computational stochastic phase-field

65
Some computational aspects of stochastic phase-field models Omar Lakkis Mathematics – University of Sussex – Brighton, England UK based on joint work with M.Katsoulakis, G.Kossioris & M.Romito 17 November 2009 3rd Workshop On Random Dynamical Systems O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 1 / 62

Upload: cerniagigante

Post on 24-Jun-2015

657 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: computational stochastic phase-field

Some computational aspects of stochastic phase-fieldmodels

Omar Lakkis

Mathematics – University of Sussex – Brighton, England UK

based on joint work withM.Katsoulakis, G.Kossioris & M.Romito

17 November 2009

3rdWorkshopOnRandomDynamicalSystems

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 1 / 62

Page 2: computational stochastic phase-field

Outline

1 Motivation

2 Background

3 White noise

4 Numerical method

5 Convergence

6 Benchmarking

7 Conclusions

8 References

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 2 / 62

Page 3: computational stochastic phase-field

Motivation

Dendrites

A real-life dendrite lab picture: A phase-field simulation:

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 3 / 62

Page 4: computational stochastic phase-field

Dendrites

Computed dendrites without ther-mal noise [Nestler et al., 2005]

A computed dendrite with thermalnoise [Nestler et al., 2005]

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 4 / 62

Page 5: computational stochastic phase-field

Deterministic Phase Fieldfollowing [Chen, 1994]

Phase transition in solidification process

αε∂tu− ε∆u+ (u3 − u)/ε = σw (“interface” motion)

c∂tw −∆w = −∂tu (diffusion in bulk) ,

where

u : order parameter/phase field

≈ 1 solid phase,

∈ (−1 + δε, 1− δε) , interface (region)

≈ −1 liquid phase.

w : temperature in liquid/solid bulk

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 5 / 62

Page 6: computational stochastic phase-field

The Stochastic (or Noisy) Allen-Cahn Problem

is the following semilinear parabolic stochastic PDE with additive whitenoise

∂tu(x, t)−∆u(x, t) + fε(u(x, t)) = εγ∂xtW (x, t), x ∈ (0, 1), t ∈ R+.

u(x, 0) = u0(x), x ∈ (0, 1)

∂xu(0, t) = ∂xu(1, t) = 0, t ∈ R+.

f(u)

10−1 u

∫ u

0f

fε(ξ) =1

ε2(ξ3 − ξ

): first

derivative of double wellpotentialε ∈ R

+: “diffuse inter-face” parameterγ ∈ R: noise intensity pa-rameter∂xtW : space-time whitenoise

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 6 / 62

Page 7: computational stochastic phase-field

Why do we care?about the (deterministic) Allen–Cahn

∂tu−∆u+1

ε2(u3 − u

)= 0

Phase-separation models in metallurgy [Allen and Cahn, 1979].

Simplest model of more complicated class [Cahn and Hilliard, 1958].

Cubic nonlinearity approximation of “harder” (logarithmic) potential.

Double obstacle can replace cubic by other.

Phase-field models of phase separation and geometric motions[Rubinstein et al., 1989], [Evans et al., 1992], [Chen, 1994],[de Mottoni and Schatzman, 1995], . . . ;

Metastability, exponentially slow motion in d = 1,[Carr and Pego, 1989], [Fusco and Hale, 1989],[Bronsard and Kohn, 1990];

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 7 / 62

Page 8: computational stochastic phase-field

Why do we care?about the stochastic Allen–Cahn

∂tu−∆u+1

ε2(u3 − u

)= εγ∂xtW

Noise = stabilizing/destabilizing mechanism [Brassesco et al., 1995],[Funaki, 1995].

Stochastic 1d: Basic existence theory [Faris and Jona-Lasinio, 1982].

Stochastic MCF of interfaces colored space-time/time-only noisespossible [Souganidis and Yip, 2004], [Funaki, 1999],[Dirr et al., 2001].

Rigorous mathematical setting to noise-induced dendrites.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 8 / 62

Page 9: computational stochastic phase-field

Why do we care?Modeling and computation with stochastic Allen–Cahn

Stochastic Allen–Cahn (aka Ginzburg–Landau) with noise in materialsscience:

Modeling in phenomenological/lattice approximation, noise = unknownmeso/micro-scopic fluctuation with known statistics effect inmacroscopic scale [Halperin and Hoffman, 1977],[Katsoulakis and Szepessy, 2006, cf.];

Simulation noise as ad-hoc nucleation/instability inducing mechanism[Warren and Boettinger, 1995, Nestler et al., 2005, e.g.,];

Numerics for d = 1 SDE approach [Shardlow, 2000], spectral methods[Liu, 2003], interface nucleation/annihilation [Lythe, 1998,Fatkullin and Vanden-Eijnden, 2004].

Numerics for d ≥ 2 ?

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 9 / 62

Page 10: computational stochastic phase-field

Deterministic Allen–Cahn in 1 dimensionmetastability and profiles

PDE: ∂tu−∆u+1

ε2f(u) = 0, 0 < ε 1,

potential:1

ε2f(ξ) =

1

ε2(ξ3 − ξ

),

ODE (no diffusion): u = − 1

ε2f(u)

equilibriums: f(±1) = 0, f(0) = 0,

linearize:±1 stable − f ′(±1) < 0,

0 unstable − f ′(0) > 0.

y = f(u)

u

y

−1 0

1

stable eqs

unstable eq

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 10 / 62

Page 11: computational stochastic phase-field

Deterministic Allen–Cahn in 1 dimensionmetastability and profiles

PDE: ∂tu−∆u+1

ε2f(u) = 0, 0 < ε 1,

potential:1

ε2f(ξ) =

1

ε2(ξ3 − ξ

),

ODE (no diffusion): u = − 1

ε2f(u)

equilibriums: f(±1) = 0, f(0) = 0,

linearize:±1 stable − f ′(±1) < 0,

0 unstable − f ′(0) > 0.

resolved profile

nonresolved profile

x

u

ξ1

ξ2

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 10 / 62

Page 12: computational stochastic phase-field

Deterministic Allen–Cahn in 1 dimensionresolved profiles terminology

profile(x,u): u≈tanh((x−ξ)/ε

√2)

x

u

profile’s center ξ

diffuse interfaceO(ε) thick

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 11 / 62

Page 13: computational stochastic phase-field

Deterministic Allen–Cahn in dimension d > 1close relation to Mean Curvature Flow (MCF)

Level set Γ = u = 0, moves, as ε → 0a mean curvature flow:

ε ∂tu|Γ −ε∆ u|Γ +1ε (u3 − u)

∣∣Γ

= 0

↓ ↓ ↓−v −H +0 = 0

normal −meanvelocity curvature

Γ = u = 0

ε

H

v

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 12 / 62

Page 14: computational stochastic phase-field

The Stochastic (or Noisy) Allen-Cahn Problem

is the following semilinear parabolic stochastic PDE with additive whitenoise

∂tu(x, t)−∆u(x, t) + fε(u(x, t)) = εγ∂xtW (x, t), x ∈ (0, 1), t ∈ R+.

u(x, 0) = u0(x), x ∈ (0, 1)

∂xu(0, t) = ∂xu(1, t) = 0, t ∈ R+.

f(u)

10−1 u

∫ u

0f

fε(ξ) =1

ε2(ξ3 − ξ

): first

derivative of double wellpotentialε ∈ R

+: “diffuse inter-face” parameterγ ∈ R: noise intensity pa-rameter∂xtW : space-time whitenoise

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 13 / 62

Page 15: computational stochastic phase-field

White noise ∂xtW : an informal definition

Informally: white noise is mixed derivative of (2 dimensional)Brownian sheet W = Wx,t.

Brownian sheet W : extension of 1-dim Brownian motion tomulti-dim, built on Ω.

Solutions of PDE understood as mild solution

Notation for ∂xtW∫ ∞

0

∫ 1

0f(x, t) dW (x, t) :=

∫ ∞

0

∫ 1

0f(x, t)∂xtW (x, t) dx dt,

stochastic integral [Walsh, 1986].

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 14 / 62

Page 16: computational stochastic phase-field

White noise 101

∀A ∈ Borel(R2)

∫A

dW (x, t) =: W (A) ∈ N (0, |A|) , I.e, W (A) is a

0-mean Gaussian random variable with variance = |A|.A ∩B = ∅⇒ W (A),W (B) independent andW (A ∪B) = W (A) +W (B).

Brownian sheet: Wx,t = W ([0, t]× [0, x]) =

∫ t

0

∫ x

0dW (x, t).

Basic yet crucial property:

E

[(∫I

∫Df(x, t) dW (x, t)

)2]

= E

[∫I

∫Df(x, t)2 dx dt

], ∀f ∈ L2.

(Aka dW =√

dx dt.)

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 15 / 62

Page 17: computational stochastic phase-field

Solutions of the stochastic linear heat equation

∂tw −∆w = ∂xtW, in D × R+0

w(0) = 0, on D

∂xw(1, t) = ∂xw(0, t) = 0, ∀t ∈ [0,∞).

Solution is defined as Gaussian process produced by the stochastic integral

Zt(x) = Z(x, t) :=

∫ t

0

∫DGt−s(x, y) dW (x, y).

where G is the heat kernel:

Gt(x, y) = 2∞∑

k=0

cos(πkx) cos(πky) exp(−π2k2t).

(An “explicit semigroup” approach.)

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 16 / 62

Page 18: computational stochastic phase-field

Solutions of the stochastic Allen–Cahn problem

∂tu(x, t)−∆u(x, t) + fε(u(x, t)) = εγ∂xtW (x, t), for x ∈ D = [0, 1], t ∈ [0,∞)

u(x, 0) = u0(x), ∀x ∈ D∂xu(0, t) = ∂xu(1, t) = 0, ∀t ∈ R+.

Defined as the continuous solution of integral equation

u(x, t) =−∫ t

0

∫DGt−s(x, y)fε(u(y, s)) dy ds

+

∫DGt(x, y)u0(y) dy + εγZt(x).

Unique continuous integral solution exists in 1d provided the initialcondition u0 fulfills boundary conditions.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 17 / 62

Page 19: computational stochastic phase-field

Remarks on solution process

The solution u of Stochastic Allen-Cahn, is adapted continuousGaussian process (it is Holder of exponents 1/2,1/4).

The process u has continuous, but nowhere differentiable samplepaths.

This approach works only in 1d+time, for higher dimensions; whendefined solutions are extremely singular distributions (let alonecontinuous).

If white noise (uncorrelated) is replaced by colored noise (correlated),then “regular” u can be sought in higher dimensions.

Direct numerical discretization of this problem not obvious.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 18 / 62

Page 20: computational stochastic phase-field

Discretization strategy

In two main steps:

1. Replace white noise ∂xtW by a smoother object: the approximatewhite noise ∂xtW .

2. Discretize the approximate problem with ∂xtW via a finite elementscheme for the Allen-Cahn equation.

Inspired by [Allen et al., 1998], [Yan, 2005].

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 19 / 62

Page 21: computational stochastic phase-field

Approximate White Noise (AWN)

Fix a final time T > 0 and consider uniform space and time partitions

in space: D = [0, 1], Dm := (xm−1, xm), xm − xm−1 = σ, m ∈ [1 : M ] ,

in time: I = [0, T ], In := [tn−1, tn), tn − tn−1 = ρ, n ∈ [1 : N ] .

Regularization of the white noise is projection on piecewise constants:

ηm,n :=1

σρ

∫I

∫Dχm(x)ψn(t) dW (x, t).

∂xtW (x, t) :=N∑

n=1

N∑m=1

ηm,nχm(x)ϕn(t).

χm = 1Dm , ϕn = 1In (characteristic functions).

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 20 / 62

Page 22: computational stochastic phase-field

Regularity of AWN

∂xtW (x, t) :=N∑

n=1

N∑m=1

ηm,nχm(x)ϕn(t).

ηm,n are independent N (0, 1/(σρ)) variables and

E

[(∫I

∫Df(x, t) dW (x, t)

)2]≤ E

[(∫I

∫Df(x, t) dW (x, t)

)2].

E

[(∫I

∫D

dW (x, t)

)2]

= T

E

[∫I

∫D

∣∣∂xtW (x, t)∣∣2 dx dt

]≤ 1

σρ

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 21 / 62

Page 23: computational stochastic phase-field

The regularized problem

∂tu−∆u+ fε(u) = εγ∂xtW ,

∂xu(t, 0) = ∂xu(t, 1) = 0,

u(0) = u0,

Admits a “classical” solution. ∀ω ∈ Ω ⇒ corresponding realization of theAWN ∂xtW (ω) ∈ L∞([0, T ]×D) (parabolic regularity) ⇒∂tu(ω) ∈ L2([0, T ]; L2(D)).⇒ variational formulation and thus FEM (or other standard methods) nowpossible.Error estimate schedule:

1. Compare u with u.

2. Approximate u by U in a finite element space and compare.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 22 / 62

Page 24: computational stochastic phase-field

The Finite Element Method

Parameters (numerical mesh) τ, h > 0 (approximation mesh) ρ, σ.

Not necessary, but “natural” coupling: τ = ρ = h2 = σ2.

Linearized Semi-Implicit Euler⟨Un − Un−1

τ,Φ

⟩+ 〈∂xU

n, ∂xΦ〉+⟨f ′ε(U

n−1)Un,Φ⟩

=⟨f ′ε(U

n−1)Un−1 + fε(Un−1),Φ

⟩+⟨εγ∂xtW ,Φ

⟩, ∀ Φ ∈ Vh.

Vh is a finite element space of piecewise linear

[Kessler et al., 2004, Feng and Wu, 2005].

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 23 / 62

Page 25: computational stochastic phase-field

Implementation

[1

ρM + A +

1

ε2N(un−1)

]un =

1

ε2g(un−1) +

1

ρMun−1 + εγw.

M , A usual mass and stiffness matrices,

N and g nonlinear mass matrix and load vector

w = (wi) a random load vector generated at each time-step: foreach node i we have

wi =εγ

2

√h

ρ(ηi−1 + ηi) ηi ∈ N (0, 1) pseudo-random.

Simple Monte Carlo method on w.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 24 / 62

Page 26: computational stochastic phase-field

Convergence of regularized to stochastic solution

Theorem (quasi-strong (least squares) convergence)

Let γ > −1/2, T > 0. For some c1, c2 (6←[ ε), and for each ε ∈ (0, 1) therecorrespond (i) an event Ω∞, (ii) constants Cε, C1, C2 s.t.

P (Ω∞) ≥ 1− 2c1 exp(−c2/ε1+2γ)∫Ω∞

∫ r

0

∫D|u− u|2 dx dt dP ≤ Cε

(C1ρ

1/2 + C2σ2

ρ1/2

), ∀σ, ρ > 0.

Remark1 Event Ω∞ = |u, u| < 3 (measured by maximum principle &

exponential decay of “chi-squared” distribution).

2 Cε grows exponentially with 1/ε.

3 Constant improves for γ 1 (exploiting spectral gap).

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 25 / 62

Page 27: computational stochastic phase-field

Maximum principle in probability sense

Lemma

Suppose γ > −1/2. Given T , there exist c1, c2, δ0 > 0 such that if‖u0‖L∞(D) ≤ 1 + δ0 then

P

sup

t∈[0,T ]‖(u, u)(t)‖L∞(D) > 3

≤ c1 exp(−c2/ε1+2γ).

Remark1 The constant 3 is for convenience, can be replaced by 1 + δ1, if

needed, by adjusting c1, c2 and δ0.

2 This result is used to determine the event Ω∞ for convergence tohold.

3 Because, nonlinearity is not globally Lipschitz.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 26 / 62

Page 28: computational stochastic phase-field

Small noise resolution (for γ big: weak intensity)

Theorem (small noise)

Let q solution of deterministic the Allen–Cahn problem

∂tq −∆q + fε(q) = 0, q(0) = u0, on D.

Then ∀ T > 0 : ∃K1(T ) > 0, ε0(T ) > 0

P

(sup[0,T ]‖u− q‖L2(D) ≤ ε

3

)

≥ 1−(

1 +K1(T )

2ε6−2γ

)T/(σρ)−1

exp

(−K1(T )

2ε6−2γ

)for all ε ∈ (0, ε0), γ > 3 and ρ, σ > 0.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 27 / 62

Page 29: computational stochastic phase-field

Spectrum estimate

Theorem ([Chen, 1994], [de Mottoni and Schatzman, 1995])

Let q be the (classical) solution of the problem

∂tq −∆q + fε(q) = 0, q(0) = u0, on D

Key to argument in convergence for weak noise is the use of spectralestimate for q: There exists a constant λ0 > 0 independent of ε such thatfor any ε ∈ (0, 1] we have

‖∂xφ‖2L2(D) +⟨f ′ε(q)φ, φ

⟩≥ −λ0 ‖φ‖2L2(D) , ∀φH1(D).

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 28 / 62

Page 30: computational stochastic phase-field

X(0, T ; L2(D)) bounds for AWN

Lemma

∀K > 0

P

sup

t∈[0,T ]

∥∥∂xtW (t)∥∥

L2(D)≤ K

[1− T

ρ

(1 +

K2

)1/(2σ)−1

exp

(−K

2

)]+

and P

∫ T

0

∥∥∂xtW (t)∥∥2

L2(D)≤ K2

≥ 1−

(1 +

K2

2

)1/(2ρσ)−1

exp

(−K

2

2

)O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 29 / 62

Page 31: computational stochastic phase-field

Convergence of FEM

Taking τ = ρ = h2 = σ2 to simplify, we have∫Ω∞

∫D|u(tn)− Un|2 dx dP ≤ C(T, ε)h.

Remark1 compare w.r.t. deterministic case,

2 impossible to take E, but only∫Ω∞ , due to rare events.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 30 / 62

Page 32: computational stochastic phase-field

Regularity of u

Theorem (Regularity of u)∫Ω∞

∫Im

∫D|∂tu|2 dx dt ≤ c1ρ−1/2 + c2σ

−1∫Ω∞

∫D|∆u|2 dx ≤ c3ρ−3/2 + c4σ

−1ρ−1.

For Ω∞ an event of high probability.

Remark

Expected loss of regularity, as σ, ρ→ 0.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 31 / 62

Page 33: computational stochastic phase-field

Numerical experiments

1 Computations for ε = 0.04, 0.02, 0.01 and γ = 1.0, 0.5, 0.2, 0.0,−0.2(γ < 0 though not discussed in theory can be interesting in practice).

2 Run a Monte-Carlo simulation for each set of parameters (2500samples).

3 Meshsize h < ε.

4 Timestep τ = c0h2 ≈ ε2.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 32 / 62

Page 34: computational stochastic phase-field

Sample path with ε = 0.01, γ = 0

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 33 / 62

Page 35: computational stochastic phase-field

Sample path with ε = 0.01, γ = −0.2

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 34 / 62

Page 36: computational stochastic phase-field

Sample path with ε = 0.01, γ = 1.0

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 35 / 62

Page 37: computational stochastic phase-field

How to the benchmark our computations?

Benchmarking = “comparing with known solutions” Very few known“exact result”.

Theorem ( [Funaki, 1995, Brassesco et al., 1995])

The interface motion is asymptotically, as ε→ 0, a (1d) Brownian motion,

limε→0

P

sup

t≤ε−1−2γT

∥∥∥ut − q(x− ξεt )∥∥∥

L2(D)> δ

= 0,

for δ > 0.

Remark

q is an instanton for the deterministic Allen-Cahn equation

ξεt solves a SODE representing the motion of the interface

ut(x) is an appropriate rescaling of u(x, t).

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 36 / 62

Page 38: computational stochastic phase-field

BenchmarkingScaling

In our scaling, the interface position ξt performs a process that looksasymptotically (as ε→ 0) like

ξεt ≈

√3

2√

2εγ+1/2Bt,

where Bt is the 1d Brownian Motion.We use statistics on the interface (discarding all cases ofnucleation/coalescence).

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 37 / 62

Page 39: computational stochastic phase-field

Numerically computed average and variance

γ = 0.5 and ε = 0.08

0 2 4 6 8 10 12 14 16 18 20−0.1

−0.05

0

0.05

0.1computed interface position vs. time forγ = 0.5and ε = 0.08

0 2 4 6 8 10 12 14 16 18 200

0.5

1

1.5computed variance/20ε1+2γ vs. time forγ = 0.5and ε = 0.08

lev=6; smp=450lev=7; smp=451lev=8; smp=55lev=9; smp=0

lev=6; smp=450lev=7; smp=451lev=8; smp=55lev=9; smp=0

Average of Monte Carlo

samples against time for

various levels of refine-

ment lev = 6, 7, 8, 9,

and meshsize h = 1/2lev.

Sample number smp

differs with lev. Samples

are rejected if annihila-

tion/nucleation occurs.

Variance against time

for the various levels. As

time grows, variance ac-

curacy deteriorates.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 38 / 62

Page 40: computational stochastic phase-field

Numerically computed average and variance

γ = 0.5 and ε = 0.04

0 2 4 6 8 10 12 14 16 18 20−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03computed interface position vs. time forγ = 0.5and ε = 0.04

0 2 4 6 8 10 12 14 16 18 200

0.5

1

1.5

2

2.5

3

3.5

4computed variance/20ε1+2γ vs. time forγ = 0.5and ε = 0.04

lev=6; smp=920lev=7; smp=924lev=8; smp=918lev=9; smp=918

lev=6; smp=920lev=7; smp=924lev=8; smp=918lev=9; smp=918

Average of Monte Carlo

samples against time for

various levels of refine-

ment lev = 6, 7, 8, 9,

and meshsize h = 1/2lev.

Sample number smp

differs with lev. Samples

are rejected if annihila-

tion/nucleation occurs.

Variance against time

for the various levels. As

time grows, variance ac-

curacy deteriorates.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 39 / 62

Page 41: computational stochastic phase-field

Numerically computed average and variance

γ = 0.5 and ε = 0.02

0 2 4 6 8 10 12 14 16 18 20−0.01

−0.005

0

0.005

0.01computed interface position vs. time forγ = 0.5and ε = 0.02

0 2 4 6 8 10 12 14 16 18 200

1

2

3

4

5computed variance/20ε1+2γ vs. time forγ = 0.5and ε = 0.02

lev=6; smp=949lev=7; smp=949lev=8; smp=949lev=9; smp=948

lev=6; smp=949lev=7; smp=949lev=8; smp=949lev=9; smp=948

Average of Monte Carlo

samples against time for

various levels of refine-

ment lev = 6, 7, 8, 9,

and meshsize h = 1/2lev.

Sample number smp

differs with lev. Samples

are rejected if annihila-

tion/nucleation occurs.

Variance against time

for the various levels. As

time grows, variance ac-

curacy deteriorates.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 40 / 62

Page 42: computational stochastic phase-field

Numerically computed average and variance

γ = 0.5 and ε = 0.01

0 2 4 6 8 10 12 14 16 18 20−6

−4

−2

0

2

4 x 10−3 computed interface position vs. time forγ = 0.5and ε = 0.01

0 2 4 6 8 10 12 14 16 18 200

0.5

1

1.5

2

2.5

3

3.5

4computed variance/20ε1+2γ vs. time forγ = 0.5and ε = 0.01

lev=6; smp=948lev=7; smp=949lev=8; smp=949lev=9; smp=949

lev=6; smp=948lev=7; smp=949lev=8; smp=949lev=9; smp=949

Average of Monte Carlo

samples against time for

various levels of refine-

ment lev = 6, 7, 8, 9,

and meshsize h = 1/2lev.

Sample number smp

differs with lev. Samples

are rejected if annihila-

tion/nucleation occurs.

Variance against time

for the various levels. As

time grows, variance ac-

curacy deteriorates.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 41 / 62

Page 43: computational stochastic phase-field

Simulations vs. theory

log(var[U ih] /ti) vs. log ε plot for γ = 0.5 at various times ti = t0 10i

−5 −4.5 −4 −3.5 −3 −2.5−10

−9

−8

−7

−6

−5

−4

−3

−2log(ε)−log(σ(t)2/t) and log(ε)*(1+2*γ) for γ=0.5

ref. slope=1+2*γtime 0.00152587time 0.0152587time 0.152587time 1.52587time 15.2587

Theoretical slope

(predicted by

[Funaki, 1995] and

[Brassesco et al., 1995])

is 1 + 2γ.

Plotted in orange refer-

ence line

As ε → 0 slope im-

proves.

Meshsize h = 1/512.O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 42 / 62

Page 44: computational stochastic phase-field

Numerically computed average and variance

γ = 0.2 and ε = 0.08

0 2 4 6 8 10 12 14 16 18 20−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4computed interface position vs. time forγ = 0.2and ε = 0.08

0 2 4 6 8 10 12 14 16 18 200

0.1

0.2

0.3

0.4

0.5computed variance/20ε1+2γ vs. time forγ = 0.2and ε = 0.08

lev=6; smp=19lev=7; smp=0lev=8; smp=0lev=9; smp=0

lev=6; smp=19lev=7; smp=0lev=8; smp=0lev=9; smp=0

Average of Monte Carlo

samples against time for

various levels of refine-

ment lev = 6, 7, 8, 9,

and meshsize h = 1/2lev.

Sample number smp

differs with lev. Samples

are rejected if annihila-

tion/nucleation occurs.

Variance against time

for the various levels. As

time grows, variance ac-

curacy deteriorates.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 43 / 62

Page 45: computational stochastic phase-field

Numerically computed average and variance

γ = 0.2 and ε = 0.04

0 2 4 6 8 10 12 14 16 18 20−0.1

−0.05

0

0.05

0.1computed interface position vs. time forγ = 0.2and ε = 0.04

0 2 4 6 8 10 12 14 16 18 200

0.2

0.4

0.6

0.8

1computed variance/20ε1+2γ vs. time forγ = 0.2and ε = 0.04

lev=6; smp=351lev=7; smp=303lev=8; smp=163lev=9; smp=0

lev=6; smp=351lev=7; smp=303lev=8; smp=163lev=9; smp=0

Average of Monte Carlo

samples against time for

various levels of refine-

ment lev = 6, 7, 8, 9,

and meshsize h = 1/2lev.

Sample number smp

differs with lev. Samples

are rejected if annihila-

tion/nucleation occurs.

Variance against time

for the various levels. As

time grows, variance ac-

curacy deteriorates.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 44 / 62

Page 46: computational stochastic phase-field

Numerically computed average and variance

γ = 0.2 and ε = 0.02

0 2 4 6 8 10 12 14 16 18 20−0.05

0

0.05

0.1

0.15computed interface position vs. time forγ = 0.2and ε = 0.02

0 2 4 6 8 10 12 14 16 18 200

0.5

1

1.5

2

2.5computed variance/20ε1+2γ vs. time forγ = 0.2and ε = 0.02

lev=6; smp=907lev=7; smp=755lev=8; smp=727lev=9; smp=732

lev=6; smp=907lev=7; smp=755lev=8; smp=727lev=9; smp=732

Average of Monte Carlo

samples against time for

various levels of refine-

ment lev = 6, 7, 8, 9,

and meshsize h = 1/2lev.

Sample number smp

differs with lev. Samples

are rejected if annihila-

tion/nucleation occurs.

Variance against time

for the various levels. As

time grows, variance ac-

curacy deteriorates.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 45 / 62

Page 47: computational stochastic phase-field

Numerically computed average and variance

γ = 0.2 and ε = 0.01

0 2 4 6 8 10 12 14 16 18 20−0.01

−0.005

0

0.005

0.01

0.015

0.02computed interface position vs. time forγ = 0.2and ε = 0.01

0 2 4 6 8 10 12 14 16 18 200

1

2

3

4

5computed variance/20ε1+2γ vs. time forγ = 0.2and ε = 0.01

lev=6; smp=949lev=7; smp=949lev=8; smp=944lev=9; smp=929

lev=6; smp=949lev=7; smp=949lev=8; smp=944lev=9; smp=929

Average of Monte Carlo

samples against time for

various levels of refine-

ment lev = 6, 7, 8, 9,

and meshsize h = 1/2lev.

Sample number smp

differs with lev. Samples

are rejected if annihila-

tion/nucleation occurs.

Variance against time

for the various levels. As

time grows, variance ac-

curacy deteriorates.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 46 / 62

Page 48: computational stochastic phase-field

Simulations vs. theory

log(var[U ih] /ti) vs. log ε plot for γ = 0.2 at various times ti = t0 10i

−5 −4.5 −4 −3.5 −3 −2.5−7

−6

−5

−4

−3

−2

−1

0log(ε)−log(σ(t)2/t) and log(ε)*(1+2*γ) for γ=0.2

ref. slope=1+2*γtime 0.00152587time 0.0152587time 0.152587time 1.52587time 15.2587

Theoretical slope

(predicted by

[Funaki, 1995] and

[Brassesco et al., 1995])

is 1 + 2γ.

Plotted in orange refer-

ence line

As ε → 0 slope im-

proves.

Meshsize h = 1/512.O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 47 / 62

Page 49: computational stochastic phase-field

Numerically computed average and variance

γ = 0.0 and ε = 0.08

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1computed interface position vs. time forγ = 0and ε = 0.08

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1computed variance/20ε1+2γ vs. time forγ = 0and ε = 0.08

lev=6; smp=0lev=7; smp=0lev=8; smp=0lev=9; smp=0

lev=6; smp=0lev=7; smp=0lev=8; smp=0lev=9; smp=0

Average of Monte Carlo

samples against time for

various levels of refine-

ment lev = 6, 7, 8, 9,

and meshsize h = 1/2lev.

Sample number smp

differs with lev. Samples

are rejected if annihila-

tion/nucleation occurs.

Variance against time

for the various levels. As

time grows, variance ac-

curacy deteriorates.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 48 / 62

Page 50: computational stochastic phase-field

Numerically computed average and variance

γ = 0.0 and ε = 0.04

0 2 4 6 8 10 12 14 16 18 20−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2computed interface position vs. time forγ = 0and ε = 0.04

0 2 4 6 8 10 12 14 16 18 200

0.05

0.1

0.15

0.2

0.25computed variance/20ε1+2γ vs. time forγ = 0and ε = 0.04

lev=6; smp=120lev=7; smp=0lev=8; smp=0lev=9; smp=0

lev=6; smp=120lev=7; smp=0lev=8; smp=0lev=9; smp=0

Average of Monte Carlo

samples against time for

various levels of refine-

ment lev = 6, 7, 8, 9,

and meshsize h = 1/2lev.

Sample number smp

differs with lev. Samples

are rejected if annihila-

tion/nucleation occurs.

Variance against time

for the various levels. As

time grows, variance ac-

curacy deteriorates.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 49 / 62

Page 51: computational stochastic phase-field

Numerically computed average and variance

γ = 0.0 and ε = 0.02

0 2 4 6 8 10 12 14 16 18 20−0.1

−0.05

0

0.05

0.1computed interface position vs. time forγ = 0and ε = 0.02

0 2 4 6 8 10 12 14 16 18 200

0.1

0.2

0.3

0.4

0.5computed variance/20ε1+2γ vs. time forγ = 0and ε = 0.02

lev=6; smp=792lev=7; smp=481lev=8; smp=307lev=9; smp=0

lev=6; smp=792lev=7; smp=481lev=8; smp=307lev=9; smp=0

Average of Monte Carlo

samples against time for

various levels of refine-

ment lev = 6, 7, 8, 9,

and meshsize h = 1/2lev.

Sample number smp

differs with lev. Samples

are rejected if annihila-

tion/nucleation occurs.

Variance against time

for the various levels. As

time grows, variance ac-

curacy deteriorates.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 50 / 62

Page 52: computational stochastic phase-field

Numerically computed average and variance

γ = 0.0 and ε = 0.01

0 2 4 6 8 10 12 14 16 18 20−0.05

0

0.05

0.1

0.15computed interface position vs. time forγ = 0and ε = 0.01

0 2 4 6 8 10 12 14 16 18 200

0.2

0.4

0.6

0.8

1computed variance/20ε1+2γ vs. time forγ = 0and ε = 0.01

lev=6; smp=2497lev=7; smp=1646lev=8; smp=1148lev=9; smp=1116

lev=6; smp=2497lev=7; smp=1646lev=8; smp=1148lev=9; smp=1116

Average of Monte Carlo

samples against time for

various levels of refine-

ment lev = 6, 7, 8, 9,

and meshsize h = 1/2lev.

Sample number smp

differs with lev. Samples

are rejected if annihila-

tion/nucleation occurs.

Variance against time

for the various levels. As

time grows, variance ac-

curacy deteriorates.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 51 / 62

Page 53: computational stochastic phase-field

Simulations vs. theory

log(var[U ih] /ti) vs. log ε plot for γ = 0.0 at various times ti = t0 10i

−5 −4.5 −4 −3.5 −3 −2.5−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0log(ε)−log(σ(t)2/t) and log(ε)*(1+2*γ) for γ=0

ref. slope=1+2*γtime 0.00152587time 0.0152587time 0.152587time 1.52587time 15.2587

Theoretical slope

(predicted by

[Funaki, 1995] and

[Brassesco et al., 1995])

is 1 + 2γ.

Plotted in orange refer-

ence line

As ε → 0 slope im-

proves.

Meshsize h = 1/512.O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 52 / 62

Page 54: computational stochastic phase-field

What we learned

Stability and convergence numerical method for the stochasticAllen-Cahn in 1d.

Monte-Carlo type simulations.

Benchmarking via statistical comparison.

Adaptivity mandatory (but different from “standard” phase-fieldapproach) for higher dimensional study.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 53 / 62

Page 55: computational stochastic phase-field

What we’re trying to learn

Current investigation [Kossioris et al., 2009]

finite ε “exact” solutions

multiple interface convergence

structure of the stochastic solution

colored noise in d > 1

adaptivity

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 54 / 62

Page 56: computational stochastic phase-field

What still needs to be learned

Extension to Cahn-Hilliard type equations, Phase-Field, Dendrites.

Other stochastic applications

Chaos Expansion

Kolmogorov (Fokker-Plank) equations

Sparse methods

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 55 / 62

Page 57: computational stochastic phase-field

References I

Allen, E. J., Novosel, S. J., and Zhang, Z. (1998).Finite element and difference approximation of some linear stochasticpartial differential equations.Stochastics Stochastics Rep., 64(1-2):117–142.

Allen, S. M. and Cahn, J. (1979).A macroscopic theory for antiphase boundary motion and itsapplication to antiphase domain coarsening.Acta Metal. Mater., 27(6):1085–1095.

Brassesco, S., De Masi, A., and Presutti, E. (1995).Brownian fluctuations of the interface in the D = 1 Ginzburg-Landauequation with noise.Ann. Inst. H. Poincare Probab. Statist., 31(1):81–118.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 56 / 62

Page 58: computational stochastic phase-field

References II

Bronsard, L. and Kohn, R. V. (1990).On the slowness of phase boundary motion in one space dimension.Comm. Pure Appl. Math., 43(8):983–997.

Cahn, J. W. and Hilliard, J. E. (1958).Free energy of a nonuniform system. I. Interfacial free energy.Journal of Chemical Physics, 28(2):258–267.

Carr, J. and Pego, R. L. (1989).Metastable patterns in solutions of ut = ε2uxx − f(u).Comm. Pure Appl. Math., 42(5):523–576.

Chen, X. (1994).Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equationsfor generic interfaces.Comm. Partial Differential Equations, 19(7-8):1371–1395.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 57 / 62

Page 59: computational stochastic phase-field

References III

de Mottoni, P. and Schatzman, M. (1995).Geometrical evolution of developed interfaces.Trans. Amer. Math. Soc., 347(5):1533–1589.

Dirr, N., Luckhaus, S., and Novaga, M. (2001).A stochastic selection principle in case of fattening for curvature flow.Calc. Var. Partial Differential Equations, 13(4):405–425.

Evans, L. C., Soner, H. M., and Souganidis, P. E. (1992).Phase transitions and generalized motion by mean curvature.Comm. Pure Appl. Math., 45(9):1097–1123.

Faris, W. G. and Jona-Lasinio, G. (1982).Large fluctuations for a nonlinear heat equation with noise.J. Phys. A, 15:3025–3055.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 58 / 62

Page 60: computational stochastic phase-field

References IV

Fatkullin, I. and Vanden-Eijnden, E. (2004).Coarsening by di usion-annihilation in a bistable system driven bynoise.Preprint, Courant Institute, New York University, New York, NY10012.

Feng, X. and Wu, H.-j. (2005).A posteriori error estimates and an adaptive finite element method forthe Allen-Cahn equation and the mean curvature flow.Journal of Scientific Computing, 24(2):121–146.

Funaki, T. (1995).The scaling limit for a stochastic PDE and the separation of phases.Probab. Theory Relat. Fields, 102:221–288.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 59 / 62

Page 61: computational stochastic phase-field

References V

Funaki, T. (1999).Singular limit for stochastic reaction-diffusion equation and generationof random interfaces.Acta Math. Sin. (Engl. Ser.), 15(3):407–438.

Fusco, G. and Hale, J. K. (1989).Slow-motion manifolds, dormant instability, and singularperturbations.J. Dynam. Differential Equations, 1(1):75–94.

Katsoulakis, M. A. and Szepessy, A. (2006).Stochastic hydrodynamical limits of particle systems.Commun. Math. Sci., 4(3):513–549.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 60 / 62

Page 62: computational stochastic phase-field

References VI

Kessler, D., Nochetto, R. H., and Schmidt, A. (2004).A posteriori error control for the Allen-Cahn problem: CircumventingGronwall’s inequality.M2AN Math. Model. Numer. Anal., 38(1):129–142.

Kossioris, G., Lakkis, O., and Romito, M. (In preparation 2009).Interface dynamics for the stochastic Allen–Cahn model: asymptoticsand computations.Technical report.

Liu, D. (2003).Convergence of the spectral method for stochastic Ginzburg-Landauequation driven by space-time white noise.Commun. Math. Sci., 1(2):361–375.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 61 / 62

Page 63: computational stochastic phase-field

References VII

Lythe, G. (1998).Stochastic PDEs: domain formation in dynamic transitions.In Proceedings of the VIII Reunion de Fısica Estadıstica, FISES ’97,volume 4, pages 55—63. Anales de Fısica, Monografıas RSEF.

Nestler, B., Danilov, D., and Galenko, P. (2005).Crystal growth of pure substances: phase-field simulations incomparison with analytical and experimental results.J. Comput. Phys., 207(1):221–239.

Rubinstein, J., Sternberg, P., and Keller, J. B. (1989).Fast reaction, slow diffusion, and curve shortening.SIAM J. Appl. Math., 49(1):116–133.

Shardlow, T. (2000).Stochastic perturbations of the Allen-Cahn equation.Electron. J. Differential Equations, pages No. 47, 19 pp. (electronic).

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 62 / 62

Page 64: computational stochastic phase-field

References VIII

Souganidis, P. E. and Yip, N. K. (2004).Uniqueness of motion by mean curvature perturbed by stochasticnoise.Ann. Inst. H. Poincare Anal. Non Lineaire, 21(1):1–23.

Walsh, J. B. (1986).An introduction to stochastic partial differential equations.In Ecole d’ete de probabilites de Saint-Flour, XIV—1984, volume 1180of Lecture Notes in Math., pages 265–439. Springer, Berlin.

Warren, J. and Boettinger, W. (1995).Prediction of dendritic growth and microsegregation in a binary alloyusing the phase-field method.Acta Metall. Mater., 43(2):689–703.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 63 / 62

Page 65: computational stochastic phase-field

References IX

Yan, Y. (2005).Galerkin finite element methods for stochastic parabolic partialdifferential equations.SIAM J. Numer. Anal., 43(4):1363–1384 (electronic).

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 64 / 62