compressive sensing meets group testing: lp decoding for non-linear (disjunctive) measurements

53
Compressive sensing meets group testing: LP decoding for non-linear (disjunctive) measurements Chun Lam Chan, Sidharth Jaggi and Samar Agnihotri The Chinese University of Hong Kong Venkatesh Saligrama Boston University

Upload: salvador-henson

Post on 02-Jan-2016

24 views

Category:

Documents


0 download

DESCRIPTION

Compressive sensing meets group testing: LP decoding for non-linear (disjunctive) measurements. Venkatesh Saligrama Boston University. Chun Lam Chan, Sidharth Jaggi and Samar Agnihotri The Chinese University of Hong Kong. n-d. d. Compressive sensing. Lower bound:. What’s known. OMP:. - PowerPoint PPT Presentation

TRANSCRIPT

Compressive sensing meets group testing:LP decoding for non-linear (disjunctive)

measurementsChun Lam Chan, Sidharth Jaggi and Samar Agnihotri

The Chinese University of Hong Kong

Venkatesh Saligrama

Boston University

n-dd

Lower bound:

OMP:

What’s known

BP:

Compressive sensing

n-dd

Group testing:

1

0

0q

1q

Lower bound:

Noisy Combinatorial OMP:

What’s known

This work: Noisy Combinatorial BP:

…[CCJS11]

4

Group-testing model

p=1/D[CCJS11]

5

CBP-LP

relaxation

weight

positive tests

negative tests

6

NCBP-LP

“Slack”/noise variables

Minimum distance decoding

7

“Perturbation analysis”

1.For all (“Conservation of mass”)

2. LP change under a single ρi (Case analysis)

3. LP change under all n(n-d) ρis (Chernoff/union bounds)

4. LP change under all (∞) perturbations (Convexity)

(5.) If d unknown but bounded, try ‘em all (“Info thry”)

8

1. Perturbation vectors

NCBLP feasible set

x

ρi

ρj

d n-d

9

2. LP value change withONE perturbation vector

x

10

3. LP value change withEACH (n(n-d)) perturbation vector

Union bound Chernoff bound

Prob error <x

11

4. LP value change underALL (∞) perturbations

x

Prob error <

Convexity of

min LP = x

12

(5.) NCBP-LPs

Information-theoretic argument – just a single d “works”.

13

Bonus: NCBP-SLPs

ONLYnegative tests

ONLYpositive tests

Noiseless CBP

n-dd

Noiseless CBP

n-dd

Discard

Noiseless CBP Sample g times to form a

group

n-dd

Noiseless CBP Sample g times to form a

group

n-dd

Noiseless CBP Sample g times to form a

group

n-dd

Noiseless CBP Sample g times to form a

group

n-dd

Noiseless CBP Sample g times to form a

group

Total non-defective items drawn:

n-dd

Noiseless CBP Sample g times to form a

group

Total non-defective items drawn:

Coupon collection:

n-dd

Noiseless CBP Sample g times to form a

group

Total non-defective items drawn:

Coupon collection:

Conclusion:

n-dd

Noisy CBP

n-dd

Noisy CBP

n-dd

Noisy CBP

n-dd

Noisy CBP

n-dd

Noiseless COMP

Noiseless COMP

Noiseless COMP

Noiseless COMP

Noiseless COMP

Noisy COMP

Noisy COMP

Noisy COMP

 

Noisy COMP

Noisy COMP

Noisy COMP

Noisy COMP

Simulations

0 100 200 300 400 500 600 700 8000

1

Experimental; q=0

Theoretical-lower; q=0

Theoretical-upper;q=0

number of tests (T)

succ

ess

rate

Simulations

0 500 1000 1500 2000 2500 30000

1

Experimental; q=0

Experimental; q=0.1

Experimental; q=0.2

Theoretical-lower; q=0

Theoretical-lowerl; q=0.1

Theoretical-lower; q=0.2

Theoretical-upper;q=0

Theoretical-lower; q=0.1

Theoretical-lower; q=0.2

number of tests (T)

succ

ess

rate

Summary

CBP COMP

Noiseless

Noisy

With small error ,

Noiseless COMP

x 0 0 1 0 0 0 1 0 0

M y

0 1 1 1 0 0 0 0 0 10 0 0 1 0 0 1 0 0 10 1 0 0 0 0 0 0 1 01 1 1 0 0 0 1 1 0 10 0 1 1 0 1 1 0 0 10 0 0 0 1 0 0 1 1 0

0 0 1 1 0 1 1 0 0 1

x 0 0 1 0 0 0 1 0 0

M y

0 1 1 1 0 0 0 0 0 10 0 0 1 0 0 1 0 0 10 1 0 0 0 0 0 0 1 01 1 1 0 0 0 1 1 0 10 0 1 1 0 1 1 0 0 10 0 0 0 1 0 0 1 1 0

0 0 1 1 0 1 1 0 0 1

0 10 11 0 x90 1 → 00 11 00 1

Noiseless COMP

Noiseless COMP

x 0 0 1 0 0 0 1 0 0

M y

0 1 1 1 0 0 0 0 0 10 0 0 1 0 0 1 0 0 10 1 0 0 0 0 0 0 1 01 1 1 0 0 0 1 1 0 10 0 1 1 0 1 1 0 0 10 0 0 0 1 0 0 1 1 0

0 0 1 1 0 1 1 0 0 1

0 01 10 0 x71 1 → 11 10 01 1

Noiseless COMP

x 0 0 1 0 0 0 1 0 0

M y

0 1 1 1 0 0 0 0 0 10 0 0 1 0 0 1 0 0 10 1 0 0 0 0 0 0 1 01 1 1 0 0 0 1 1 0 10 0 1 1 0 1 1 0 0 10 0 0 0 1 0 0 1 1 0

0 0 1 1 0 1 1 0 0 1

1 11 10 0 x40 1 → 11 10 01 1

Noiseless COMP

x 0 0 1 0 0 0 1 0 0

M y0 1 1 1 0 0 0 0 0 10 0 0 1 0 0 1 0 0 10 1 0 0 0 0 0 0 1 01 1 1 0 0 0 1 1 0 10 0 1 1 0 1 1 0 0 10 0 0 0 1 0 0 1 1 00 0 1 1 0 1 1 0 0 1

1 1 0 0 0 11 1 1 1 0 10 0 x4 0 0 x7 1 0 x9

(a) 0 1 → 1 (b) 1 1 → 1 (c) 0 1 → 01 1 1 1 0 10 0 0 0 1 01 1 1 1 0 1

Noisy COMPx 0 0 1 0 0 0 1 0 0

    M y ν ŷ0 1 0 1 0 0 0 0 0 0 0 00 0 0 1 0 0 1 0 0 1 1 00 1 0 0 0 0 0 0 1 0 1 11 1 1 0 0 0 1 1 1 1 + 1 → 00 1 1 1 0 1 0 0 0 1 0 10 0 0 0 1 0 0 1 1 0 0 00 0 1 1 0 1 1 0 0 1 0 1

0 00 00 11 01 10 01 1

Noisy COMPx 0 0 1 0 0 0 1 0 0

    M y ν ŷ0 1 0 1 0 0 0 0 0 0 0 00 0 0 1 0 0 1 0 0 1 1 00 1 0 0 0 0 0 0 1 0 1 11 1 1 0 0 0 1 1 1 1 + 1 → 00 1 1 1 0 1 0 0 0 1 0 10 0 0 0 1 0 0 1 1 0 0 00 0 1 1 0 1 1 0 0 1 0 1

0 00 00 1 x31 0 → 11 10 01 1

If then =1 else =0

Noisy COMPx 0 0 1 0 0 0 1 0 0

    M y ν ŷ0 1 0 1 0 0 0 0 0 0 0 00 0 0 1 0 0 1 0 0 1 1 00 1 0 0 0 0 0 0 1 0 1 11 1 1 0 0 0 1 1 1 1 + 1 → 00 1 1 1 0 1 0 0 0 1 0 10 0 0 0 1 0 0 1 1 0 0 00 0 1 1 0 1 1 0 0 1 0 1

1 00 01 1 x2

1 0 → 1

1 10 00 1

Noisy COMPx 0 0 1 0 0 0 1 0 0

    M y ν ŷ0 1 0 1 0 0 0 0 0 0 0 00 0 0 1 0 0 1 0 0 1 1 00 1 0 0 0 0 0 0 1 0 1 11 1 1 0 0 0 1 1 1 1 + 1 → 00 1 1 1 0 1 0 0 0 1 0 10 0 0 0 1 0 0 1 1 0 0 00 0 1 1 0 1 1 0 0 1 0 1

0 01 00 1 x71 0 → 00 10 01 1

Noisy COMP

x 0 0 1 0 0 0 1 0 0

    M y ν ŷ0 1 0 1 0 0 0 0 0 0 0 00 0 0 1 0 0 1 0 0 1 1 00 1 0 0 0 0 0 0 1 0 1 11 1 1 0 0 0 1 1 1 1 + 1 → 00 1 1 1 0 1 0 0 0 1 0 10 0 0 0 1 0 0 1 1 0 0 00 0 1 1 0 1 1 0 0 1 0 1

1 0 0 0 0 00 0 0 0 1 01 1 x2 0 1 x3 0 1 x7

(a) 1 0 → 1 (b) 1 0 → 1 (c) 1 0 → 01 1 1 1 0 10 0 0 0 0 00 1 1 1 1 1

Noisy COMP

x 0 0 1 0 0 0 1 0 0

    M y ν ŷ0 1 0 1 0 0 0 0 0 0 0 00 0 0 1 0 0 1 0 0 1 1 00 1 0 0 0 0 0 0 1 0 1 11 1 1 0 0 0 1 1 1 1 + 1 → 00 1 1 1 0 1 0 0 0 1 0 10 0 0 0 1 0 0 1 1 0 0 00 0 1 1 0 1 1 0 0 1 0 1

1 0 0 0 0 00 0 0 0 1 01 1 x2 0 1 x3 0 1 x7

(a) 1 0 → 1 (b) 1 0 → 1 (c) 1 0 → 01 1 1 1 0 10 0 0 0 0 00 1 1 1 1 1