computer assisted medical interventions -...

41
Computer Assisted Medical Interventions Force control, collaborative manipulation and telemanipulation Project : Robot-Assisted Procedures in Interventional Radiology Bernard BAYLE Joint course University of Strasbourg, University of Houston, Telecom Paris Tech 2008–2009

Upload: hoangdat

Post on 21-Aug-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Computer Assisted Medical Interventions

Force control, collaborative manipulation and telemanipulation

Project : Robot-Assisted Procedures in Interventional Radiology

Bernard BAYLE

Joint courseUniversity of Strasbourg, University of Houston, Telecom Paris Tech

2008–2009

Interventional Radiology (IR) procedures

A long list of minimally invasive image guided procedures

Balloon angioplasty, biliary drainage and stenting, central venousaccess, chemoembolization, cryoablation, infection and abscessdrainage, needle biopsy, radiofrequency ablation, thrombolysis,urinary tract obstruction, vertebroplasty, . . .

Interventional Radiology : access

Percutaneous access : focus on procedures with needles orprobes

Catheters : angioplasty, drainage, stenting, venous access, . . .

Needles : biopsies, injections, radiofrequency ablation,cryoablation, vertebroplasty, . . .

Interventional Radiology : manual procedureschedule

Treatment schedule

1 Diagnosis and intervention planning

Interventional Radiology : manual procedureschedule

Treatment schedule

1 Diagnosis and intervention planning

2 Entry point registration

Interventional Radiology : manual procedureschedule

Treatment schedule

1 Diagnosis and intervention planning

2 Entry point registration

3 Patient preparation : sterilization, anaesthesia, etc.

Interventional Radiology : manual procedureschedule

Treatment schedule

1 Diagnosis and intervention planning

2 Entry point registration

3 Patient preparation : sterilization, anaesthesia, etc.

4 Incision at the entry point

Interventional Radiology : manual procedureschedule

Treatment schedule

1 Diagnosis and intervention planning

2 Entry point registration

3 Patient preparation : sterilization, anaesthesia, etc.

4 Incision at the entry point

5 Insertion, treatment and needle removal

Imaging for IR

CT MRI

X

Availability ++

Price ++

Variety of targets -

Imaging quality -

Radiations ++

US

US

Imaging for IR

CT MRI

X

Radiations - -

Availability +

Price +

Imaging quality -

Variety of targets –

US

X

Imaging for IR

CT MRI

X

Imaging quality ++

Radiations - -

Availability -

Variety of targets ++

Price - -

US

CT

Imaging for IR

CT MRI

X

Availability - -

Price - -

Radiations ++

Imaging quality ++

Variety of targets ++

US

MRI

Needle insertion

Haptics

Basic requirement in the absence of real-time imaging

Nonlinear, non homogeneous, patient variability

Forces up to 6 − 10 N (max. ≃ 20 N bones)

0 2 4 6 8 10 12 14 16 18−6

−4

−2

0

2

Time (s)

For

ce (

N)

Why robots for IR ?

CT MRI

XUS

US

Why robots for IR ?

CT MRI

X

Motions

in the image plane

Realtime image

guidance

US

US

Why robots for IR ?

CT MRI

XUS

CT

Why robots for IR ?

CT MRI

X

X-rays protection

Planning

Registration

force feedbackNecessary

imagingLimited realtime

US

CT

Why robots for IR ?

CT MRI

XUS

MRI

Why robots for IR ?

CT MRI

X

OperatorGuidance modality ?

guidanceRealtime image

Tunnel access

Registration/planning

US

MRI

Project : Robotic Specifications

Step 1

Definition on the medical task : general case, limitations,incompatibilities ?

Step 2

Definition of the robotic task.

Step 3

Robotic specifications for this task.

Step 1 : Medical Specifications

image acquisition

registration needle/image

incision and local insertion

image acquisition

orientation correction (needle bevel, bending)

image acquisition

needle insertion

image acquisition (checking)

. . .

medical treatment

needle removal

Step 2 : Robotic task

image acquisition

registration needle (or robot)/image

entry point position and needle orientation computation

insertion

image acquisition (checking)

. . .

medical treatment

needle removal

Step 3 : Robotic Specifications

automatic robot and/or tool registration in the imaging device

positioning device with 5 or 6 DOF (insertion decoupling ?)

operator interaction to be chosen : automatic, collaborativemanipulation, telemanipulation

force feedback

position measurement with/without model

Step 4 : Your Solution

Existing systems

Table mounted systems

Existing systems

Table mounted systems Patient mounted systems

Telerobotic needle insertion system for CT

Features

Teleoperation : staff protection

Automatic registration tool/image

Perceptual feedback (force, vision)

Ergonomics

Issues

Technology

Planing, control, image registration

Safety, sterilization

Performances

CT-Bot positioning unit [IEEE Trans. Biomed Eng.2008]

Features Constraints Solution

SafetyMotion Patient-mounted robot.compensationFailsafebehavior

Quick removal of the robot from its base.Joints locked in case of power failure. Releaseof the needle.

Environmentalcompatibility

CT-scancompatibility

No metal in the CT-plane to avoid image ar-tifacts.

Sterilization Protective bags, autoclavable distal parts, andone use parts.

Mechanicalfeatures

Dimensions ≃ 200 mm side cube (remaining space in thescanner ring for a stout patient).

Weight < 3 kg for the patient comfort.Mobility 5 DOF according to physicians requirements ;

optional DOF for the needle self rotation (tra-jectory bending).

Angularlimits

−10 to 65 deg in the CT-plane, ±25 deg inthe orthogonal plane, to give access to variousorgans under various incidences.

Accuracy 5 mm max position error at the tip of a 200mm long needle (≃ 10 mm for a manual pro-cedure).

Forces 20 N max. force along the axis of the needle

CT-Bot positioning unit [IEEE Trans. Biomed Eng. 2008]

CT-Bot insertion unit [IJRR special issue 2009]

Specifications

Needle insertion and bevel orientation

Needle manipulation and release

Adapted the CT-Bot platform (small/stroke)

X-rays compatible

Force measurement

CT-Bot insertion unit [IJRR special issue 2009]

1. Casing (CT-Bot platform)

Flexible shaft

3. Actuator for the grasp/releaseof the needle

Connecting rod

2. Transmission and actuatorfor translational displacement

Needle

130

mm

150

mm

1. Casing

3. Grasping device

Driving mechanism

Insertion mechanism

2. Carriage B

Compression latch

4. Force sensor

CT-Bot insertion unit [IJRR special issue 2009]

References

P. Abolmaesumi, S. E. Salcudean, W-H. Zhu, M. Reza Sirouspour et S.P. DiMaio.

Image-Guided Control of a Robot for Medical Ultrasound.IEEE Transactions on Robotics and Automation, vol. 18, no. 1, pages 11–23, February 2002.

R. Alterovitz, K Goldberg, J. Pouliot, R. Taschereau et I-Chow Hsu.

Needle insertion and radioactive seed implantation in human tissues : simulation and sensitivity analysis.In IEEE Conference on Robotics and Automation, May 2003.

P. J. Berkelman, P. Cinquin, J. Troccaz, J.-M. Ayoubi, C. Letoublon et F. Bouchard.

A Compact, Compliant Laparoscopic Endoscope Manipulator.In Proceedings of the 2002 IEEE International Conference on Robotics and Automation, pages 1870–1875,Washington DC, USA, May 2002. ICRA’02.

M. Bock, A. Melzer, H. Bardenheuer, H. Ghaderi, B. Gutmann, H. Zimmermann et W. Semmler.

MR-Guided Percutaneous Interventions using a Robotic Assistance System : Initial Experiences in a PigModel.In Proceedings of the 2005 Conference of the International Society for Magnetic Resonance in Medicine,pages 2665–2670, Miami,FL, USA, May 2005.

M. Breeuwer, W. Zylka, J. Wadley et A. Falk.

Detection and Correction of Geometric Distortion in 3D CT/MR Images.In Proceedings of the 1999 Computer Assisted Radiology and Surgery Conference (CARS’99), pages 11–23,Paris, France, June 1999.

I. Brouwer, J. Ustin, L. Bentley, A. Sherman, N. Dhruv et F. Tendick.

Measuring in vivo animal soft tissue properties for haptic modeling in surgical simulation.In Medicine Meets Virtual Reality 2001, pages 69–74, 2001.

R. A. Brown, TS. S. Roberts et A. G. Osborne.

Stereotactic Frame and Computer Software for CT-directed Neurosurgical Localization.Invest. Radiol., vol. 15, pages 308–312, 1980.

L. G. Brown.

A survey of image registration techniques.Computing Surveys, vol. 24, no. 1, pages 325–376, 1992.

J. D. Brown, J. Rosen, Y. S. Kim, L. Chang, M. N. Sinanan et B.Hannaford.

In-vivo and in-situ compressive properties of porcine abdominal soft tissues.In Medicine Meets Virtual Reality 2001, pages 26–32, January 2003.

K. Cleary, M. Freedman, M. Clifford, D. Lindisch, S. Onda et L. Jiang.

Image-Guided Robotic Delivery System for Precise Placement of Therapeutic Agents.Journal of Controlled Release, vol. 74, pages 363–368, 2001.

J. Dai, Y. Zhu, H. Qu et Y. Hu.

An algorithm for stereotactic localization by computed tomography or magnetic resonance imaging.Physics in Medicine and Biology, vol. 46, pages N1–N7, 2001.

S. P. DiMaio et S. E. Salcudean.

Needle Insertion Modelling and Simulation.In Proceedings of the 2002 IEEE International Conference on Robotics and Automation, pages 2098–2105,Washington DC, USA, May 2002. ICRA’02.

S. P. DiMaio.

Needle Motion Simulation and Planning for Applications in Soft Tissues.These de doctorat, University of British Columbia, September 2003.

S. P. DiMaio et S. E. Salcudean.

Needle insertion modelling and simulation.IEEE Transactions on Robotic and Automation, vol. 5, no. 19, pages 864–875, 2003.

S. P. DiMaio et S. E. Salcudean.

Needle Steering and Model-based Trajectory Planning.In Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages 33–40,Montreal, Canada, November 2003.

D. W. Eggert, A. Larusso et R. B. Fisher.

Estimating 3-D Rigid body Transformations : a Comparison of Four Major Algorithms.Machine Vision and Applications, vol. 9, pages 272–290, 1997.

G. Fichtinger, T. L. DeWeese, A. Patriciu, A. Tanacs, D. Mazilu, J. H. Anderson, K. Masamume, R. H.

Taylor et D. Stoianovici.Robotically Assisted Prostate Biopsy and Therapy with Intra-Operative CT Guidance.Journal of Academic Radiology, vol. 9, pages 60–74, 2002.

M. A. Fischler et R. C. Bolles.

Random Sample Consensus : A Paragim for Model Fitting with Applications to Image Analysis andAutomated Cartography.Communications of the ACM, vol. 24, no. 6, pages 381–395, 1981.

Y. C. Fung.

Biomechanics : mechanical properties of living tissues.Springer-Verlag, second edition edition, 1993.

A. Gangi et J.-L. Dietemann.

Tomodensimetrie interventionnelle.Editions Vigot, PARIS, 1994.

A. Gangi, J.L. Dietemann, S. Guth, S. de Unamuno, E. Fogarrassi, C. Fuchs, P. Siffert et C. Roy.

Interventional radiology with laser in bone and joint.Radiology Clinical North America, vol. 36, no. 3, pages 547–603, May 1998.

Afshin Gangi, Stephane Guth, Jean Pierre Imbert, Horia Marin et Jean-Louis Dietemann.

Percutaneous Vertebroplasty : Indications, Technique, and Results.Radiographics, vol. 23, no. electronic, page 10e, 2003.

O. Gerovichev, P. Marayong et A. Okamura.

The Effect of Visual and Haptic Feedback on Manual and Teleoperated Needle Insertion.In Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages147–154, Tokyo, Japan, September 2002.

G. H. Golub et C. F. Van Loan.

Matrix computations.John Hopkins University Press, 1996.

D. Goryn et S. Hein.

On the Estimation of Rigid Body Rotation from Noisy Data.

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 12, pages 1219–1220,December 1995.

E. Grimson.

Object recognition by computer : The role of geometric constraint.MIT Press, 1990.

W. E. L. Grimson, T. Lozano-Perez, W. M. Wells, G. J. Ettinger, S. J. White et R. Kikinis.

An Automatic Registration Method for Frameless Stereotaxy, Image Guided Surgery, and Enhanced RealityVisualization.In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,pages 430–436, Seattle, WA., U.S.A., June 1994.

P. Grunert, J. Maurer et W. Muller-Forell.

Accuracy of stereotactic coordinate transformation using a localisation frame and computed tomographicimaging.Neurosurgery, vol. 22, pages 173–203, 1999.

R. I. Hartley.

In Defense of the Eight-Point Algorithm.IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 6, pages 580–593, June 1997.

R. Hartley et A. Zisserman.

Multiple view geometry in computer vision.Cambridge University Press, 2000.

C.-S. Ho.

Precision of digital vision systems.IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 5, no. 6, pages 593–601, November1983.

J.S. Hong, T. Dohi, M. Hasizume, K. Konishi et N. Hata.

A Motion Adaptable Needle Placement Instrument based on Tumor specific Ultrasonic Image Segmentation.In Proceedings of the 2002 Medical Image Computing and Computer-Assisted Intervention Conference,Tokyo, Japan, September 25-28 2002. MICCAI’02.

J. Hong, T. Dohi, M. Hashizume, K. Konishi et N. Hata.

An Ultrasound-driven Needle-insertion Robot for Percutaneous Cholecystostomy.Physics in Medicine and Biology, pages 441–455, 2004.IOP Publishing Ltd.

Robert Howe et Yoky Matsuoka.

Robotics for Surgery.Annual Reviews in Biomedical Engineering, vol. 1, pages 211–240, 1999.Annual Reviews.

Jiang Hsieh.

Computed tomography : principles, design, artifacts, and recent advances.SPIE Press monograph, 2003.

W. Khalil et J. Kleinfinger.

A New Geometric Notation for Open and Closed Loop Robots.In Proceedings of the 1986 IEEE International Conference on Robotics and Automation, pages 75–79, SanFrancisco, USA, April 1986.

Y. S. Kwoh, J. Hou, E. Jonckheere et S. Hayati.

A Robot with improved Absolute Positioning Accuracy for CT guided Stereotactic Brain Surgery.IEEE Transactions on Biomedical Engineering, vol. 35, no. 2, pages 153–160, February 1988.

S. Lavallee, J. Troccaz, L. Gaborit, P. Cinquin, A.L. Benabid et D. Hoffmann.

Computer integrated surgery, chapitre Image-Guided Operating Robot : A Clinical Application inStereotactic Surgery, pages 343–352.MIT Press, 1995.

S. Lee, G. Fichtinger et G. S. Chirikjian.

Numerical Algorithms for Spatial Registration of Line Fiducials from Cross-Sectional Images.American Association of Physicists in Medicine, vol. 29, no. 8, pages 1881–1891, August 2002.

L. Lemieux et R. Jagoe.

Effect of fiducial marker localization on stereotactic target coordinate calculation in CT slices andradiographs.Physics in medicine and biology, vol. 39, pages 1915–1928, 1994.

K. Masamune, E. Kobayashiand Y. Masutaniand M. Suzuki, T. Dohi, H. Iseki, et K. Takakura.

Development of An MRI-Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery.Journal of Image Guided Surgery, vol. 1, pages 242–248, 1995.

K. Masamune, G. Fichtinger, A. Patriciu, R. C. Susil, R. H. Taylor, L. R. Kavoussi, J. H. Anderson,

I. Sakuma, T. Dohi et D. Stoianovici.System for Robotically Assisted Percutaneous Procedures with Computer Tomography Guidance.Computer Aided Surgery, vol. 6, pages 370 – 383, 2001.

K. Matsumiya, Y. Momoi, E. Kobayashi, N. Sugano, K. Yonenobu, H. Inada, T. Tsuki et I. Sakuma.

Analisys of forces during robotic needle insertion to human vertebra.In Proceedings of MICCAI 2003, pages 271–278. MICCAI’03, 2003.

W. Maurel.

3D Modeling of the Human Upper Limb Including the Biomechanics of Joints, Muscles and Soft Tissues.These de doctorat, Laboratoire d’Infographie - Ecole Polytechnique Federale de Lausanne, 1999.

C. Maurer, J. Fitzpatrick, R. Galloway, M. Wang, R. Maciunas et G. Allen.

The accuracy of image-guided neurosurgery using implantable fiducial markers, 1995.

B. Maurin, C. Doignon, M. de Mathelin et A. Gangi.

Pose Reconstruction with an Uncalibrated Computed Tomography Imaging Device.In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,volume 1, pages 455–460. CVPR 2003, June 2003.

B. Maurin, L. Barbe, B. Bayle, P. Zanne, J. Gangloff, M. de Mathelin, A. Gangi et A. Forgionne.

In Vivo Study of Forces During Needle Insertions.In Proceedings of the 2004 Medical Robotics, Navigation and Visualisation Scientific Workshop (Toappear), RheinAhrCampus, Remagen, Germany, March 2004. MRNV’04.

B. Maurin, J. Gangloff, B. Bayle, M. de Mathelin, O. Piccin, P. Zanne, C. Doignon, L. Soler et A. Gangi.

A Parallel Robotic System With Force Sensors for Percutaneous Procedures Under CT-guidance.In Proceedings of the 2004 Medical Image Computing and Computer-Assisted Intervention Conference (inpress), St-Malo, France, September 2004. MICCAI’04.

B. Maurin, O. Piccin, B. Bayle, J. Gangloff et M. de Mathelin.

A Parallel 5 DOF Positioner for Semi-Spherical Workspaces.

In Proceedings of the 2004 ASME Design Engineering Technical Conferences (in press), Salt Lake City,USA, October 2004. DETC’04.

B. Maurin, O. Piccin, B. Bayle, J. Gangloff, M. de Mathelin, L. Soler et A. Gangi.

A new robotic system for CT-guided percutaneous procedures with haptic feedback.In Proceedings of the 2004 Computer Assisted Radiology and Surgery Congress, Chicago, USA, June 2004.CARS’04.

B. Maurin, C. Doignon, J. Gangloff, B. Bayle, M. de Mathelin, O. Piccin et A. Gangi.

CT-Bot : A stereotactic-Guided Robotic Assistant for Percutaneous Procedures of the Abdomen.In Proceedings of the 2005 SPIE Conference on Medical Imaging, San Diego, USA, fevrier 2005. MI’05.

American Liver Foundation.

2001 annual report.http ://www.liverfoundation.org, 2002.

R. M. Murray, Z. Li et S. S. Sastry.

A mathematical introduction to robotic manipulation.CRC Press, 1994.

N. Navab, B. Bascle, M. H. Loser, B. Geiger et R. H. Taylor.

Visual Servoing for Automatic and Uncalibrated Needle Placement for Percutaneous Procedures.In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,volume 2, pages 2327–2334. CVPR 2000, June 2000.

F. C. Park.

Computational Aspects of the Product-of-Exponentials Formula for Robot Kinematics.IEEE Transactions on Automatic Control, vol. 39, no. 3, pages 643–467, March 1994.

G.P. Penney, J. Weese, J.A. Little, P. Desmedt, D.L.G. Hill et D.J. Hawkes.

A comparison of similarity measures for use in 2-D-3-D medical image registration.IEEE Transactions on Medical Imaging, vol. 17, no. 8, pages 586–595, August 1998.

L. Quan et Z. Lan.

Linear N-Point Camera Pose Determination.IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 21, no. 8, pages 774–780, August 1999.

S. S. Rao.

Engineering optimization theory and practice.Wiley Interscience Publication. John Wiley&Sons, 1996.

Paul L. Rosin.

Robust Pose Estimation.IEEE Transactions on Systems, Man, and Cybernetics (PartB), vol. 29, no. 2, April 1999.

M. Shi, H. Liu et G. Tao.

A Stereo-Fluoroscopic Image-Guided Robotic Biopsy Scheme.IEEE Transactions on Control Systems Technology, vol. 10, no. 3, pages 309–317, May 2002.

M. Shoham, M. Burman, E. Zehavi, L. Joskowicz, E. Batkilin et Y. Kunicher.

Bone-Mounted Miniature Robot for Surgical Procedures : Concept and Clinical Applications.IEEE Transactions on Robotics and Automation, vol. 19, no. 5, pages 893–901, October 2003.

Stuart Silverman, Kemal Tuncali, Douglass Adams, Richard Nawfel, Kelly Zou et Philip Judy.

CT Fluoroscopy-guided Abdominal Interventions : Techniques, Results, and Radiation Exposure.Radiology, no. 212, pages 673–681, 1999.

C. Simone et A. M. Okamura.

Modeling of Needle Insertion Forces for Robot-assisted Percutaneous Therapy.In Proceedings of the 2002 IEEE International Conference on Robotics and Automation, pages 2085–2091,Washington, DC, USA, May 2002. ICRA’02.

M. Sonka et J.M. Fitzpatrick editors.

Handbook of medical imaging.A publication of the International Society fro Optical Engineering. SPIE Press, 2000.

D. Stoianovici, J. A. Cadeddu, H. A. Basile R. D. Demaree, R. H. Taylor, L. L. Whitcomb et L. R. Kavoussi.

A Novel Mechanical Transmission Applied to Percutaneous Renal Access.Proceedings of the ASME Dynamic Systems and Control Division, vol. DSC-Vol. 61, pages 401–406, 1997.

D. Stoianovici, L. L. Whitcomb, J. H. Anderson, R. H. Taylor et L. R. Kavoussi.

A Modular Surgical Robotic System for Image Guided Percutaneous Procedures.In Proceedings of the 1998 International Conference on Medical Image Computing and Computer-AssistedIntervention, Cambridge, MA, October 1998. MICCAI’98.

R. C. Susil, J. H. Anderson et R. H. Taylor.

A Single Image Registration Method for CT Guided Interventions.In Proceedings of the International Conference on Medical Image Computing and Computer-AssistedIntervention (MICCAI 99), pages 798–808, Cambridge, United Kingdom, September 1999.

E. Taillant, J.C. Avila-Vilchis, C. Allegrini, I. Bricault et P. Cinquin.

CT and MR Compatible Light Puncture Robot : Architectural Design and First Experiments.In Proceedings of the International Conference on Medical Image Computing and Computer-AssistedIntervention, pages 145–152, September 2004.

S. Umeyama.

Least-Squares Estimation of Transformation Parameters Between Two Point Patterns.IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 4, pages 376–380, April 1991.

A. Vilchis, J. Troccaz, P. Cinquin, K. Masuda et F. Pelissier.

A New Robot Architecture for Tele-Echography.IEEE Transactions on Robotics and Automation, vol. 19, no. 5, pages 922–926, October 2003.

M. Y. Wang, J. M. Fitzpatrick, C. R. Maurer et R. J. Maciunas.

An automatic technique for localizing externally attached markers in MR and CT volume images of thehead.Medical imaging : image processing, vol. 2167, pages 214–224, 1994.

J. Yanof, J. Haaga et al.

CT-integrated Robot for Interventional Procedures : Preliminary Experiment and Computer-humanInterfaces.Computer Aided Surgery, no. 6, pages 352–359, 2001.

W. Zylka et H.-A. Wischmann.

On geometric distortions in CT images.In Proceedings of the IEEE International Conference on Engineering in Medicine and Biology, volume 3,pages 1120–1121, Amsterdam, The Netherlands, October 1996.