computational method linear programming

Upload: liew-zhi-hong

Post on 01-Mar-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 Computational Method linear programming

    1/29

    CHAPTER 4

    Optimization Linear Programming

  • 7/25/2019 Computational Method linear programming

    2/29

    LEARNING OUTCOME

    This chapter deals with optimizatio pro!lems wherecostraits come ito pla"# The pro!lems where !oth

    o!$ecti%e &'ctio ad the costraits are liear will!e disc'ssed# (or s'ch cases) a method called theliear pro*rammi* which co'ld !e 'sed to sol%e

    %er" lar*e pro!lems with tho'sads o& %aria!les adcostraits with *reat e+iciec"# The" are 'sed i awide ra*e o& pro!lems i e*ieeri* ad

    maa*emet#

  • 7/25/2019 Computational Method linear programming

    3/29

    INTRO,UCTIONRoot locatio ad optimizatio are related i the

    sese that !oth i%ol%e *'essi* ad searchi* &or a

    poit o a &'ctio# The &'dametal di+erece!etwee the two t"pes o& pro!lems are that the root

    locatio i%ol%es searchi* &or zeros o& a &'ctio) i

    cotrast optimizatio i%ol%es searchi* &or either

    the miim'm or the ma-im'm#

    The optim'm is the poit where the c'r%e is .at# I

    mathematical terms) this correspods to the x%al'e

    where the deri%ati%e f (x) is e/'al to zero#

    Additioall") i& f(x)

  • 7/25/2019 Computational Method linear programming

    4/29

    root

    root

    root

    Ma-im'm

    Miim'

    m

    INTRO,UCTION

    The di+erece !etwee roots ad optima is

    ill'strated i the dia*ram !elow1

    0)0("

    0)('

    toe :: m>toe @@ m>wee

    Prod'ctiotime

    :0 hr>toe = hr>toe =0 hr>wee

    5tora*e B toes toes

    Pro2t D:0>toe D:@>toe

  • 7/25/2019 Computational Method linear programming

    14/29

    5ETTING UP TH E L INEARPROGRAMMING PRO7LEM

    SOLUTION

    The e*ieer operati* this plat m'st decide how

    m'ch o& each *as to prod'ce to ma-imize pro2ts# I&the amo'ts o& re*'lar ad premi'm prod'cedweel" are desi*ated as x1adx28!oth are i the'it o& toe9) respecti%el") the total weel" pro2tca !e calc'lated as

    Total pro2t 3 :0x1F :@x2

    ritte as a liear pro*rammi* o!$ecti%e &'ctio

    Ma-imize 3 :0x1F :@x2

  • 7/25/2019 Computational Method linear programming

    15/29

    5ETTING UP TH E L INEARPROGRAMMING PRO7LEM

    (or the costraits) the total raw *as 'sed ca !ecomp'ted as

    Total *as 'sed 3 @x1F ::x2

    This total caot e-ceed the a%aila!le s'ppl" o& @@m>wee) so the costrait ca !e represeted as

    @x1F ::x2 @@#

    The total time tae &or the prod'ctio o& the

    amo'ts o& re*'lar ad premi'm m'st ot e-ceed=0 hr>wee) th's) the costraits is represeted as

    :0x1F =x2 =0#

  • 7/25/2019 Computational Method linear programming

    16/29

    5E TTING UP TH E L INE A RPROGRAMMING PRO7LEM

    (or the stora*e costrait) re*'lar ad premi'mamo'ts caot e-ceed B ad toes) respecti%el")

    asx1 B ad x2 )

    ad the prod'cts m'st ha%e positi%e amo't) as

    x1J 0 ad x2J 0#

  • 7/25/2019 Computational Method linear programming

    17/29

    5E TTING UP TH E L INE A RPROGRAMMING PRO7LEM

    These are s'mmarized !elow1

    Ma-imize 3 :0x1F :@x2 8ma-imize pro2t9

    s'!$ect to@x1F ::x2 @@ 8material costrait9

    :0x1F =x2 =0 8time costrait9

    x1 B 8Kre*'lar stora*e costrait9

    x2 8Kpremi'm stora*e costrait9

    x1J 0 ad x2J 0 8positi%it" costrait9

  • 7/25/2019 Computational Method linear programming

    18/29

    5E TTING UP TH E L INE A RPROGRAMMING PRO7LEMI this two6dimesioal 8two 'ows) x1adx29 pro!lem)

    the sol'tio space is de2ed as a plae with x1adx2#

    7eca'se the" are liear) the costraits ca !e plotted othis plae as strai*ht lies# These costrait lies will

    delieate a re*io) called thefeasible solution space)ecompassi* all possi!le com!iatios o& x1adx2that

    o!e" the costraits ad hece represet &easi!lesol'tios#

    x1

    x1 Bx2

    x2

    :0x1F =x2 =0

    @x1F ::x2 @@

    0

    (easi!lesol'tiospace

  • 7/25/2019 Computational Method linear programming

    19/29

    5E TTING UP TH E L INE A RPROGRAMMING PRO7LEM

    The o!$ecti%e &'ctio &or a partic'lar %al'e o& cathe !e plotted as aother strai*ht lie ad

    s'perimposed o this space# The %al'e ca the !ead$'sted 'til it is at the ma-im'm %al'e while stillto'chi* the &easi!le space# This %al'e o& represetsthe optimal sol'tio# The correspodi* %al'es o& x1

    adx2where to'ches the &easi!le sol'tio space

    represet the optimal %al'es &or the acti%ities#

  • 7/25/2019 Computational Method linear programming

    20/29

    5E TTING UP TH E L INE A RPROGRAMMING PRO7LEM

    To do this) A %al'e o& m'st !e chose) &or e-ample) &or30) the o!$ecti%e &'ctio !ecomes 03 :0x1F :@x2

    ad sol%i* &or x2we deri%e the lie

    x1

    x1 Bx2

    x2

    :0x1F =x2 =0

    @x1F ::x2 @@

    0

    30

    300

    3:400

    Now) sice we are iterested i ma-imizi* ) we caicrease it to sa" 300) ad the o!$ecti%e &'ctio is003 :0x1F :@x2) sol%i* &or x2we deri%e the lie

    7eca'se the lie still &alls withi the sol'tio space) o'rres'lt is still &easi!le# There is still room &orimpro%emet# Hece) ca eep icreasi* 'til a&'rther icrease will tae the o!$ecti%e !e"od the

    &easi!le re*io#

    As show i the 2*'re) the ma-im'm %al'e o& correspods to appro-imatel" :400# At this poit) x1adx2

    are e/'al to appro-imatel" 4#B ad #B) respecti%el"# Th'sthe *raphical sol'tio tells 's that i& we prod'ce these

    /'atities o& re*'lar ad premi'm) we will reap ama-im'm pro2t o& a!o't D:400#

    12

    175

    150xx = 12

    175

    150

    175

    600xx =

    9.41 =x

    9.32 =x

  • 7/25/2019 Computational Method linear programming

    21/29

    5E TTING UP TH E L INE A RPROGRAMMING PRO7LEM

    e ca %eri&" o'r res'lts !" s'!stit'ti* it !ac tothe costrait e/'atios1

    @x1F ::x23 @84#B9F::8#B9 @@:0x1F =x23 :084#B9F=8#B9 =0

    x13 4#B B

    x23 #B

  • 7/25/2019 Computational Method linear programming

    22/29

    CONCLU,ING REMAR5It is clear &rom the plot that prod'ci* at the optimal amo'to& each prod'ct !ri*s 's ri*ht to the poit where we $'stmeet the reso'rce ad time costraits# 5'ch costrait aresaid to !e binding# As ca !e see i the *raphic) either o&

    the stora*e costraits 8x1 B ad x2 9 acts as alimitatio# 5'ch costraits are called nonbinding#

    x1

    x1 Bx2

    x2

    :0x1F =x2 =0

    @x1F ::x2 @@

    0

    (easi!lesol'tiospace

  • 7/25/2019 Computational Method linear programming

    23/29

    CONCLU,ING REMAR5

    This leads 's to the cocl'sio that we ca icreasepro2ts !" either icreasi* o'r reso'rce s'ppl" 8raw

    *as9 or icreasi* o'r prod'ctio time# ('rther) itidicates that icreasi* the stora*e wo'ld ha%e oimpact o pro2t#

  • 7/25/2019 Computational Method linear programming

    24/29

    CONCLU,ING REMAR5The res'lt o!taied i this e-ample is oe o& &o'r possi!leo'tcomes1

    :9Ui/'e sol'tio < the ma-im'm o!$ecti%e &'ctio itersectsa si*le poit#

    ;9Alterate sol'tios < i& the o!$ecti%e &'ctio has coe+icietsso that it is precisel" parallel to oe o& the costraits) rathertha a si*le poit) the pro!lem wo'ld ha%e a i2ite'm!er o& optima correspodi* to a lie se*met#

    x1

    x1 Bx2

    x2

    :0x1F =x2 =0

    @x1F ::x2 @@

    0

    (easi!lesol'tiospace

  • 7/25/2019 Computational Method linear programming

    25/29

    CONCLU,ING REMAR59No &easi!le sol'tio < it is possi!le that the pro!lem isset 'p so that there is o &easi!le sol'tio# This ca !ed'e to deali* with a 'sol%a!le pro!lem or d'e to

    errors i setti* 'p the pro!lem# The latter ca res'lti& the pro!lem is o%er6costraied to the poit that osol'tio ca satis&" all the costraits#

  • 7/25/2019 Computational Method linear programming

    26/29

    CONCLU,ING REMAR549U!o'ded pro!lems < the pro!lem is 'der6costraied ad there&ore ope6eded# As with theo &easi!le case) it ca o&te arise &rom errorscommitted d'ri* pro!lem speci2catio#

    x1

    x2

    0

    (easi!lesol'tiospace

  • 7/25/2019 Computational Method linear programming

    27/29

    CONCLU,ING REMAR5

    5'ppose that o'r pro!lem i%ol%es a 'i/'e sol'tio#(rom the pre%io's e-ample it is clear that the

    optim'm alwa"s occ'rs at oe o& the corer poitswhere two costraits meet# 5'ch a poit is owas a extreme point# Th's) o't o& the i2ite 'm!ero& possi!ilities i the decisio space) &oc'si* oe-treme poits will arrow dow the possi!leoptios#

  • 7/25/2019 Computational Method linear programming

    28/29

    CONCLU,ING REMAR5('rther) we ca reco*ize that ot e%er" e-tremepoit is &easi!le) that is satis&"i* all costraits#Limiti* o'rsel%es tofeasible extreme pointswillarrow the 2eld dow still &'rther#

    x1

    x1 Bx2

    x2

    :0x1F =x2 =0

    @x1F ::x2 @@

    0

    (easi!lesol'tiospace

    Not &easi!le e-tremepoit

  • 7/25/2019 Computational Method linear programming

    29/29

    CONCLU,ING REMAR5

    Oce all &easi!le e-treme poits are ideti2ed) theoe "ieldi* the !est %al'e o& the o!$ecti%e &'ctio

    represets the optim'm sol'tio# (idi* thisoptimal sol'tio co'ld !e doe !" e-ha'sti%el" 8adie+icietl"9 e%al'ati* the %al'e o& the o!$ecti%e&'ctio at e%er" &easi!le e-treme poit# I the e-tlect're we will disc'ss the simple- method whicho+ers a pre&era!le strate*" that charts a selecti%e

    co'rse thro'*h a se/'ece o& &easi!le e-tremepoits to arri%e at the optim'm i a e-tremel"e+iciet maer#