computational design and discovery of ni- based alloys and ......2016/04/22  · design of ni-base...

41
Computational Design and Discovery of Ni- based Alloys and Coatings: Thermodynamic Approaches Validated by Experiments Bi-Cheng Zhou (Presenter), Austin Ross, Greta Lindwall, Xuan L. Liu, Zi-Kui Liu (PI) Department of Materials Science and Engineering The Pennsylvania State University, University Park, PA 16802 Thomas Gheno, Brian Gleeson Department of Mechanical Engineering and Materials Science University of Pittsburgh, Pittsburgh, PA 15261 1 DOE contract No.: DE-FE0024056 2016 Crosscutting Research & Rare Earth Elements Portfolios Review April 22, 2016 • Pittsburgh, PA

Upload: others

Post on 01-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Computational Design and Discovery of Ni-

    based Alloys and Coatings:

    Thermodynamic Approaches Validated by

    Experiments

    Bi-Cheng Zhou (Presenter), Austin Ross, Greta Lindwall,

    Xuan L. Liu, Zi-Kui Liu (PI)

    Department of Materials Science and Engineering

    The Pennsylvania State University, University Park, PA 16802

    Thomas Gheno, Brian Gleeson

    Department of Mechanical Engineering and Materials Science

    University of Pittsburgh, Pittsburgh, PA 15261

    1

    DOE contract No.: DE-FE0024056

    2016 Crosscutting Research & Rare Earth Elements Portfolios Review

    April 22, 2016 • Pittsburgh, PA

  • Outline

    • Background

    • Project Objectives and Tasks

    • Approach

    • ProgressI. Thermodynamic modeling of Ni-Hf, Ni-Al-Hf,

    and Ni-Cr-Hf

    II. Prediction of Hf tolerance in NiCrAl bond coat alloys

    III. Preliminary results on the effect of Y

    • Future work

    • Acknowledgement

    2

  • 3

    Extrinsic Al2O3 scale growth desired for the protection against high

    temperature corrosion

    Alumina Scale Formation on Alloys

    Gleeson, B. (2010). In Shreir’s Corrosion (pp. 180–194). Elsevier.

  • 4

    Effects of Reactive Elements (RE) on Alumina

    Scale Formation on Alloys

    P.Y. Hou, “Impurity effects on alumina scale growth,” J. Am. Ceram. Soc., 86 (2003) 660.

    Effects on

    Comparisons kp Grain size

    Outward transport

    Inference

    Fe, Ni-based

    with RE vs. Without Down 2× Down 1.5-2× Down 4×

    RE reduces DbAl by 4×,

    has little effect on DbO

    RE = Hf, Y, Zr, La, …

    Alloy

    Al2O3 Scale

    Oxygen

    -2Ob-2Ol

    3Alb3All

    Al2O3 scale growth is

    dominated by grain-

    boundary diffusion at the

    temperatures of interest

  • 5

    Isothermal Oxidation Kinetics at 1150oC Single Doped : Hf vs. Y

    -0.05Y

    Ni-20Al-5Cr

    -0.1Hf

    Base composition (at.%): Ni-20Al-5Cr

    0.0

    0.3

    0.6

    0.9

    1.2

    1.5

    0 20 40 60 80 100

    Oxidation time, hours

    Weig

    ht

    ch

    an

    ge,

    mg

    /cm

    2

    Ni-20Al-5Cr base

    -0.05Y

    -0.1Y

    -0.05Hf

    -0.1Hf

    1150oC

  • 6

    ∆G

    ˚, k

    cal/

    mo

    l O2 -80

    -120

    -100

    Al2O3

    HfO2

    500 1000 1500 2000

    Temperature, K

    aAl = 1

    aHf = 1

    1150ºC 3Hf + 2Al2O3 → 3HfO2 + 4Al

    In order to suppress HfO2:

    Gº = -RT × lnKeq and K = aAl

    4

    aHf3

    must have K < Keq

    Thermodynamic considerations of

    oxidation

    Large composition space of bond coat alloys: Ni-Al-Co-Cr-Si-Hf-Y

    Control the Hf activity aHf in the alloys is key!

  • Project Objectives

    • Develop a thermodynamic database for accelerated

    design of Ni-base alloys and coatings:

    Ni-Al-Co-Cr-Si-Hf-Y

    • Study effects of reactive elements on the phase stability

    and oxide scale formation of bond coat alloys: Hf and Y

    additions to Ni-systems

    • Experimental verification of thermodynamic predictions

    • Assist in the development of the automated

    thermodynamic modeling tool (ESPEI)

    8

  • 8

    Modeling Approach - CALPHAD

    Phase diagrams,

    direct applications

    Thermochemical data: enthalpy,

    entropy, heat capacity, activity…

    Phase equilibria data: liquidus,

    solidus, phase boundary/composition

    Gibbs energy

    (parameterized)

    Fewer data points supplemented by

    first-principles calculations

    Experimental data plenty, hard to

    predict using first-principles

    Pure elements Binary Ternary Multi-component

    http://www.calphad.org

    Practical

    applications

  • 9

    o The CALPHAD framework requires data that is difficult to access with

    experimental work (stable & unstable phases)

    o First-principles couples with CALPHAD Naturally!

    o Density Functional Theory (DFT) is an efficient way to calculate the

    ground state energies of condensed matter systems

    First-principles methodology

    Shang et al. (2010) Computational Materials Science

    approximates

    interactions

    within the crystalline lattice

    for calculations

    Properties:

    -Ground state

    energy of a lattice

    -Total energies of

    different states

    -Finite temperature

    properties

    Input Output

    Efficient! Fewer calorimetric experiments, access metastable states

  • 10

    Ni-Al Ni-Cr Ni-Co Ni-Si Ni-Hf Ni-Y Al-Cr

    Al-Co Al-Si Al-Hf Al-Y Cr-Co Cr-Si Cr-Hf

    Cr-Y Co-Si Co-Hf Co-Y Si-Hf Si-Y Hf-Y

    No description availableModeled, compatible descriptions Modeled/Partly modeled

    Phase I

    Ni-Al-Cr-Co-Si-Hf-Y

    Ni-Al-Cr Ni-Al-Co Ni-Al-Si Ni-Al-Hf Ni-Al-Y

    Ni-Cr-Co Ni-Cr-Si Ni-Cr-Hf Ni-Cr-Y

    Ni-Co-Si Ni-Co-Hf Ni-Co-Y

    Ni-Si-Hf Ni-Si-Y

    Ni-Hf-Y

    Ni-containing ternary systems

    Prioritized systems to model for studying of the Hf and Y effect

  • C

    11

    • CALPHAD self-consistency and the possibility to

    extrapolate to multicomponent systems

    A BD

    A-BA-C

    A-D

    B-C

    B-D

    C-D

    A-B-C

    A-B-DA-C-D

    B-C-D

    ChallengeRevisions of lower order systems

    re-modeling of higher order

    systems

    Unary

    Binary

    Ternary

    ESPEIExtensible, Self-optimizing Phase

    Equilibrium Infrastructure

    • Semi-automated model parameter

    optimization

    • Statistical analysis of results

    • Reusable storage of “raw” data for

    potential remodeling

    • S. Shang, Y. Wang, Z-K. Liu

    Magnesium Technology (2010)

    • www.materialsgenome.com

    Partly financed by DOE

  • 12

    I. Thermodynamic modeling of Ni-Hf, Ni-Al-Hf, and Ni-Cr-Hf

  • Objectives

    o Phase stabilities in base alloys: Al-Cr-Ni + Hf additions

    Al-Cr Al-Hf Al-Ni Cr-Hf Cr-Ni Hf-Ni

    Al-Cr-Hf Al-Cr-Ni Al-Hf-Ni Cr-Hf-Ni

    Al-Cr-Hf-Ni

    13

    DFT

    N/A

    Literature

  • Ni-Hf thermodynamic re-modeling

    • Built upon the previous modeling work by Tao Wang et al. (2001) on Ni-Hf

    • Remodeling with new data• DFT data for B2 phase

    • DFT data for intermetallic compounds

    • DFT SQS data for fcc and bcc solid solution

    • EPMA data for Hf solubility in Ni

    • EPMA data for phase stability of compounds

    • Optical microscopy, DSC and XRD data on B2 Hf50Ni50

    14

    PSU

    Pitt

  • Ni-Hf DFT calculations

    Ni Ni5Hf Ni7Hf2 Ni3Hf-L12 𝜶-Ni3Hf Ni21Hf8

    Ni7H3 Ni10Hf7 X1Hf1-B33 NiHf-B2 X1Hf2-C16 BCC_A2

    Hf

    15

    Finite Temperature

    DFT

    0K DFT

    No DFT

    Previous modeling from Tao Wang et al. (2001) Z. Metallkd. 92 (2001) 5

  • 16

    Ni-Hf: thermodynamics

    -6

    -5

    -4

    -3

    -2

    -1

    0

    104

    En

    thal

    py o

    f F

    orm

    atio

    n, J/

    mo

    l-at

    om

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Mole Fraction Hf

    T=298.15 K

    DFT – HfNi3, HfNi

    on convex hull

    Selhaoui, calorimetry

    Bencze, KEMS

    Guo, calorimetry

    Levy, DFT

    T=1423.15 K

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Act

    ivit

    y

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Mole Fraction Hf

    Ni Hf

    T=1418.15 K

    Bencze & Hilpert

    (1996) - Knudsen

    cell effusion mass

    spectrometry

  • 17

    Ni-Hf: fcc phase

    -6

    -5

    -4

    -3

    -2

    -1

    0

    1

    104

    En

    thal

    py o

    f M

    ixin

    g, J/

    mo

    l

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Mole Fraction Hf

    fcc

    γ' fcc+γ'

    DFT ()

    DFT-SQS (●)

  • 18

    Ni-Hf: bcc phase

    -6

    -5

    -4

    -3

    -2

    -1

    0

    104

    En

    thal

    py o

    f M

    ixin

    g, J/

    mo

    l-at

    om

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Mole Fraction Hf

    bcc-A2

    B2

    300

    600

    900

    1200

    1500

    1800

    2100

    2400

    2700

    3000

    Tem

    per

    atu

    re [

    K]

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Mole Fraction Hf

    bcc-A2

    B2

    B2+bcc-A2

    DFT ()

    DFT-SQS (●)

  • 19

    800

    900

    1000

    1100

    1200

    1300

    1400

    1500

    1600

    TE

    MP

    ER

    AT

    UR

    E_

    KE

    LV

    IN

    0 5 10 15 20 25 30

    10-3

    MOLE_FRACTION HF

    Calculated Hf solubility in fcc Ni

    Present workHajjaji

    ReinbachWangSvechnikov

    fcc

    fcc+Ni5Hf

    fcc+liquid

    Previous

    modeling in the

    literature

    Current modeling

  • Calculated Ni-Hf phase diagram

    20

    300

    600

    900

    1200

    1500

    1800

    2100

    2400

    2700

    Tem

    per

    atu

    re [

    K]

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Mole Fraction Hf

    HfN

    i 5

    HfN

    i 3H

    f 2N

    i 7

    Hf 3

    Ni 7

    Hf 7

    Ni 1

    0

    Hf 9

    Ni 1

    1

    HfN

    i

    Hf 2

    Ni

    bcc

    hcp

    B2

    fcc

    Liquid

    HfN

    i 3(H

    )

    Hf 8

    Ni 2

    1

  • New cast alloys - Ternaries

    21

    Micrographs, 1100 °C

    Al-Hf-Ni

    Cr-Hf-Ni

  • 22

    New cast alloys - Ternaries

    0

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0 0.1 0.2 0.3 0.4 0.5

    Mole Fraction Hf

    Al-Hf-Ni

    Cr-Hf-Ni

    0

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0 0.1 0.2 0.3 0.4 0.5

    Mole Fraction Hf

    1000 °C

    1100 °C

    1200 °C

    Model solubility of Ni7Hf2

    Ni7Hf2

  • Ni7Hf2 new sublattice model to

    include Al solubility

    23

    Compound Prototype Structure Space Group

    Ni7Hf2 Zr2Ni7 C2/m

    Hf

    Ni No Atom Multiplicity Wyckoff

    1 Ni 8 j

    2 Ni 8 j

    3 Ni 8 j

    4 Hf 4 i

    5 Ni 4 i

    6 Hf 4 i

    New Sublattice Model(Hf,Ni)2(Al,Ni)7

    Assumption: all Al goes into the Ni site

    DFT endmembers:(Hf)2(Ni)7, (Hf)2(Al)7,(Ni)2(Ni)7, (Ni)2(Al)7Al,Ni Interaction parameter

    from experiments

  • Not consideringConsidering Al solubility in Hf2Ni7

    T=1100 ̊CNi7Hf2 Ni7Hf2

    Calculated Al solubility in Ni7Hf2

    Experimental

    tie-triangle

    ’ ’

    26

  • 0

    5

    10

    15

    20

    25

    30

    at.

    % A

    l, C

    r

    900 1000 1100 1200

    T (°C)

    γ

    Cr

    Al

    0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    at.%

    Hf

    Hf

    0

    5

    10

    15

    20

    25

    30

    at.

    % A

    l, C

    r 900 1000 1100 1200

    T (°C)

    at.%

    Hf

    0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    γ’

    Cr

    Al

    Hf

    Phase compositions in NiCrAl-Hf alloys

    Experiments

    Current thermodynamic modeling

    □ ∆

    27

  • 26

    II. Prediction of Hf tolerance in NiCrAl bond coat alloys

  • 27

    ∆G

    ˚, k

    cal/

    mo

    l O2 -80

    -120

    -100

    Al2O3

    HfO2

    500 1000 1500 2000

    Temperature, K

    aAl = 1

    aHf = 1

    1150ºC 3Hf + 2Al2O3 → 3HfO2 + 4Al

    In order to suppress HfO2:

    Gº = -RT × lnKeq and K = aAl

    4

    aHf3

    must have K < Keq

    Thermodynamic considerations of

    oxidation

    Large composition space of bond coat alloys: Ni-Al-Co-Cr-Si-Hf-Y

    Control the Hf activity aHf in the alloys is key!

  • Three Ni-Al-Cr + 0.1 at. % Hf alloys

    0

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0 0.1 0.2 0.3 0.4 0.5

    Mole Fraction Cr

    1000 °C1100 °C1200 °C

    Calculated Al-Cr-Ni isothermal section

    Predicted HfO2 formation “boundary” at 1000 °C

    Oxidation of NiCrAl-Hf alloys

    HQ7 HQ8 HQ9

    1000 °C γ-γ’ γ-γ’ γ-γ’

    1100 °C γ γ-γ’ γ-γ’

    1200 °C γ γ γ

    30

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    Hf

    co

    nte

    nt

    for

    HfO

    2fo

    rma

    tio

    n, a

    t.%

    0 5 10 15 20 25 30

    Cr concentration, at.%

    23%Al

    21%Al

    19%Al

    17%Al

    15%Al

    13%Al

    𝛾

    𝛾′

    𝛾 + 𝛾′

    B2 + 𝛾′B2 + 𝛾 + 𝛾′

    B2 + 𝛾

  • • No Hf oxidation (traces present in middle of scale probably left from

    transient stage)

    • Localized Hf oxidation (this is a subjective call)

    Hf not oxidized

    Hf not oxidized

    • Hf oxidation

    Determination of whether Hf oxidized or not

    31

  • Note: all three alloys contained 0.1 at. % Hf

    Predicted HfO2 formation “boundary” at 1200 °C

    Oxidation of NiCrAl-Hf alloys

    7.5Cr-13Al

    7.5Cr-17Al

    13Cr-17Al

    1200 °C

    HfO2 pegs

    32

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    Hf

    co

    nte

    nt

    for

    HfO

    2fo

    rma

    tio

    n, a

    t.%

    0 5 10 15 20 25 30

    Cr concentration, at.%

    23%Al

    21%Al

    19%Al

    17%Al

    15%Al

    13%Al

    𝛾

    𝛾′

    𝛾 + 𝛾′

    B2 + 𝛾′B2 + 𝛾 + 𝛾′

    B2 + 𝛾

  • • Effect of temperature: tolerance reduced (larger driving force

    for HfO2 formation) with increasing temperature

    alloy HQ8 1100 °C 1200 °C

    less zones with no oxidation

    less zones with no oxidation

    alloy HQ9 1000 °C 1100 °C

    γ-γ’

    γ

    γ-γ’

    γγ-γ’

    γ

    33

  • 1000 °C

    1100 °C

    1200 °C

    HQ8: Ni-8Cr-17Al-0.1HfHQ10: Ni-8Cr-17Al-0.05Hf

    γ-γ’

    γ

    γ-γ’

    γ

    γ

    γ-γ’

    γ

    γ-γ’

    γ

    γ

    • Effect of Hf (more Hf promotes HfO2 formation)

    34

  • • Effect of Cr (prediction: Hf tolerance decreases when Cr increases)

    1000 °C

    1100 °C

    1200 °C

    HQ8: Ni-8Cr-17Al-0.1Hf HQ9: Ni-13Cr-17Al-0.1Hf

    γ-γ’

    γ

    γ-γ’

    γ

    γ

    γ-γ’

    γ

    γ-γ’

    γ

    35

  • 34

    III. Preliminary results on the effect of Y

  • Ternary Assessments of Y-containing systems in Literature

    35

    Base Al-Co-Cr Al-Co-Ni Al-Cr-Ni Co-Cr-Ni

    X1-X2-Y Al-Co-Y Al-Cr-Y Al-Ni-Y Co-Cr-Y Co-Ni-Y Cr-Ni-Y

    X1-X2-Hf Al-Co-Hf Al-Cr-Hf Al-Ni-Hf Co-Cr-Hf Co-Ni-Hf Cr-Ni-Hf

    X1-X2-Si Al-Co-Si Al-Cr-Si Al-Ni-Si Co-Cr-Si Co-Ni-Si Cr-Ni-Si

    X1-Hf-Y Al-Hf-Y Co-Hf-Y Cr-Hf-Y Ni-Hf-Y

    X1-Hf-Si Al-Hf-Si Co-Hf-Si Cr-Hf-Si Ni-Hf-Si

    X1-Si-Y Al-Si-Y Co-Si-Y Cr-Si-Y Ni-Si-Y

    Additions Hf-Si-Y

    Assessment available

    Assessment not found

    Good from binaries

    Assessment under investigation

  • Ni-Y

    36

    Du, Z., & Lü, D. (2005). Thermodynamic modeling of the Co–Ni–Y system. Intermetallics, 13(6), 586–595.

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    Te

    mp

    era

    ture

    (K)

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Mole Fraction Y

    1

    1:L12_FCC#1

    2

    2:M17M5YX#1

    33:LIQUID#1

    1

    32

    2

    4

    4:M17M5YX#234

    35

    5:M4Y#136 6:M7Y2#1

    3

    7

    7:M3Y#1

    3

    8

    8:M2Y#1

    3

    9

    9:MY#1

    310

    10:M2Y3#1

    3

    11

    11:MY3#1

    3

    12 12:HCP_A3#1

    313

    13:BCC_B2#1

    1312

    12

    1110

    11

    109

    89

    87

    76

    56

    45

    31313

    YNi

  • Y Solubility in Ni

    37

    600

    800

    1000

    1200

    1400

    1600

    1800Te

    mp

    era

    ture

    (K

    )

    0 2 4 6 8 10 12 14 16 18 20

    10-4

    Mole Fraction Y

    1

    1:L12_FCC#13

    3:LIQUID#1131

    Ni

    Beaudry, B. J., Haefling, J. F., & Daane, A. H. (1960). Acta Crystallographica, 13(9), 743–744.

    Huang, J., Yang, B., Chen, H., & Wang, H. (2015). Journal of Phase Equilibria and Diffusion, 36(4), 357–365.

    Interactions in the fccphase from Huang et al. (2015).

    More work needs to be done to determine the Ni-Y interaction in fccphase.

    fcc

    fcc + Y2Ni17

  • 38

    Stability of Y2O3

    Ni-10Cr-xAl-zY 1000̊C

    x=0.25x=0.1

    Alloy+Al2O3+Y2O3

    x=0.25

    x=0.1

    Alloy+Y2O3

    𝑃 𝑂2

    𝑁 𝑌

    𝑁 𝑁𝑖 + 𝑁 𝐴𝑙 + 𝑁 𝐶𝑟 + 𝑁(𝑌)

    Hf tolerance

    concept not present:

    Y2O3 always more

    stable at low PO2

  • 39

    Oxidation of Ni-Al-Cr-Y Alloys at 1200̊C: possible correlation between oxide scale

    formation and yitrrides formation

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    Wt%

    Y

    0 5 10 15

    Wt% Al

    1.6 wt percent Cr9 wt percent CrImproved scale growthNominal scale growth

    Kvernes, I. A. (1973). Oxidation of Metals, 6(1), 45–64. Yittrides tolerance

    curves

  • Future Works in Phase II

    • Continue to investigate the Y and Si effects on oxide scale formation in Phase II

    • Study the Hf+Y co-doping effects on oxide scale

    • Planned publications so far:1. Hf-Ni Binary thermodynamic modeling

    2. Al-Hf-Ni, Cr-Hf-Ni Ternaries thermodynamic modeling

    3. Al-Cr-Hf-Ni prediction + Oxidation experiments

    • The further development of ESPEI for automation of thermodynamic modeling

    40

  • Acknowledgements

    • Project manager: Jason Hissam

    • Funding from DOE-NETL: DE-FE0024056

    • High performance computing resources on XSEDE, NERSC and the LION-X and CyberStar clusters at Penn State

    41

    Thank you for your attention.

    Any questions?