50) .hrUERG(50 ,9 l ,PCT£RRI50t 25 1 , E N ( b O , 5 ) , E F ( 5 0 ) , X X ( 9 l , \ U ( 6 I 26 27 CALL CRT1D (2HRGi l ,0> 28 NOROER - 5 29 1 NUK = NORDER 30 CO 20 J = 1.9 31 CO 30 I = I i50 32 30 ERGLUGU.JI = O.C 33 20 CONTINUE 34 N=0 35 100 N=N+l 36 REAO INPUT TAPE Zt lO.ENERGYINI ,£FFIN).PCTtRRINI.SOURCE INI.NO, 37 1 I E I U 38 10 FORMAT <lX,FB.3,E9.3,F3.1,A8,SAa,l6,l5l 39 IFIPCTERR(N) 1 lib. .115 40 PCTERRIN) « 1.0 41 U S IF IN-1) . ,116 42 IF lENERCY(N)) ,100C, 43 I EN 0 = IL 44 ISTAKT = IS 45 00 117 I » 1,5 46 117 ID!I I = ND(l) 47 116 IF JENERGY(NI) • ,IOC 48 120 N = N -1 49 SO C DETERMINE THE LOGARITHMS OF THE ENERGY AND EFFICIENCY VALUES. 51 52 CO 130 J = l,N Si ERGLOGIJtll = 1.0

54 ERGLU(i(J,2) • LQCF (ENERGY(J) * . 0011 55 OD 131 I « 3t NUM • 1 56 1 1 = 1 - 1 5T 131 ERGLOCUt l l • E R G L Q G U . l l I • ERGL0GU.2 I 58 EFFLUGIJI « LOGF I E F F I J M 59 130 CONTINUE 10 el C APPLY WEIGHTING FACTORS 62 63 DO 135 J "ltN 64 WEIGHT = 100. /PCIERRUI 65 WTDEFFIJ)«EFFLOGIJI*WEIGHT 66 00 134 I- It NUM • 1 67 MTDERGUiH • ERGLQG( J, I!*WEIGHT 68 134 CONTINUE 69 135 CONTINUE 70 71 00 141 J'lfN 72 IFIENERGY(J) -IENDI , ,142 73 DO 144 I • 1, NUH 74 144 EN(Jil) =• WTDERG(J.I) 75 bFU) » HTDEFFIJ) 76. 141 CONTINUE 77 142 Nl« J - 1 7B IF INI - NUH) A142, , 79 X1NUHU) • 0.0 80 81 C PERFORM LEAST-SQUARES FIT TO LOW ENERGY SET OF VALUES (UP TO i£N0l 82 83 CALL MLR(50,Nl,NUM,EN,EF,X,B,R,ki,V> 84 85 A142 N2 = 0 86 NUM - NUN * 1 87 00 143 J-l.N 88 IF(ENERGY(J» -ISTART)143, , 89 N2 » N2 • 1 90 DO 145 I- 1, NUH 91 145 EN(N2iI) • WTDERGIJ.I) 92 EFIN21- tiTDEFF(J) 93 143 CONTINUE 94 95 C PERFORM LEAST-SQUARES FIT TO HIGH ENERGY SET OF VALUES (ABOVE ISTART 96 97 CALL MLR(50,N2,NUM,EN,EF,XX,B,R,li,V) 98 99 C CALCULATE CURVE VALUES CF THE EFFICIENCY FLR EACH INPUT ENERGY

100 101 DC 133 J = 1.N1 102 EFFSTO ( j ) = x m 103 00 132 I « 2,NUM - 1 104 132 E F F S I 0 U 1 « 6FFST0(J1 • X U I » ERGLQGM.21 »• U - l l 105 fcFFSTLUJI =• EXPF (EFFSTC(Jl )

10b PCTDtVU) » IEFFSTUIJ) - EFFIJI) • 100. / E F F U ) 107 133 CONTINUE 10B K • Nl 109 CU 137 J = IN-142*11, U 110 K = K * 1 111 EFFSTD IK) = X X U ) 112 DO 136 1 = 2.NUM 113 136 EFFSrOIK) = EFFSTOIK) +XX1I) * ERGL0GIJ,2) ** II 114 EFFSTUIK) « EXPF (EFFSTOIK)) 115 PCTDEV(K) = (EFFSTOIK) - EFF(J)) * 100. / EFFIJ) 116 137 CONTINUE 117 118 C GENERATE A TABLE OF ENERGY VS. EFFICIENCY VALUES 119 !0 NPTSl » 0

121 HI = 0.1 * ENERGY!II 122 ERUlUi « 5 * Ml 123 F.RU2U' > E R G K 1 ) 124 IF (ISiART) ,B140, 125 CO 140 J-1,200 126 L • J + 1 127 ERGL • L0GFIERG1IJ) *.0C1 ) 128 EFFL = X(l) 129 CU ISO 1 "2.NUM-1 130 EFFL • EFFL •X<I)*ERGL **(l-l> 131 150 CONTINUE 132 EFFKJI » 6XPF IEFFL) 133 IF (fcRGllJ) - IENDI , ,A14Q 134 ERG1ILI =» ERG1IJ) • 5. 135 140 CONTINUE 136 J = J - 1 137 A140 NPTS1 » J 138 HI « ERGIU) • .1 139 ERG2I1) - HI » 10 140 B140 ERGEND = ENERGY(N) + 500. 141 CO 205 J = 1,300 142 L » J +1 143 ERGL • L0GFIERG2IJ) *.0C1) 144 EFFL «XX(1| 145 CO 154 I =2,NUH 146 EFFL - EFFL*XXUI*eRGL *»ll-l) 147 154 CONTINUE 1*8 IF (EFFL - 10.) . ,210 149 EFF2IJI = EXPF IEFFL) 150 IF IERG2IJ)- 500.) 160,170,170 151 160 ERG2(LI=ERG2IJ>+10. 152 GO TO 205 153 170 IF IERG2IJ)- 1000.) 180,190,190 154 180 ERG2U.)=ERG2IJ) + 50. 155 GO TU 205 156 190 IF IERG2IJ)- ERGENO) ,210,210

157 200 ERG2IL) * EKC2IJ) • 200. 158 20S CONTINUE 159 J » J - 1 160 210 NPTS2= J 161 162 C OUTPUT DATA 163 164 WRITE OUTPUT TAPE 3,220, 10 16b 220 FORMAT 1IH1,1<>X,24HEFFICIENCY VS ENERGY OF ,5A8I 166 WRITE OUTPUT TAPE 3,230,NCRDER 167 230 FORMAT!//20X,21HPOLYNOM1AL FIT IS OF ,11.8HTH ORDER //) 168 WRITE OUTPUT TAPE 3,240 169 240 FORMAT!2CXt57HENERGY EFFICIENCY PCTERR CAtC EFF PCTDEV SOURCE 170 1 USED //) 171 HRITt OUTPUT TAPE 3,250,(ENERGYIII,EFF<II.PCTERRII).EFFSTDI11, 172 lPCTDfcvU>.SOURCEU>,l=liM> 173 WRITt OUTPUT TAPE 3,251,NUM 174 251 FORMAT ( 19X, 30HCR0SSC/ER — POLYNOMIAL IS OF . l i . B H T H ORDER / / ) 175 NO = N1+N2-N 176 WRITE UUTPUT TAPE 3,250,(ENERGY 11) .EFF11I .PCTfcRH(I ) .EFFSTDI I+NO) 177 1.PCTUEVII+ NOt , S 0 U R C E ( l ) , I = < N - N 2 + l l , N 1 178 250 FORMAT I 1 9 X . F 7 . 2 . F 1 1 . 6 , F 7 . 1 , F 1 0 . 6 , F 9 . 1 , 6 X , A 8 / ) 179 WRITE OUTPUT TAPE 3 ,255

JO 255 FORMAV</20X,37HCOEFFICIEMS OF THE PCLYNOflAlS ARE / 25X, 26H 181 LLQW ENERGY HIGH ENERGY / ) 182 WRITE OUTPUT TAPE 3 , 2 5 6 , ( X I 1 I , X X ( I I , I "l.NUMI 183 'ib FORMAT <20X, 2 E 1 6 . 6 I 184 MUTE OUTPUT TAPE 3 ,260 185 260 FORMAT U H l . 19X.69HVALUES OF EFFICIENCY VS ENERGY CAL'ULATEC FROM 186 IF IT OF THE ABOVE DATA / / ) 187 WRITE OUTPUT TAPE 3 ,265 188 265 FORMAT!22X.44HENERGY EFFICIENCY ENFXbY EFFICIENCY / ) 189 WRITE OUTPUT TAPE 3 , 27C, I ( E R t i l I I ) . E F F K I I , 1 = l . N P T S l ) , 190 1 I E R U 2 I I ) , E F F 2 I I ) , I = 1.NPTS2)) 191 270 F0RMATI2CX, F 8 . 2 , F 1 4 . 7 , F 9 . 2 , F14 .7 /) 192 CALL XSERTHI I0 ,6 ,12 I 193 CALL AM1NMX IEFF2, I .NPTS2.1 ,XKIN,XPAX I 194 CALL GRID!14, 5 0 . , 5 0 0 C . , 1 . 6 0 H E N E R G Y I f t V I 195 1 , 0 , X f l N , .5 ,1 .10HEFFICIENCY , 2 1 196 CALL XPL0TIERG1,l.NPTSl) 197 CALL YPL0T1EFF1.1.1I 198 CALL XPLOTIERG2.1.NPTS2) 199 CALL YPLariEFF2il.il 200 CALL XPLOTIENERGY.l.N) 201 CALL rPLOTIEFF ,1,01 202 GO TU 1 203 100Q CALL EXIT 204 END

I

BANK AOURESS BASE TYPE CLASS NAME 0001150 MAIN. INTEGER L1IERAL U 0001151 MAIN. REAL LITERAL O.C 0001157 MAIN. REAL LITERAL 0.1 0000005 MAIN. STATEMENT LAbEL 1

0000000 FORMAT LABEL / 10 0000027 MAIN. STATEMENT LAUEL 10J 00011*2 MAIN. STATEMENT LABEL 10C0 0001164 MAIN. REAL LIItRAL 10C0 0001156 MAIN. REAL LIItRAI. 100. 0001163 MAIN. REAL LITERAL 10. 0000066 MAIN. STATEMENT LAUEL 115 0000103 MAIN. STATEMENT LAbtL 116 0000077 MAIN. STATEMENT LABEL / 117 0001170 MAIN. INTEGER LIIERAL 12 0000106 MAIN. STATEMENT LAUEL / 12C 0000151 MAIN. STATEMENT LAbt: / 13C 0000132 MAIN. STATEMENT LAbtL / 131 0000341 MAIN. STATEMENT LAbEL / 132 0000365 MAIN. STATEMENT LABEL / 133 0000173 MAIN. STATEMENT LAUEL / 134 0000177 MAIN. STATEMtNT LAUEL / 135 0000407 MAIN. STATEMENT LABEL / 136 0000434 MAIN. STATEMENT LAUEL / 137 0001171 MAIN. INTEGER LIItRAL 14 0000510 MAIN. STATEMENT LABEL / 140 0000 226 MAIN. STATEMENT LAbEL / 141 0000232 MAIN. STATEMENT LAUEL 142 0000307 MAIN. STATEMENT LAUbL 143 0000217 MAIN. STATEMENT LAbEL / 144 0000275 MAIN. STATEMENT LAUEL / 145 0000474 MAIN. STATEMENT LAUEL f L5C 0000554 MAIN. STATEMENT LAbEL 1 154 0000570 MAIN. STATEMENT LAbtL 160 0000575 MAIN. STATEMENT LAUEL 170 0000601 MAIN. STATEMENT LAUEL lac 0000606 MAIN. STATEMENT LABEL 190 000)153 MAIN. REAL LITERAL 1.0 0001152 MAIN. INTEGER LITERAL 2 0000021 MAIN. STATEMENT LAUEL 1 20 0000611 MAIN. STATEMENT LABEL 1 200 OOflUbb MAIN. REAL LITERAL 200. 0000614 MAIN. STATEMENT LABEL 205

*» CLDE ANALYSIS **• / NAME IN NO EXECUTABLE INSTRUCTION C OENOTES ORIGINAL COUNT IN CLICHE.

SOLRCt LINE REFERENCES * DENOTES NAME DEFINED OX LABEL USE 27 34 85 120 195 201 32 79 121 27 29* 30 31 35 41 45 48 52 53 55 56 63 66 66 71 73 / ( 79 86 87 89 90 101 102 103 104 109 110 111 113 121 122 123 123 125 126 128 129 130 136 .39 141 142 144 146 159 172 177 182 19C 190 193 193 190 195 196 197 197 198 199 i99 200 201 202 37 38* U S 35* 4 7 42 203* 153 64 106 115 148 151 39 39 41* 41 47* 45 46* 192 48* 52 59* 55 57* 103 104* 101 107* 66 66* 63 69* 112 113* 109 116* 195 125 135* 71 76* 72 77* 87 88 93* 73 74* 90 91* 129 131* 145 147* 150 151* 150 150 153* 153 154* 153 153 156* 40 53 37 54 57 103 104 112 113 129 145 195 30 33* 2r> 25 125 157* 157 141 152 155 158*

•!, . ,^^';.^^4-V'-.jtJ ;--v«-,r»..'- .;•-:• >.--, -vt

00C0622 HAIN. STATEMENT LABEL 210 1*8 0000000 FORMAT LABEL 1 22C 104 000000(1 FORMAT LABEL 1 230 166 0000000 FORMAT LABEL 1 240 168 cowosc FuiviAT LAbcL / 250 \n 0000000 FORMAT LABEL 1 251 173 0000000 FUHMAT LABEL t 255 179 0000000 FORMA 1 LABEL 1 256 1B2 0000000 FORMAT LABEL 1 260 184 0000000 FORMAT LABEL 1 265 187 0000000 FORMAT LABEL 1 270 190 0001155 MAIN. INTEGER LIIERAL 3 55

197 0000015 MAIN. STATEMENT LABEL 1 30 31 0000000 INTEGER LITERAL 1 300 25 0000000 1N1EGER LITERAL 1 5 25 0001145 MAIN. INTEGER LITERAL 50 25

25 195 0001172 MAIN. REAL LITERAL 5000. 25 25 195

0001162 MAIN. REAL LITERAL 500. 140 0001165 MAIN. REAL LITERAL 50. lb* 0001160 MAIN. REAL LITERAL 5. 134 0001167 MAIN. INTEGER LITERAL 6 192 0000000 INTEGER LITERAL 1 9 25 0000516 MAIN. STATEMENT LABEL A140 133 0000253 MAIN. STATEMENT LABEL A142 78 0000000 SUBPROGRAM NAME 1 AMINHX 193 0003200 999999* REAL ARRAY B 25 0000525 MAIN. STATEMENT LABEL B140 124 0000000 SUBPROGRAM NAME 1 CRTIO 27 0006322 999999$ HEAL ARHAY bF 25 0000062 999999* REAL ARRAV tFF 25 0001522 999999J REAL ARKAY EFF1 25 0002506 999999* REAL ARRAY tFF2 25 0001205 MAIN. HOLLERITH LITERAL EFFICIENCY 195 0001326 MAIN. REAL VARIABLE EFFL 128* 0001130 999999* REAL ARRAY EFFLOO 25 0004206 999999S REAL ARRAY EFFSTD 25

114* 0005420 999^99* REAL ARRAY EN 25 0000000 999999* SEAL ARRAY ENERGY 25

177 0001176 MAIN. HOLLER ITH LITERAL ENERGY(PEV 195 0001212 999999* REAL ARRAY ERG1 25 0002032 999999* REAL ARKAY ERG2 25

156 0001327 MAIN. REAL VARIABLE ERGEND 14C* 0001325 MAIN. REAL VARIABLE ERGL 127* 0000226 999999* REAL ARRAY ERGLOG 25 0000000 REAL EXIERNAL 1 EXIT 203 0000000 SUBPROGRAM NAME 1 EXPF 105 ooooooa SUBPF.OGRAM NAME 1 GRID 195

156 156 160* 165* 167* 170* m l/B* 174* 181* 183» 186* 188* 191* 164 166 168 172 173 177 179 182 184 190 32* 25 141 25 28 45 122 25 25 ns 25 25 2', 25 25 25 25 25 25 31 83 9? 150 195

25 25 25 25 25 25 25 30 137* 85* 83 9/

140* 75* 83 92* 97 37* 58 106 106 115 115 172 177 201

132* 190 197 149* 190 193 199 130* 130 132 144* 146* 146 148 149 58* 65

102* 104* 104 105* 105 106 111* 113* 113 L14 115 172 177 74* 83 91* 97 37* 42 47 54 72 B8 121 140 172 200 122* 123 127 133 134* 134 138 190 196 123* 139* 143 150 151* 151 153 154* 154 157* 157 190 198 156 130 •43* 146 32* 53* 54* 57* 57 57 67 104 113

132

0001307 MAIN. INTEGER VARIABLE I 31* 67

112*

31* 67

112* 172 177 190

0003162 999999* INTEGER ARRAY 10 25 0001311 MAIN. INTEGER VARIABLE IE 37* 0001313 MAIN. INTEGER VARIABLE • END 43* 0001315 MAIN. INTEGER VARIABLE II 56* 0001312 MAIN. INTEGER VARIABLE IS 37 0001314 MAIN. INTEGER VARIABLE ISTART 44* 0001306 MAIN- INTEGER VARIABLE J 30*

58 74

104 113 136 154

0001321 MAIN. INTEGER VARIABLE K ioa* 0001324 MAIN. INTEGER VARIABLE L 126* 0000000 SUBPROGRAM NAME / LOGF 54 0001323 MAIN. INTEGER VAHIABLE MI 121* 0000000 SUBPROGRAM NAME / MLR 83 0001310 MAIN. INTEGER VARIABLE N 34*

42 140

34* 42 140

0001317 MAIN. INTEGER VARIABLE NI 77* 0001320 MAIN. INTEGER VARIABLE N2 85* 0006415 999999* INTEGER ARRAY NO 25 0001331 MAIN. INTEGER VARIABLE NO 175* 0001304 MAIN. INTEGER VARIABLE NORDER 2B* 0001322 MAIN. INTEGER VARIABLE NPTS1 120* 0001330 MAIN. INTEGER VARIABLE NPTS2 160* 0001305 MAIN. INTEGER VARIABLE NUM 29*

97 25 0004270 999999* REAL ARRAY PCTDEV

29* 97 25

0005336 999999* REAL ARRAY PCTERR 25 0004102 999999* REAL ARRAY R 25 0001174 MAIN. HOLLERITH LI1ERAL RG 27 0000144 999999* REAL ARRAY SOURCE 25 000417S 999999* RfcAL ARRAY V 25 0004164 999999* REAL ARRAY w 25 0001316 MAIN. REAL VARIABLE WEIGHT 64* 0004352 999999* REAL ARRAY WTOEFF 25 0004434 999999* REAL ARRAY HTDERG 25 0003167 999999* REAL ARRAY X 25 0001333 MAIN. REAL VARIABLE XMAX 193 OD01332 MAIN. REAL VARIABLE XMIN 193

32 45* 46 46 55* 56 57 66* 67 73* 74 74 90* 91 91 103* 104 104 113 113 129* 130 130 145* 146 146 172 172 172 172 172 172* 177 177 177 177 177 177* 182 182 182* 190 190 190* 190 190* 46* 164 192 43 72 133 57 44 68 124 32 52* 53 54 54 57 57 57 58 63* 64 65 65 67 67 71* 72 74 75 75 77 87* 88 91 92 101* 102 104 104 105 105 106 106 106 106 109* 115 115 125* 126 127 132 133 134 136* 137 138 141* 142 143 149 150 151 153 156 157 159* 159 160 UO* 110 111 113 113 114 114 115 115 134 142* 151 154 157 58 127 143 122 138* 139 97 35* 35 37 37 37 37 39 40 41 47 48* 48 52 63 71 87 109 109 175 177 17/ 200 78 83 101 108 172 ITS 89* 89 91 92 97 109 175 177 37* 4b 177 177 29 166 13 7* 190 196 190 193 198 55 66 73 78 79 83 86* 86 90 103 112 129 145 173 182 106* 115* 172 177 37* 39 40* 64 1T2 177 83 97 37* 172 177 83 97 83 97 65 67 65* 75 92 67* 74 91 79* 83 102 104 120 130 182

195

0000000 SUBPROGRAM NAME / XPLDT 196 198 200 0000000 SUBPROGRAM NAMfc / XSERTH 192 0006404 999999* REAL ARHAY XX 25 97 111 113 144 146 182 0000000 SUBPROGRAM NAME / YPLOI 197 199 201 0001154 MAIN. REAL LITERAL .001 54 127 143 0001161 MAIN. REAL LITERAL .1 13G 0001173 MAIN. REAL LITERAL .5 195

The LIBETP Program

In order to identify and evaluate quantitatively the nuclides represented by a spectrum, one must have access to a library compatible with the method used in reduc­ing the spectral data. This program generates a decay-scheme library that is suitable for GAMANAL and then records it on magnetic tape.

Two blocks of data are read in from cards. The first is on a set of cards identi­fied by a 1 in column 1, There is a card for each of the nuclides which contains its nuclide number (combined atomic number and mass number), its half-life, and the nuclide numbers of any parent or daughter nuclides that should be considered with it.

The second set consists of one card for each gamma ray and has a 2 in column 1. These cards carry the nuclide number of the source, the energy and branching intensity of the gamma ray, an error estimate for this branching intensity if greater than 1%, and a list of up to four other gamma rays that should be found in association with this one. If these "associative" gamma rays are in the decay scheme of the parent or the daughter nuclide, they are so tagged.

LIBETP rearranges and cross-references this input information in such a way that GAMANAL will have no need to search for correlated information. In this process the gamma-ray list is first ordered according to increasing energy. An associated array is created for the branching intensity of each gamma ray and another for a packed set of indices to the locations of the corresponding associative gamma rays and of the source nuclide. The list of nuclides is also structured for easy reference to the corre­sponding half-lives and any parent-daughter relationship.

To reckon with two irregularities that are commonly encountered, the following conventions are used: 1) the mass number of meta-stable nuclides is increased by 300 and 2) the branching intensities associated with double and single-escape, pair-peaks are tagged respectively as 10 and 10 times the full-energy, peak-branching intensities.

After the data have been properly organized and packed for economy of space, the arrays are written onto magnetic tape in a suitable format for use by GAMANAL.

-11-

FORTRAN

5 6 C 7

LIBETP 1972 AO GQ5/03 00.316 MONITOR402 C.271

9 10 tl 12 13 14 IS 16 17 IB 19 20 21 22 23 24 2b 26 27 ?a 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4B 49

THIS PROGRAM PREPARES THE OECAY SCHEME LIBRARY FOR GAHANAL FIRST CARD* COL 1 = 1

COL 11-20 COL 61-66 COL 71-72

ISOTOPE CARDS* COL COL

= FILE NAME FOR OUTPUT ° VAULT NO. FOR OUTPUT TAPE ° LNU NC. FOR OUTPUT TAPE I * 1 2- 6 (151 NUCLIOE NUMBER (ATOPIC ANC PASS NO. I

ADO 300 TC MASS OF PETA-STABLE NUCLIDES CUL 8-16 (F9.3) HALF-LIFE IN DAYS COL 2C-24 (15) NUCLIDE NUMBER OF THE PARENT CUL 26-30 115) NUCLIDE NUMBER OF THE DAUGHTER

BLANK CARD GAMMA RAY CARDS* COL 1 « 2

COL 2 - 6 (IS) ATOPIC ANO MASS NUMBER COL 7 -15 IF9.3) GAMMA RAY ENERGY IN KEV CUL 16-24 IE9.3) BRANCHING INTENSITY CUL 25-27 (13) ERROR ASSIGNED TO BRANCHING INTENSITY CUL 3C (11) FLAGS 1ST ASSOCIATIVE GAMMA AS BEING

FRCP THE SAME, THE PARENT, OR DAUGHTER NUCLIOE IF • TC 0. I. QR 2, RESPECTIVELY

CUL 31-39 (F9.3) ENERGY OF 1ST ASSOCIATIVE GAMMA RAY CUL 4C-'<9 UI.F9.3) OITTO FOR 2ND ASSOCIATIVE GAMMA COL 5C-59 IU.F9.3) DITTO FOR 3RD ASSOCIATIVE GAMMA CUL 6C-69 (IliF9.3) DITTO FOR 4TH ASSOCIATIVE GAMMA ONLY THE FIRST TWO ASSOCIATIVE GAMPA RAYS LYING IN THE ENERGY RANGE OF THE SPECTRUM HILL BE USED

TERMINATE INPUT hlTH A BLANK CARD

CODE ANALYSIS PARAMETER (MXGM = 1BC0,PXN - 30CI CGMM0N/BLNK/BUFFI100C).NUMBER(MXN).PASSIMXN),LK(MXGPI,JERRIMXGMI•

INUCLMMXCM)|ENERGYIMXGM>,|1RANCH<PXGPI,KIN(4,NXGM1,ASSCC(4,MXGMI, 2 KK(MXGM),IN0EXNlMXGMIiINUEXP(MXN)tlHDEXOIMXN),NUCLN(MXN), 3 NPARNT(MXN),NDGHTRIMXN).lNDEXl4)iAE(4>,lNKDER,LBLTC5)

BYTb SYMBOL!12) CUMM0N/CLI6T/NUMBRN,NUM8RK,SYMBOL(1001,ETC(801,NUKL1PXNI,

1 TlHALF(MXN),EEElMXGMI.BR(MXGMI,NDCES(MXGPItULBL(HXN> DIMENSION 1SYMBLI100I EQUIVALENCE (SYNBOLiISYPBLI DIMENSION TkDSI5000) EQUIVALENCE (NUMBRNiTWOS 111)

FOLLOWING ARE THE ELEMENT .SYMBOLS DATA (ISYMuL=200H HHELIBt a C N C FIVENAMGALSI P SCLAR KCASCTI VCR

I M N F E C O N I C U Z N G A C E A S S E B R K R R D S R YlRltBMCTCRLRHPCAGCDINSNSBTE IXECSBALA 2CEPRhUPMSMEUGDTBDYHOERmi)LUHFTA kRECSIRPTAUHGTLPBBlPCATRNFHRAACTH SPA UNPPUAMCMBKCFESFM)

CALL 00NLGEIBUFF,100C.2,INKDER> IF I1NKCER-1I . .9S6

READ CARD WITH A FILE NAME AND TAPE NUMBER AND UNIT FOR OUTPUT

RIT 2,LBF,LCARD,LBLT(l ) ,NVAULT. lrMP.LT LBF FORMAT ( R l t 9 X t A 1 0 i 4 0 J d R 6 . 4 X . 2 R l I

IF ILCARO - 1RTI . 1 2 . I F ILCARD - I R l l f J B . .998 L B L T U I • NVAULT = 0 CALL 8SPACEI2)

12 ITMP • (1TMP-16I * 1C IF (ITMPI . . 1 3 ITMP » C

13 LT » LT-16* ITHP IF (LT) , . 14 LT « 16

READ HALF-LIFE AND PARENT-DAUGHTER INFORMATION FOR THE VARIOUS NUCLIDES (INDEX THESE ARRAYS BY N>

14 N • 0 20 N - N • 1

READ INPUT TAPE 2,30.10 . NUCLMM .TIHALFINJ.NPARNTINI.NCGHTRINI 30 FORMAT III,15,1X,E9.3,3X,I5,IX,15)

DECODE 35, (NUCLNtNH ,36. (NUMBER <M, PASSIM J 35 FORMAT IIS) 36 FORMAT (12.13)

IF (ID - 1 ) 40,20,40 40 NUMBhN » N - 1 READ ENERGY AND BRANCHING DATA FCR A GAMPA RAY AND ENERGIES OF UP TO FOUR

ASSUCIATIVE GAMMA RAYS (INDEX ARRAYS BY Kl K « 0

SO K » K • 1 READ INPUT TAPE 2,60, ID .NUCLKIKI.EAERGYIKI.BRANCHIKI, JERR(K), 1 (KIN(J,K),AiSDCIJ,K),J-l,4)

60 FORMAT (ll.l!>,2E9.3.13.2X.4II 1.F9.3I I IF (ID - 2 I 70,50.70

70 NUMBRK » K - L

97 C 98 C ORDER THE GAMMA RAYS BV ENERGY It ARRAYSI 9V C 100 EEEIll « AKiNAF (ENERGY,1 ,NllH»RK,I,*> 101 BR 11) • BKANCHIM) 102 KK H I • M 103 LKIM) - 1 10* LASTK • N 105 00 100 1 • 2.NUMBRK 106 SHALL* a 10000.0 107 DO 110 K - ItNUHBRK IOB IF IENERGYIKI - E E E U - 1 D 110,120,130 109 120 IF <K - LASTK I 130,1111,110 110 130 IF IfcNfiRGV IK) - SMALLE) 140,1*0,110 111 M O SHALL* * ENERGYIKI 112 N • K I U 110 CONTINUE 114 EEE(I) • ENERGY <M) 115 BR II) * BRANCH IH) 116 KK (() * N 117 LKINI • I I IB LASTK « M •IV 100 CONTINUE !0 C

121 C CROSS-HEFERENCE DATA IN THE I ARRAYS HiIH INFORMATION IN THE N ARRAYS 122 C STORE INDICES TO THE N ARRAYS 123 C 12* DO 200 I « liNUMBRK 12* K • KKII) 126 NNN « NLCLKIK) 127 DO 201 J • IrNUmiRN 128 IF INNN-NUCLNIJD201, ,201 129 INOEXNIII • J 110 GO 70 2C0 131 201 CONTINUE 132 210 MRITE OUTPUT TAPE 3,220,NbCLKIKI 133 220 FORMAT 1/ 22H NO ISOTCPE NUMBER CF .IS.31H HAt BEEN STORED IN NO. 134 11 ARRAY I 115 GO TO 998 136 200 CONTINUE 137 C 13B G LOCATE THE ASSOCIATIVE GAPPA RAYS IN I ARRAYS IORCEREC BY ENERGY) 139 C PACK INDICES INTO ONE KORD ANO S1CHE 1*0 C 1*1 DO 300 I • 1,NUMBRK 1*2 K • KKIII 1*3 00 *60 *•!,* 1** IF (ASSOCtMtKIISOO.SCO, 1*» AAA • ASSOCIM.K) 1*6 DO 331 J • l.NLHURK 1*7 CELT • ABSF (AAA - E E E ( J I I

U S IF IUELT - .COOOll • •331 141 INDEXIHI • J 150 GO 10 350 151 331 CONTINUE 152 3*0 OELTAfc • 10UC0. 153 00 300 J • l.NUMBRK 154 CELT • ABSF lASSOCIM.K) - EEEI. i l I 155 IF IUELTAE - OELT I 3 8 0 , 3 7 0 , 3 7 0 156 370 CELTAt • OELT 157 360 CONTINUE IStt 380 J > J - 1 159 IF (OfcLIAE - . 2 I 3 S 0 . 3 S C . 0 C 160 390 WRIT* OUTPUT TAME 3,4 lO.ASSCCtP,K>.NLCLK(Kl ,EEEIJ) 161 410 FORMAT I /2CH NO GAMMA EKERbV OF ,FT.Z .B3H EXISTS I " THE ENERGY TAB 162 1LE WHICH EXACTLY AGREES hiTH THE ASSOCIATIVE 6AKPA RAY CF , 1 5 . / I 6 i 266H IHEREFURE A GAMMA RAY OF CLOSEST ENERGY HAS FOUNC WHCSE ENERGY 164 3 IS ,F7.2 I 165 INOEAIN) • J 166 C 167 C CHECK TO SEE THAT THE ASSOCIATIVE GAMMA RAY ISOTOPE NUMBER AGREES 168 L M1TH THAT SPECIFIED »N THE INPLT 169 170 350 DO 480 JL « J.NUMBKK 171 N • INDEXIM) 172 IF IMS IH.KI - 1) 420.440,430 173 420 IF (NUCLKIK) - NUCLNI1NDEXNINI))450,*60,450 174 430 IF (NUCLK(K) - NPARNTIINDEXNIN)11450,460,4S0 175 440 IF tftUCLK(K) - NDGHTR UKCfcXNIN)) 1450,460,450 176 450 INOEX(MI < INDEX(M) • 1 177 480 CONTINUE 178 WRITE OUTPUT TAPE 3.470.KLCIK<:!> .ASSCC (M.KI 179 470 FORMAT I/52H THE NUCLIDE NUMBER CF ThE ASSOCIATIVE GAMMA RAY OF , 10 115, 56H OOES NOT AGREE KITH THAT nHICH HAS SPECIFIED. ENERGY • ,

181 2 FT.2 I 182 GO TU 500 183 400 WRITE OUTPUT TAPE 3,482.ASSOCIM.KI.KLCLKIKI 184 482 FORMAT)/20HNQ GAMMA ENERGY OF .FT.2. 79H K£V EXISTS IN THE ENERGY 185 1 TABLE WHICH AGREES WITH THE ASSOCIATIVE GAMMA RAY OF ,15, / 3SH 186 2THEREF0RE THE INDEX IS SEr - TC C. • 187 500 INOEXIMJ « 0 188 460 CONTINUE 169 NDCfcS(l) « INDEXN1I) 190 CALL SBVT INOCESII),12.12.IN0EXI4II 191 CALL SUYT INOCESI I),24,U.1N0EXI3)) 192 CALL SBYT INDCE5111,36,12,INUEX(2)) 193 CALL SBYT (NUCESIII ,48,12,INQEXUM 194 300 CONTINUE 195 C 196 C LOCATE SPECIFIED PARENTS UR DAUGHTERS IK ISOTOPE ARRAY AND STORE INDICES <N> 197 C 198 00 600 N " ItNUMBRN 199 IF INPAKNT(Nl) 610,620.610

200 610 NNN « NPARNTINt 201 00 Oil J « WNUMttRN 202 IF <NNN-NUCLNIJ)I611, .611 203 INDEXPINI a J I GO TC 620 204 611 CONTINUE 20!> 00 TO 998 206 620 IF INOGHTRINII 630,600.630 207 630 NNN • NDGHTK(N) 208 DO 621 J » l.NUMBRN 209 IF INNN-NUCLN(J>)621. .621 210 INDEXD(N) • J 211 GO 10 6C0 212 621 CONTINUE 213 GO TO 998 214 600 CONTINUE 21* 216 C PACK NUCLIDE NUMBER. SYMBCL, MASS. AND P - 0 INOICES IN ONE WORD 217 218 00 MRG, M-l.NUMBRN 219 NUKLIMI - INOEXOIM) 220 CALL SBYT INUKL(M),9,9,1NUEXPIM)J 221. CALL SUYT (NUKL(M),18,10,MASSIMI) 222 CALL SBYT (NUK.L(M) ,40,20.NUCLNlC! I 223 ISY - SYMBQLINUMBER(M)) 224 CALL SBYT (NUKLIM), 28,12,ISY) 225 REWIND 63 226 WRITE (63.1C85I1SY.MASS<M) 227 READ I 63, 1086 ) 1ZLBL1M 228 1085 FORMAT I1X,R2,I3) 229 1086 FORMAT (A6) 230 MRG CONTINUE 231 C 232 C WRITE INFORMATION ON TAPE, IDEM IFY1HG FILE BY HEADER RECORD 233 C 234 CALL CLOCK IITT.ITTT) 235 IF ILBL1(1))640, ,64C 236 LBLT(l) = 6RGELIBE 237 640 L B L U 2 ) = 102+3*MXGM+3*PXN 23B ITMP • 40CQ062B 239 CALL SBYTIITMP.24,36,NVALLT> iU LBLII4) = ITMP

241 CALL SBYT (ITT,0,36,1 TIT) 242 L0LII5) - ITT 243 641 00 642 L=l,3 244 BUFFER OUT ( L T , 1 I I L B L T ( 1 1 , L B L T 1 5 I I 245 WOT 3.164C,(LBLTII) , I» l ,5 l 246 1640 FORMAT (5X.21HTAPE HEADER RECCRO IS /5(2X,C20)I 247 U40 IF (UNIT,LTIU40,645, , 248 CALL 8SPACE (LTI 249 U41 IF <0N1T,LTIU41, , , 250 642 CONTINUE 251 CALL HABLNK ILTI 252 NU » NO-U 253 U42 IF (UNIT.LT1U42, ,998, 254 IF IN0-10I641.641.998

255 256 645 NXT > 1 257 LST » 512 25B NBFS a C.99S9 • LBLTUW512. 259 DO 660 JB • l,NBFS 260 00 655 JR > 1.10 261 BUFFER OUT ILT.IH VhOS(f,Xr),Th05<LST!l 262 UL2 IF (UNIT,LT,JM0StUL2>657, ,647 263 IF IEOF.LI) .998 264 647 CALL BSPACEtLTI 265 UL3 IF IUNIT.LTIUL3, . • 266 CALL BSPACE ILT) 267 UL4 IF (UNIT,LT)UL4, , • 266 BUFFtR IN I L1.11 <KK( I ) .KM512 > I 269 ULS IF IUN1T,LT)UL5. • « 270 CALL WRBLNK ILTI 271 UL6 IF 1UNIT.LTIUL6, i • 272 655 CONTINUE 273 GO TU 99B 274 275 657 NXT > LSTtl 276 LST • LST * 512 277 IF 1LST-LBLT12)>660,66C, 27B L5T -LBLTI21 279 660 CONTINUE 280 CALL HKTEOF ILTI 2B1 C 282 C TABULATE INFORMATION 283 C 284 MOT 3»7C0,ITT,ITTT 205 700 FORMAT UH1,19X,58H 'HE FOLLCMING INFORMATION MAS WRITTEN ON MAliNE 2B6 1TIC TAPE ON ,A8,IX.A8//) 287 MRITk OUTPUT TAPE 3,710,(SYMBOLU>. I • 1.1001 288 710 FORMAT (15X, 10R8/I 289 MRITE OUTPUT TAPE 3,720 290 720 FORMAT 1/ 15X,6BHINDEX ISOTOPE HALF-LIFE PARENT NO INCEXP 291 1CAUGHTER NO INDEXO //I 292 WHITE (3,7301 293 00 TSYM, N-t,NUMBRN 294 NSYM • NUMBER IN) 295 XHIT NtNSYM .SYMBOL(NSVC1.MASS(M, UHALFINIiNPARNTIN), INCEXPIN I, 296 1 N0SHTR|N),1NDEXDIN) 297 TSYM CONTINUE 298 FIN '99 730 FORMAT I15X,I4.3X,12. R3.1X.I3.5X,E9.3.2K.Ii,6X,14,4X,I5.8X,I4/> 10 K • I

301 LAST - 0 302 MAX • 0 303 712 IF li.AST - NUCLKIKM713, ,713 304 JNO - JNO - 1 30* 713 LAST • 0 306 WRITS OUTPUT TAPE 3.714 307 714 FORMAT* 11H1.27X.&2HNIX1.IDE HALF-IIFE ENE8SY BRANCHING 308 1 ERROR / 41X,31HI0AYSI IXEV1 INTENSITY I 309 716 MAX " MAX • 1 310 NUCNO * NUCLK(K) 311 NREF • INDEXNILKIKI) 312 IS - NUM8ERINREFI 313 MS • MASSINREF) 314 M » OH 315 IF IMS - 300) 718, , 316 MS • MS - 30C 317 M « 1HM 318 718 IFUAST - MUCNOl .7211 319 JNO » JNO • 1 320 IF IbRANCHIKI - l.Jfc-10 > . ,719 321 HUT 3»17CO,JNa,LS,SYMHOiaSl.MS,!<,TlHAt.F<NREFI,ENERGY(K> 322 1700 FORMAT I/20X. I4,|!>,K3.I4,A1 ,E12.3,F1C.2,1JH PAIR PEAK) 323 MAX • MAX • 1 324 CO TU 721 , 325 719 IF I JEKRIHX r ,77C 326 IF IMSI .723, 327 HOT 3,l7l9.JNa,LS>SYNB0l<lS).MS,M.riHALF(AREFI,EN£RGYfKli8RANCH(KI 328 1719 FORMAT */2CX,I4,15,R3.I4,A1,E12.3,) 1C.2 .E13.3I 329 MAX • NAX • 1 330 GO TO 728 331 723 MOT 3«l723,JN0»lS,SYHftCULSI.ENERGYIX).BRANCHIK) 332 1723 FORMAT U20X.I4. IS.R3.7H X-RAYS.10X.F1U.2.E13.31 333 MAX • MAX • 1 * GO tC 728 334 770 HRITE OUT1 JT TAPE 3 , 7 2 2 , JNO.l S .SYKUCUISI .KS.H.TlHALFtKREF),ENERGY 335 UKirURANCXtKI.JERRIK) 336 722 F0RMATI/20X,14*13. R3.14.AI.E12.3,F10.2»£13.3.I6 ) 337 MAX - MAX • 1 338 CO TU 728 339 721 IF <BRANCH(M - I.IE-10 ) . .72S 340 HRlTfc OUTPUT TAPE 3.72a.ENERGY IK) 341 726 FORMAT I 49X.FI0.2.13H PAIR «AX ) 342 GD TU 728 342 725 IF I JERRIKI) , ,772 344 WftlTt OfclPLT TAPE 3.773tENERGYIK).BRANChIK) 34» 773 FORHATI 49K.F 0.2.E13.3 ) 346 CO TU 728 347 772 WRITE OUTPUT TAPE 3,724.ENERGYIX) ,BR»NCMK>.JERRtK> 348 724 FORMAT! 49X.F10<2,E13.3.16 I 349 728 LAS7 • NUCNO 350 X • X • 1 351 IF <K- NIHURKI , ,729 352 If (MAX - 51) 716, •

3SJ) .<AX « 0 351 GO TO 712 355 72? K • 1 356 735 NO • K 357 MRiTfc OUTPUT TAPE 3.Y40 358 740 FORM»T IlHl,27X,57HNUCLIDfc EUfcRGY BRANCHING ASSOCIATIVE 159 1CAMNA RAYS / 40X, 19HIKE V ) I M t N S M Y I

iO MAX • NO *26 361 IF (MAX - NUMORK) 7*2• 712• 362 MAX • NUMBRK 363 742 00 7*4 K • NCuHAX 364 INUK • INOEnNIK) 365 ISYM • NUMBER(INUM) 366 M « OH 367 MS • MASSIINUM) 368 IF IMS - 3C0) 746, , 369 HS » MS - 300 370 M • 1HM 371 746 NK • 0 372 00 750 1>1,4 373 KB • 60-1*12 374 Kl • LBYT(NDCES(K),KB,12I 375 IF (Kl) ,748, 376 AEIIt • EEEIKI) 371 00 TO 750 378 748 AEI1I • 0. 379 750 CONTINUE 380 NK » 1-1 361 IF IMSI , 7 6 0 , 3.42 IF i e R t K I - l . U - 1 0 ) , ,800 381 HOT 3i l747iK,NUMUER(r \"JP>,SYPeCL( ISVI>) ,KS,N,E£E(K! , (At (N>.N"l ,NK> 384 GO TO 744 285 800 HOT 3 , leOCK.NUHBfKt 1NCC) .SVHBO!. 11 S1K) ,CS,N,bEE (K) . B R I K l , 386 1 ( A E ( N t , N « l , N K l 187 GO TO 744 388 760 MOT 3,1760,K,NUN0ElUINUP>i!>YM&CL<IS'rl') , l : E l i l K l , B R ( K ) , (AE!N)«N«l ,NK) 389 1760 FORMAT I / 2 0 X , 14 ,1 5 ,R3.6H X - R A Y , F U . 2 , t : 1 3 . J , 2 X . 4 F U . 2 ) 390 1747 F 0 R M A T U 2 0 X , | 4 , I 5 , R 3 ' , I 4 , A l , f 9 . 2 . L 3 H PAIfl PEAK.2X. 4F11 .2 ) 391 1800 F0RMATI /20X ,14 ,15 , R 3 , I 4 , A 1 , F 9 . 2 . E 1 3 . 3 . 2 X . 4 F 1 1 . 2 I 392 744 CONTINUE 3)1 IF IK-NUMBRKI735,735.E* 3*4 998 CALL POUMP 395 EX IF (UNIT.LTIEX, , , 39b CALL HRTEOF ILTI 397 ULF IF IUNIT,LTIUIF, , , 398 CALL 00NLGFI2! 399 CALL UNLOAD ILTI 400 CALL EXIT 4U1 END

^XiMj^^U^^A^ i^UW.ft.ifJS'ys*.-^.:^-^.^*-:*^

**•:• CODE B.AWK

i n f t n ^ r f u i c c T u n e t»i * r <* a.i« iic r r M n i AOBRESS BASE TTPE CLASS N*.f£ SCURCE CO0HQ72 "A!?ii i!CLL£R IT!'. C3IGAAL 314 0000000 hULLEKlJH LI lERAL / HHELIBE B 55 0000000 INTEGER LITERAL / 0 65

371 0002046 MAIN. REAL LITERAL 0. 378 0002044 MAIN. REAL LITERAL 0.9999 258 0002033 MAIN. INTEGER LIIERAL 1 49

100 141 208 259 309 383

0002070 MAIN. RT ADJUSTC I LIIERAL 1 64 0000000 INTEGER LITERAL / to 67 0000252 MAIN. STATEMENT LAbEL / 100 45 0002031 MAIN. INTEGER LIIERAL 10C0 42 0002040 MAIN. REAL LITERAL 10000. 152 0002035 MAIN. REAL LITERAL 10C00.0 106 0000000 INTEGER LIIERAL / 102 237 0000000 FORMAT LAbEL / 1085 226 ooooooo FORMAT LAbEL / 1086 227 0000237 MAIN. STATEMENT LABEL lie 107 0000033 MAIN. STATEMENT LAbEL 12 43

374 0000224 MAIN. STATEMENT LAbEL 120 108 0000040 MAIN. STATEMENT LAbEL 13 68 0000227 MAIN. STATEMENT LABEL I3C 108 0000045 MAIN. STATEMENT LAUEL 14 71 0000233 MAIN. STATEMENT LAbEL 140 !10 ooooooo INTEGER LITERAL / 16 67 ooooooo FORMAT LAbEL / 1640 245 ooooooo FORMAT LAbEL / 1700 321 ooooooo FURMAT LABEL / 1719 J27 ooooooo FORMAT LAbEL / 1723 331 ooooooo FORMAT LAbEL / 1747 383 ooooooo FURMAT LAbEL / 1760 388 ooooooo INTEGER LIIERAL / 18 221 ooooooo FORMAT LAbEL / 18C0 38 0002045 MAIN. REAL LIIERAL 1.1E-10 3:0 0002034 MAIN. INTEGER LITERAL 2 57

277 0000046 (•'.UN. STATEMENT LABEL 20 78* 0000316 MAIN. STATEMENT LAbEL 200 124 0000277 MAIN. STATEMENT LACIEL 201 i27 0000303 HA IN. STATEMENT LAbEL / 210 li2» O0OO0OG FORMAT LAtibL / 220 132 OOOOOOO INTtGER LSTERAL / 24 191 OOOOOOO INTEGER LITERAL / 26 360

lALVSIS **• / NAME IN NO EXECUTABLE INSTRUCTION C DENOTES ORIGINAL COUNT IN CLICHE

I.RE REFERENCES « HFNnie*. MAMF pfFJNE'' QH LiBEL L'SE 366

90 187 241 301 302 305 353

58 61 65 78 84 85 91 93 96 100 100 101 102 103 107 108 124 127 143 146 153 158 112 176 193 196 201 21B 235 236 243 214 244 245 252 256 260 261 268 268 IT* 287 293 300 304 319 323 329 333 337 350 355 372 380 386 388

221 254 260 46 105 119* 287 57

226* 229* 108 109 109 110 113* 63 6/* 190 190 191 192 193 224 373

109* 10* 109 no* 77* 110 111* 7U 72

246* 322* 328* 332* 390* 389* 386 391* 339 382 61 66 79 93 95 105 192 237 258

27B 398 84 222 130 136* 128 128 131*

134* 239

QQQQOQQ INTEGER LITERAL / 28 224 0002036 HA IN. INTEGER LITERAL 3 132 160 178 183 191 237 237 243 245 284

207 289 292 306 321 327 331 335 340 344 347 357 383 3 86 386

0000000 FORMAT LABEL / 30 79 80* 0000561 MAIN. STATEMENT LABEL / 300 3B 141 194* 315 316 36B 369 0000352 MAII STATEMENT LABEL 331 146 148 151* 0000356 MAIN. STATEMENT LABEL / 340 152* 0000000 FORMAT LABEL / 35 81 82* 0000432 MAIN. STATEMENT LABEL 350 150 170* 0000000 FORMAT LABEL / 36 81 83* 192 239 241 0000374 MAIN. STATEMENT LABEL / 360 153 157* 0000373 MAIN. STATEMENT LABEL 370 155 155 156* 0000401 MAIN. STATEMENT LABEL 380 155 158* 0000406 HAIN. STATEMENT LABEL 390 159 159 160* 0000000 INTEGER LITERAL / 4 42 42 42 42 93 143 190 240 372 0000122 MAIN. STATEMENT LABEL 40 84 84 85* 222 0000513 MAIN. STATEMENT LABEL 400 159 183* 0002043 MAIN. BOOLEAN LITERAL 4000062 238 0000000 FORMAT LABEL / 410 160 164* 0000447 MAIN. STATEMENT LABEL 420 172 173* 0000454 MAIN. STATEMENT LABEL 430 1T2 174* 0000461 MAIN. STATEMENT LABEL 440 172 175* 0000466 MAIN. STATEMENT LABEL 450 173 173 174 174 175 175 176* 0000534 MAIN. STATEMENT LABEL 460 143 173 174 175 188* 0000000 FORMAT LABEL / 470 178 1B1* 0000000 INTEGER LITERAL / 48 193 0000467 MAIN. STATEMENT LABEL / 480 170 177* 0000000 FORMAT LABEL / 4B2 183 186* 0000000 INTEGER LITERAL / 5 42 242 244 245 0000125 MAIN. STATEMENT LABEL 50 91* 95 0000532 MAIN. STATEMENT LABEL 500 144 144 182 187* 0000000 INTEGER LITERAL / 5000 48 0000000 INTEGER LITERAL / 51 352 0000000 INTEGER LITERAL / 512 257 268 276 0000000 REAL LITERAL / 512. 258 0000000 FORMAT LABEL / 60 93 94* 373 0000637 MAIN. STATEMENT LABEL 600 198 206 211 2i4* 0000573 MAIN. STATEMENT LABEL 610 199 199 200* 0000607 MAIN. STATEMENT LABEL 611 201 202 202 204* 0000614 MAIN. STATEMENT LABEL 620 199 203 206* 0000632 MAIN. STATEMENT LABEL 621 208 209 209 212* 0002042 MAIN. INTEGER LITERAL 63 225 226 227 0000616 MAIN. STATEMENT LABEL 630 206 206 207* 0000736 MAIN. STATEMENT LABEL 640 235 235 237* 0000751 KAiN. STATEMENT LABEL 641 243» 254 254 0001000 MAIN. STATEMENT LABEL / 642 243 250* 0001021 MAIN. STATEMENT LABEL 645 247 256* 0001054 MAIN. STATEMENT LABEL 647 262 264* 0001104 MAIN. STATEMENT LABEL / 655 260 272* 0001111 MAIN. STATEMENT LABEL 657 262 275*

0001120 MAIN. STATEMENT LABEL 660 0000173 MAIN. STATEMENT LABEL 70 0000000 FORMAT LABEL / 70C 0000000 FURMAT LABEL / 710 0001243 MAIN. STATEMENT LABEL 712 0001250 MAIN. STATEMENT LABEL 713 0000000 FORMAT LABEL / 714 O0OL256 MAIN. STATEMENT LABEL 716 0001277 MAIN. STATEMENT LABEL 718 0001342 MAIN. STATEMENT LABEL 119 0000000 FORMAT LAbEL / 720 0001475 MAIN. STATEMENT LABEL 721 0000000 FORMAT LAbEL / 722 0001404 MAIN. STATEMENT LABEL 723 0000000 FORMAT LABEL / 724 0001514 MA1I STATEMENT LAbEL 725 0000000 FORMAT LABEL / 726 0001554 MAIN. STATEMENT LABEL 728 0001567 MAIN. STATEMENT LABEL 729 0000000 FORMAT LABEL / 730 0001570 MAIN. STATEMENT LAbEL 735 0000000 FORMAT LABEL / 740 0001604 MAIN. STATEMENT LAbEL 742 0001777 MAIN. STATEMENT LABEL 744 0001625 MAIN. STATEMENT LAbEL 746 0001640 MAIN. STATEMENT LAbEL 748 0001642 MAIN. STATEMENT LAbEL 750 0001744 MAIN. STATEMENT LABEL 760 0001435 MAIN. STATEMENT LABEL 770 0001535 MAIN. STATEMENT LAbEL 772 0000000 FORMAT LABEL / 773 0000000 INTEGER LITERAL / 80 0001706 MAIN. STATEMENT LABEL BOO 0000000 INTEGER LITtRAL / 9 0002006 MAIN. STATEMENT LAUfcL 998 0002354 MAIN. REAL VARIABLE AAA 0000000 SUBPROGRAM NAME / ABSF 0072630 6LNK REAL ARRAY AE 0000000 SUBPROGRAM NAME / AMINAF 0042610 BLNK REAL ARRAY ASSOC 0072642 BLNK ELK COMMON NAME / 0LNK 0004706 CLIBT REAL ARRAY BR 0021140 BLNK REAL ARRAY BRANCH

0000000 SUBPROGRAM NAME / BSPACE 0000000 BLNK REAL ARRAY BUFF 0014402 CLIBT ELK COMMON NAME / CLIBT 0000000 SUBPROGRAM NAME / CLOCK 0002355 MAIN. REAL VARIABLE l)ELT 0002356 MAIN. REAL VARIABLE DELTAE 0001276 CLIBT RhAL ARK AY EfcE

259 277 277 279* 95 95 96*

284 286* 2 87 288* 303* 354 303 303 305* 306 308* 309* 352 315 318* 320 325* 289 291* 318 339* 335 336* 326 331* 347 348* 339 343* 340 341* 324 330 333 338 342 346 349 351 355* 292 299* 356* 393 393 357 359* 361 361 36 3* 363 384 387 392* 368 371* 375 378* 372 377 379* 331 388* 325 335* 343 347* i44 345* 45 3B2 386* 220 220 58 64 64 135 205 213 253

394* 145* 147 147 154 42 176* 378* 383 386 388 100 42 93* 144 145 154 160 178 42 45 101* i t s * 382 386 388 42 93* 101 115 320 327 331 347 66 248 264 266 42 57 45

234 147* 148 154* 155 156 152* 155 156* 159 45 LOO* 108 114* 147 154 160 386

263 273

335

376

339

383

344

386

0015530 BLNK KEAL ARRAY ENERGY 42 335

93* 340

100 344

108 347 no 111 114 321 327 331

0000000 REAL VARIABLE / EOF 263 0000026 GL18T REAL ARRAY / ETC 45 0002010 MAIN. SIATEMENT LABEL EX 393 395* 395 0000000 REAL EXTERNAL / tXIT 400 0002071 MAIN. RT ADJUSTD LITERAL GEL 1 BE 2 36 0002351 MAIN. INTEGER VARIABLE 1 105* 108 114 115 116 117 124* 125 129 141*

142 287*

189 372*

189 313

190 376

191 373

192 380

193 245 245* 287 0002344 MAIN. INTEGER VAKIABLE 10 79* 84 9 3* 95 0072624 BLNK INTEGER ARRAY INDEX 42

193 42

> 49* 165* 171 176* 176 117* 190 191 192 0070344 BLNK INTEGER ARRAY INDEXD

42 193 42 210* .219 296»

OOJ4260 BLNK INTEGER ARRAY INOEXN 42 129* 173 174 175 189 311 364 0067670 BLNK INTEGER ARRAY 1N0EXP 42 203* 220 296* 0072634 BLNK INTEGER VARIABLE INKUtR 42 57 58 0002403 MAIN. INTEGER VARIABLE INliM 364* 365 367 183 386 388 0002360 MAIN. INTEGER VAHlABLE ISY 223* 224 226 0002404 MAIM. INTEGER VARIABLE ISYM 365* 383 386 388 OC00002 CLIBT INTEGER EUUIVALNCt ISVMBL 46 47 5» 0002341 MAIN. INTEGER VARIABLE ITMP 61* 67* 67 68 69* 70 238* 239 240 0002361 HA If INTEGER VAKIABLE ITT 234 241 242 284 0002362 MAIN. INTEGER VARIABLE ITTT 234 241 284 0013726 CLIBT INTEGER ARRAY IZLBL 45 227 0002346 MAIN. INTEGER VARIAOLE J 93 93 93* 127* 128 129 146* 147 149 153*

154 209

158* 210

158 160 165 170 201* 202 203 208* 0002370 MAIN. INTEGER VAKIABLE JB 259* 0006510 BLNK INTEGER ARRAY JERR 42 93* 325 335 343 347 0002357 MAIN. INTEGER VAKIABLE JL 170* 0002376 MAIM. INTEGER VAKIABLE JNO 304* 304 319* 319 321 327 331 335 0002371 MAIN. INTEGER VAKIABLE JR 260* 0002372 MAIN. INTEGER VAKIABLE JNOS 262 0002345 MAIN. INTEGER VAKIABLE K 90* 91* 9L 93 93 93 93 93 93 96

107* 108 109 110 lit 112 125* 126 132 142* 144 145 154 160 160 172 173 174 175 178 178 183 183 300* 303 310 311 320 321 325 327 327 331 331 335 335 335 339 340 343 344 344 347 347 347 350* 350 351 355* 356 363* 38B

364 388

374 393

382 383 383 386 386 386 388 0002406 MAIN. INTEGER VAKIABLE KO 373* 374 0002407 MAIN. INTEGER VAHlABLE KI 374* .175 376 0024550 BLNK INTEGER ARRAY KIN 42 93* 172 0060650 BLNK INTEGER ARRAY KK 42 102» 116* 125 142 268 268 0002363 MAIN, INTEGER VARIABLE L 243* 0002374 MAIN. INTEGER VAHlABLE LAST 301* 303 305* 318 349* O00Z35O MAIN. INTEGER VARIABLE LASTK 104* 109 11** 0GO2G64 MAIN. STATEMENT LABEL LBF 61 62* 0072635 SINK IHTtGER ARRAY L8LT 42

249 61*

258 65*

277 235 278

236* 237* 240* 242* 244 244

0000000 SUBPROGRAM NAME / LBYT 374 0002337 MAIN. INTEGER VARIABLE LCARO 61* 63 64 0003100 BLNK INTEGER ARRAY LK 42 103* 117* 311 0002401 MAIN. INTEGER VARIABLE LS 312* 321 321 327 327 331 331 335 335 0002366 MAIN. INTEGER VARIABLE LSI 257* 261 275 276* 276 277 278* 0002342 MAIN. INTEGER VARIABLE LT 41 70* 70 71 72* 244 247 248 249 251

253 270

261 271

262 280

263 395

264 39f<

269 397

266 399

267 268 269 0002073 MAIN. HOLLERITH LITERAL M 317 370 0002347 MAIN. INTEGER VARIABLE N 100 101 102 103 104 112* 114 115 116 117

118 143* 144 145 149 154 160 165 171 172 176 176 178 183 187 218* 219 219 220 220 221 321

22 L 327

222 325

222 366*

223 370*

224 383

226 386

227 314* 317*

0002424 BLNK INTEGER ARRAY MASS 42 81 221 226 296* 313 367 0002375 MAIN. INTEGER VAKlABLE MAX 302*

337 309* 352

309 353*

323* 360*

323 361

329* 362*

329 363

333* 333 337*

0000724 MAIN. STATEMENT LABEL / MKG 218 230* 0002402 MAIN. INTEGER VARIABLE MS 313*

369* 315 369

316* 381

316 383

321 386

326 327 335 367* 368 0000000 FORMAT LABEL / MXGM 38

45 42 45

42 45

42 237

42 42 42 42 42 42

oooaooo FORMAT LABEL / MXN 38 45 77*

42 237 78*

42 42 42 42 42 42 45 45 0002343 MAIN. INTEGER VARIABLE N

38 45 77*

42 237 78* 78 79 79 79 79 81 81 81

85 171* 173 174 175 198* 199 200 203 206 207 296

210 383

293* 383*

294 386

296* 386*

296 388

296 388*

296 296 296 0002367 MAIN. INTEGER VARIABLE NBFS 258* 259 0010316 CLIBT INTEGER ARRAY NDCES 45 1B9* 190 191 192 193 374 0072150 8LNI INTEGER ARRAY NDGHTR 42 79* 175 206 207 296* 000240S MAIN. INTEGER VARIABLE NK 371* 380* 383 386 3BB 0002353 MAIN. INTEGER VARIABLE NNN 126* 128 200* 202 207* 209 0002364 MAIN. INTEGER VARIABLE NO 252* 252 254 356* 360 363 0071474 BLNK INTEGER ARRAY NPARNT ••2 79* 174 199 200 296* 0002400 MAIN. INTEGER VAK1A0LE NREF 311* 312 313 321 327 335 0002373 MAIN. INTEGER VARIABLE NS»M 294» 296* 296 0012120 BLNK INTEGER ARRAY NUCLK 42

303 93*

310 126 132 160 173 174 175 1TB 183

0071020 BLNK INTEGER ARRAY NUCLN 42 T9* 81 128 173 202 209 222 0002377 MAIN. INTEGER VARIABLE NUCNO 310* 318 349 0000146 CLtBT INTEGER ARRAY NUKL 45 219* 220 221 222 224 0001750 BLNK INTEGER ARRAY NUMBER 42 81 223 294 312 365 383 386 388 0000001 CLIBT INTEGER VARIABLE NUHBRK 45

351 96*

361 100 362

105 393

107 124 141 146 153 170 0000000 CLIBT INTEGER VAKlABLE NUMBRN 45 49 85* 127 198 201 208 218 293 0002340 MAIN. INTEGER VARIABLE NVAULT 61* 65* 239 0002365 MAIN. INTEGER VAKlABLE NXT 256* 261 275* 0000000 SUBPROGRAM NAME / OONLGE ST 0000000 SUBPROGRAM NAME / OONLGF 398 0000000 REAL EXTERNAL / PDIIMP 394 0000000 SUBPROGRAM NAME / SBYT 190 191 192 193 220 22; 222 224 239 241

0002352 HAIN. REAL VARIABLE SHALLE 0000002 CLIBT 12 BIT OF BYTE SYMBOL

0002067 HAIN. HT ADJUSTC LITERAL T 0000622 CLIBT REAL ARRAY T1HALF 0001232 HAIN. STATEMENT LAbfcL / TSYM 0000000 CLIBT REAL EUU1VALNCE TWOS 0000766 MAIN. STATEHENT LABEL U40 000077% HAIN. STATEMENT LAUEL U41 0001011 HAIN. STATEMENT LABEL U42 0001041 HAIN. STATEMENT LABEL UL2 0001056 HAIN. STATEHENT LAUEL UL3 0001064 HAIN. STATEMENT LAbfcL UL4 0001073 HAIN. STATEMENT LABEL UL5 0001101 HAIN. STATEMENT LABEL UL6 0002016 HAIN. STATEHENT LABEL ULF 0000000 REAL VARIABLE / UNIT

0000000 SUBPROGRAM NAHE / UNLOAD 0000000 SUBPROGRAM NAME / WRBLNK 0000000 5UBPR00RAM NAHE / MR1E0F 0002037 HAIN. REAL LITERAL .00001 0002041 HAIN. REAL LITERAL .2

I I

106* 110 HI* 43 45 47 223 2B7 296* 3B3 386 3BB 63 45 79* 296* 321 327 335

293 297* 4B 49 2b 1 261

247« 247 249* 24 9 253* 253 262* 262 265* 265 267* 26 7 269* 269 271* 271 397* 397 247 249 253 262 265 267 399 251 270 260 396 148 159

321 327 331 335

269 271 395 397

The LINEARITY Program

This program is used to determine the coefficients of the polynomial that best describes the non-linearity of a counting system. The input data can be either pulser-voltages or gamma-ray energies along with the corresponding peak positions in a pulse-height spectrum. The data are fitted by the method of least squares to an equa­tion of the following form:

N p> • I a j< C L i> j "

where

CL = peak position associated with the pulser-voltage or gamma-ray energy P {

a. = one of a set of coefficients describing the nonlinearity of the 1 system

The coefficients that are generated are placed on an appropriate Type -1 card (see Vol. (H of this report").

Some systems may be quite nonlinear in tr« low-channel region. If the equation gives a poor fit in this region, there is a provision for adding a linear component to the low-channel data (algebraically) before fitting a polynomial. The input variables COFDEL and COFCHN describe the y-axis (zero energy) and x-axis intercepts of this line. If such an adjustment is made to the data, the values of COFDEL and COFCHN used must also be placed en the appropriate Type 4 card for that system.

Niday and Gunnink, p. 2.

-26-

FCRTRAN LINEARITY 1972 AC 0 0 5 / 0 3 0 0 . 3 * 3 MDNIT0R402

4 CODE ANALYSIS !> 6 C THIS PRUGRAH DETERMINES A St 1 LF CCEFF I C I t M S IC A POLYNOMIAL 7 C hHlCli CAN dfa tSEO TO OESCklllE IHE NCSLINEARI TY CF A SYSIEP. a 9 C FIRST CARD« COL. I • 0 CM BLANK

10 C COL. 2 - I C I F 9 . 4 ) CHANNEL PCSI I ICN CF PEAK 11 C COL. 11-19 I F 9 . 4 I ENEKGV CF 6APPA RAY Cfc PULSER VOLIAOE 12 C COL. 2 0 - 2 1 U b l ALPhA-MjPERIt SUJRCE LADLE 13 C COL. 2B-S9 I4ftfl> ALPhA-MiPERIC 111 CF fHE PRCPLEH 14 C CUL. Itl-t.1 ( H i . 11 V - A A I S IMEKCEPt (SEE TEXT I 15 C CllL. 66-7C I F 4 . l l l l-AXIS I M E t C E P I (SEE T t X I l 16 17 C AOCIIIONAL UAIA CARDS* CCL. 1-27 SAPE AS AUCVE U C USE A BLANK CARD TO SEPARATE PROBLEMS 19 C USE AN ADDITIONAL BLANK CAHO IC TERflKAlE IHE RUK 20 21 22 23 CUMMIN C L I I O D J . E N U O O .Sl.UKCt t lCOl ,»b I 100.a I t A I 2 > tB(8 ) ,T I T L E I 4 ) t 24 1 U 0 l l U 0 . a l > R B ( 1 0 0 l f h B ( 9 ) , V I I ( e i ,UL ICHI lOUI ,OLTEM10U>.CALCEM10m 4

25 2 XUI4 ) 26 27 28 NHLR • ICO 29 NUH • 6 30 J I N • 2 3i jour • 3 32 I J - 0 33 2 J • J • 1 34 3«i C READ IN CAIA CARDS 36 37 READ INPUT TAPE J IN .910 .CL IJ ) ,EN |J I , 5UURCE«J» ,XD,C0 ,CF 38 910 FORMAT 1 1 X . 2 F 9 . 4 . A 8 , 4 A 8 . 1 x , 2 F S . l 1 39 IF I J - 1) . . 5 40 IF I L L U I ) . 1 1 0 , 41 CUFUfct • CO 42 CUFCHN • CF 43 CO 4 I • 1.4 44 4 T I T L E t l l • XDI1 I 4«> S IF t C L ( J ) ) , . 2 46 NJ • J - I 47 4B C HAKE ADJUSTMENT TO LOh CHANNEL DATA 49 50 DO 12 I • l.NJ 51 IF ICLIII - CUFCHNI .14.14 52 CL.I I I - CLUI * CQFOEL * 11. - CHI) / CCFCKNI 53 12 CONTINUE

44 5* C PERFORM LEAST SOUARES FIT 56 57 14 00 tUO NRES • 2.NUM 48 IB * NRES +2 59 NOEG « 18 -I iO CO 20 J « I.NJ 61 ABU,It • l.C 62 PRO • C L U ) 63 SPO • PHD 64 ABU,2) « PRO 6» CO 20 I « 3, IB 66 PRO • PRO • SPD 67 ABU, 11 • PRO 68 20 CONTINUE 69 70 CALL MLR (NMLRtNJ, 2,AB,EN>A,BB,RB,MB,VB> 71 CALL MLK (NMLRiNJ, l ( ) ,Aa,EN,o, t lo ,Rt t ,we,Vt t l 72 73 74 7!, 76 77 78 79 80 Bl WRITE OUTPUT TAPE JOUT, 930.NDEG, H I T U U ) , J » l , 4 > 82 930 FORMAT ( 1 H I , / / / 9X.31HPl.LSE ENERGY TC CHANNEL FIT IS , 1 1 , 83 i 26HIH OROfcK POLYNOMIAL FOR* ,4A8) 84 WRITE OUTPUT TAPE J0UT,94C.CCF0EL.COFCHN 85 940 FORMAT 1 / 10X, 24HLUWEK CHANNEL ADJUSTMENT / / 1 1 X , 86 1 13HUELTA CHAN • , F 4 . 1 , 1 4 H * U - ChANIkEL/ , F 4 . U , 1 H ) I 8? WRITE OUTPUT TAPE J0UI .S50 88 9S0 FORMAT I// UX,30HC0EFFICIENTS OF POLYNOMIAL ARE I 89 WRITfc OUTPUT TAPE JCIUT,S6G. I B I D , L - 1 , 1 8 ) 90 960 FORMAT ( / l » X , t l 4 . S ) 91 WRITE OUTPUT TAPE J0U1,97U 92 970 FORMAT 1 / / U X , 4 7 H CHANIVEL ENERGY CALC. ENERGY CELTA EN. 93 1,19HDELTA CHAN. SOURCE / / ) 94 WRITE OUTPUT TAPE J 0 U T , 9 8 0 , ( J . C L U ) ,6N( 41 ,CALCfcN(J> , 95 1 DLTbN(J) ,DLTCHIJ) ,SOl 'RCEU>, J - 1,NJ ) 96 980 FORMAT (TX, I 3 , F 9 . 3 i F U . 3 . P 1 3 . 3 , F 1 1 . 3 , F 1 2 . 3 t 4 X , A 8 ) 97 iOO CONTINUE 98 GO TU 1 99 1J0 CALL EXIT 100 END

CO 30 J « CALCENIJI Dl) J i 1 •

l .NJ > B I D 2 , I U

35 CALCENIJt « CALCENUI + B i l l * ABIJ,: I 1 CLTCHU) — A B U , 2 ) • I t M J I -- A I D ) / JX21 DLTENIJI > fcNU) - CALCEMJI

30 CONTINUE

* * * CODE ANALYSIS * » * BANK C DENOTES ORIGINAL COUNT IN CLICHE ADDRESS BASE TYPE CLASS NAME SCURCfc LINE REFERENCES * DENOTES NAME DEFINED OK LABEL USE OOOOUOO INTEGER LITERAL / 0 32 0000005 MAIN. STATEMENT LAUEL * 32*

74 J.3 77

39 Bl

43 89

46 95

50 98

59 60 61 73 0000326 MAIN. STATEMENT LABEL / l'O 25

57 25 25 25 25 25 25 25 25 28

0000333 MAIN. STATEMENT LABEL 110 40 99» 0000070 MAIN. STATEMENT LABEL / 12 bO 53* 000007*. MAIN. STATEMENT LABEL 14 51 51 5 7* 0000340 MAIN. REAL LUERAL I. 52 0000341 MAIN. REAL LITERAL 1.0 61 0000006 MAIN. STATEMENT LAbfcL 2 25

77 60

30 33* 45 57 58 64 70 75 7T 000012S MAIN. STATEMENT LAuEL / 20

25 77 60 65 66*

0000000 INTEGER LITERAL / 3 31 65 000021S MAIN. STATEMENT LABEL / 30 73 79* 0000177 MAIN. STATEMENT LAbfcL / 35 75 76* 0000047 MAIN. STATEMENT LAbEL / 4 25 25 43 43 44* SI 0000053 MAIN. STATEMENT LABEL 5 39 45* 0000000 INTEGER LITERAL 1 6 29 0000000 INTEGER LITERAL / B 25 25 25 25 0000000 INTEGER LITERAL / 9 25 0000000 FORMAT LAbfcL / 910 37 38* 0000000 FORMAT LAbEL / 930 Bl 83* 0000000 FORMAT LAbEL / 940 a4 86* 0000000 FORMAT LAbEL / 950 87 86* 0000000 FORMAT LAbEL / 960 B9 90* 0000000 FORMAT LAbEL / 970 91 93* 0000000 FORMAT LAbEL / 980 95 96* 0002114 999999$ REAL ARRAY A 25 70 77 77 0000454 999999* REAL ARRAY AB 25 61* 64* 67* 70 71 76 77 0002116 999999* REAL ARRAY B 25 71 74 76 89 0002132 999999* REAL ARRAY BB 25 70 71 0004267 999999* REAL ARRAY CALCEN 25 74* 76* 76 78 95 0000425 MAIN. REAL VARIABLE CO 37* 41 0000426 MAIN. REAL VARIABLE CF 37 42 0000000 999999* REAL ARRAY CL 25 37* 40 45 51 52* 52 52 62 95 0000430 MAIN. REAL VARIABLE COFCHN 42* 51 52 84 0000427 MAIN. REAL VARIABLE COFOEL 41* 52 «4 0003757 999999* REAL ARRAY DLTCM 25 77* 95 0004123 999999* REAL ARRAY OLTEN 25 78* 95 0000144 999999* REAL ARRAY EN 25 37* 70 71 77 78 95 0000000 REAL EXTERNAL / EXIT 99 0000431 MAIN. INTEGER VARIABLE 1 43*

75* 44 76

44 76

50* 51 52 52 52 65* 67 0000434 MAIN. INTEGER VARIABLE IB 56* 59 65 71 75 89 0000424 MAIN. INTEGER VARIABLE J 32* 33* 33 37 37 37 39 40 45 46

60* 61 62 64 67 73* 74 76 76 7ft 77 95

77 95

77 95

78 95

78 95

78 95*

Bl 81* 95 95

0000422 MAIN. INTEGER VARIABLE JIN 0000123 MAIN. INTEGER VARIABLE JOLT 0000000 INTEGER VARIABLE / L ooooooo SUflPRQGR.' *M NAME / MLR 0000435 MAIN. INTEGER VARIABLE NDEG 0000432 MAIN. INTEGER VARIABLE NJ 0000420 MAII INTEGER VARIABLE NMLR 0000433 MAIN. INTEGER VARIABLE NRES 0000421 MAIN. INTEGER VARIABLE NUM 0000436 MAIN. REAL VARIABLE PRO 0003572 999999* REAL ARRAV RB 0000310 999999* REAL ARRAY SOURCE 0000437 MAIN. REAL VARIABLE SPD 0002l»6 999999* REAL ARRAY TITLE 0003747 999999* REAL ARRAY VII 0003736 999999* REAL ARRAY MB 0004433 999999* REAL ARRAY XU

30* 37 il* 81 84 89 89* 70 71 t>9* 81 46* 50 60 2B* 70 71 57* 58 29* 57 62* 63 64 25 70 ri 25 37* 95 63* 66 25 44* 81 25 70 n 25 70 71 25 37* 44

The XDET Program

One of the pa rame te r s used for geometry calculations in GAMANAL is the d i s ­tance from the detector surface to the window. Although an approximate value of this dis tance is generally available from assembly specifications, the program XDET is used to experimentally de termine or to certify this dis tance. The input data needed cons is t s of a se r ies of integrated peak counts taken at different distances from the de tec tor window, the detector radius and height, the gamma- ray energy, and an initial e s t ima te of the window to detector surface distance.

The program proceeds to refine this tr ial value by seeking a best " leas t - squares fit of the data to the following expression: (See Fig. 1)

— ' c[(Xj + w + p ) 2 + r 2 ]

where

y. = the peak count in time t.

x. = source-to-window distance 1

w = window-to-detector surface distance

p = effective photon penetration

r = effective radius of interact ion

c = proportionali ty constant

Since the equation i s nonlinear, a Tay lor ' s expansion is made about the t r i a l va l ­u e s for c and (w + p). The values of p and r a r e calculated in the program by using the formulas described in Section IB D of Vol. I." The Newton-Raphson i terat ive technique is then used to obtain the bes t l ea s t - squa res answer s for the quantity (w + p). The v a r i ­ous p a r a m e t e r s a r e printed out along with tables showing the precision of the fit.

One must use caution when working with low energy sources . Many de tec tors have a significant "dead l a y e r " of Ge in front of the act ive region. Many of the gamma r ays from close- in sources will s t r ike this "dead l a y e r " at angles less than the normal to the surface and they will consequently suffer m o r e attenuation than that experienced

R. Gunnink and J. B. Niday, Computerized Quantitative Analysis by Gamma Ray Spect rometry . Vol. I. Description of the GAMANAL P r o g r a m . Lawrence Livermore Laboratory , Kept. UCRL-51061, Vol. I (1972).

r— R - i

Detector

Ge dead !ayer ! a v e ^

Source Fig. 1. Geometric relat ionships for a

point source and a cylindrical detector .

- 3 1 -

bs gi.mma rays from a source placed at a large distance. The results from XDET for (•*• + p) and consequently for w will tend to be too large for such low energy sou rces un-leK? some compensation for the above phenomenon is incorporated into the calculat ions.

-32 -

FORTRAN XDtT 197? AC 0 0 5 / 0 3 0 0 . 3 5 7 MONITOR402

4 5 C THIS PROGRAM CALCULATES THE AVEHACE DISTANCE <M * PI THAT GAFMA 6 L RAYS TRAVEL BEYONO THE DETtCTUR hlNDCt. BEFCRE BEING STOPPED. 7 t 8 C FIRST CARO * COL. I-10 (F10.31 NET COUNTS IN THE PEAK 9 C COL. 11-15 (F5.2) CCLNTING TICfc 10 C COL. 16-20 IF5.2I SCIRCE-TC-WINOUK OISTANCE (CM) 11 C COL. 21-25 IF5.3) DETECTCR RADIUS IC*> 12 C COL. 26-30 IF5.3) INITIAL ESTIMATE CF WINDOW-TO-OETECTOR 13 C DISTANCE (CM 1 * C COL. 31-35 ( F 5 . 3 ) DEIECTUH HtlGHT (CH) 15 C COL. 36 -40 ( F 5 . 0 I UACM KAY ENERGY (KEV) 16 C COL. 42 I I C R 2 IS FCR OETK. CF PENETRATION ONLY. 17 C 3 IS FCR DETR. OF PENETRATION AND EFFECTIVE 18 C RADIUS OF INTERACTION. 19 C COL. ' .3 -7 ' . I4AB) IDENTIFICATION FOR THE PROBLEM 20 21 C AOCIIIONAL DATA * COL. 1-20 SAPI: AS ABOVE 22 23 C USE A BLANK CARD TO SEPARATE PROBLEMS 24 C USE AN ADDITIONAL BLANK CARD TO TERMINATE THE RUN 25 26 COMMON CTSI2GS,D1STI2C) ,AA(20 ,3> ,Y(2C) , X I 311BM (60 ) , R M 2 0 > ,HM< 3) , 27 1 V M I 3 > , P C T D I F I 2 0 ) , C A L C l 2 0 ) , W T F t 2 0 > , T l M E t 2 0 ) , C < 3 > , T I T L E < 4 ) 2B 29 1 J=0 30 2 J~J*1 31 READ INPUT TAPE 2 i LOOl.CTSIJI ,T IPE ( J l ,CIST<J»,RAC,WDIS, HYTt E N E I N I 32 I TITLE 33 1001 FORMAT ( F 1 0 . 3 , 2 F 5 . 2 , 3 F 5 . 3 , F 5 . 0 , I 2 , 4 A B ) 34 IF ( J - l ) , , 3 35 IF ICTSIJI) r99t 36 ENERGY = ENE 37 CELT = tiDlS 3B CETHT = HYT 39 NOROER = N 40 WRITE OUTPUT TAPE 3,1003, IT1TLEI1) , W . 4 1 41 1003 FORMAT I1H1.10X, 33HDETECTOR POSITION ANALYSIS FCR * ,4A8 > 42 WRITE OUTPUT TAPE 3,lC07,tNE,HYI,RAD 43 1007 FORMAI I// 1CX,19HGAMMA RAY ENERGY « , F6.U4H KEV./10X, 17H0ETECT0R 44 1 HEIGHT » ,F6.3,3H CM,/ 10X,17H0ETECTOR RADIUS » .F6.3.JH CM, //) 45 S =• I ENE - 6C.I * .01 46 SD = S * S 47 SDR » SO / II. + SD» 48 RAD > RAD * RAD 49 CON « II. - 1./ISURTFI1. • RADII! » 2./RAC 50 RO » (1. - CONI / CON 51 RSQ = RD - 0.4* RD * SOR * SORTF (HYTI 52 REFF * SURTF (RSOI 53

54 C CALCULATE AN EFFECTIVE ABSORPTION COEFFICIENT FOR GE CETECTCR 55 46 ENE " ENERGY * . 0 0 1 57 XMU ' - 2 . 3 1 6 • 4 . 2 » EXPF ( -1 .434 - 0.4TB»LCGF <EN6)> 58 XHU = EXPF IXMU) 59 >0 C NOW CALULAVE EFFECTIVE GAPMA RAY PENETRATION INTC THE DETECTOR 61 62 C » XHU * OETHT 63 EXPON « EX>'F 1-0) 64 P « ( I . - (0 * EXPON / ( 1 . - 6»PCM>) / XHU 65 66 3 IF ( C T S ( J I ) V 9 . , 2 67 NUM • J - l 68 IF INDRBER) , , 4 69 NQRDEK » 2 70 4 CO 5 J = l.NUM 71 M T F U I « 1 .0 / SURTF(CTS(J)1 72 5 CONTINUE 73 B • UISTCNUMI * OELT • P 74 B M B * B) t RSU 75 CONST = CTSINUM) * B / TIMEINUP) 76 LCNt - 0 77 MRITE OUTPUT TAPE 3,1002 7B 1002 FORMAT!/10X.40HTHE ANSWERS FCLLOkING cACH ITERATICN ARE /10X.17H 79 1CQNST+ Xll) OELT* X(2I RSO+ X(3) //) BO WRITE OUTPUT TAPE 3, IC05.C0NSI iDELT .RSU Bl 82 10 DO 20 J ' I.NUM S3 0 » UlST(J) + BELT 84 AX « 1.0 / 110*0) + RSU) 85 AAlJ.ll « AX « UIF1J1 • 1IKEIJ) 86 AAU.2) » -I. * CONST * 0 * AX * AAUill 87 IF INURDER - 2) 20,20. 8B AAIJ.3) • -CONST * AX * AA(J.l) 89 20 Y(JI • ICTSIJI - CONST * T1MEU) * 4Xt • KIFIJ) 90 91 LCNT « LCNT • I 92 CALL MLR I20.NUM.N0RDER.AA.Y.X,UP,RM,HP.VKI 93 94 OELT • OELT • X(2) 95 CONST • CONST + XIII 96 IFt NURDtR -2) 22.22. 97 HSU • RSQ * XI3) 9B 2Z NRITE OLTPLT TAPE 3.1C05. CONST.OELT,KSC 99 1005 FORMAT I RX.JE13.4) 100 IF ILCNT - 20) . ,24 101 IF IA8SFIXI2)) - . 0 0 3 ) , 10,10 102 103 24 SUMK « 0.0 104 OOF • NUM - NOROER 105 BO 30 J « I,NUM

106 SUM = SWMR * RHU) • RMJ> 107 8 • blSTIJ) * OELT 10B CALCtJ) • CONST * TIMEIJ) / til • 0 * RSt> 109 PCfOlFIJI ' 100.* (CTStJl - CALCUI1 / CISIJt 110 30 CONTINUE 111 112 H • OELT - P $*» k • WINDOW TC OETECTGH DISTANCE 111 QF1T > SUMR / OOF 114 IF tUFII -1.) , ,it 115 QFIT » 1.0 lib 26 CALL MLREIC) 117 ERR2 • SCIRTFIUFIT * '.(ill 118 ERR3 » 0.0 119 IF INOROER - 2) 35,35, >0 ERR3 • S6RTF IUF1T • C O M

121 35 WRITE OUTPUT TAPE 3.1C0*,ERR2«£RRJ 122 1006 FORMAT! m x , 8HERR0R • .2E13.4 ) 123 HRITb OUTPUT TAPE 3 f10DS,REFF,W.P 124 1009 FORMAT (// 10X,33HEFFECTIVE RADIUS OF INTERACTION • .F6.3.3H CM,// 125 110XI29HW1NDD)I TO OETECTCR OISTANCE « ,F6.3,3H Cl««// IOX, 126 2 33HI/AMMA RAY PENETRATICN INTO DEI. • .F6.1.1I. CV I 127 WRITE OUTPUT TAPE 3.101C 128 1010 FORMAT I//10X.52KCUHPARI SON CF CALCULATED COUNTS MlTH OSSERVEb VAL 129 1UES // 1CX,73H01 STANCE TIMEIMIN) INPUT COUNTS CALC COUNTS PCI. 130 2 DIFFERENCE RESIOUAL //) 131 WRITE OUTPUT TAPE 3,1015, IDJS1IJ1, r I»-E(J>,CT1< J) .CAICIJ J.PUOIF 132 1 UI.RHU), J • l.NUM) 133 1015 FORMAT (lOXt F7.3tFL2.2tF12.I.F15.2,Fl1.2,F15.2 I 134 CO TO 1 135 136 99 CALL EXIT 137 ENO