compress ible flow review

14
8/22/2019 Compress Ible Flow Review http://slidepdf.com/reader/full/compress-ible-flow-review 1/14 AE6050  Compressivle Flow -1 School of Aerospace Engineering Copyright © 2001,2003 by Jerry M. Seitzman. All rights reserved. In continuum fluid mechanics, often start by considering conservation or transport equations, e.g.,  – mass  – momentum In compressible flow, must include energy equation  – kinetic energy of flow can not be neglected

Upload: divya-srinivasan

Post on 08-Aug-2018

235 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Compress Ible Flow Review

8/22/2019 Compress Ible Flow Review

http://slidepdf.com/reader/full/compress-ible-flow-review 1/14

AE6050 Compressivle Flow -1

School of Aerospace Engineering

Copyright © 2001,2003 by Jerry M. Seitzman. All rights reserved.

• In continuum fluid mechanics, often start byconsidering conservation or transport equations,

e.g.,

 – mass – momentum

• In compressible flow, must include energy equation

 – kinetic energy of flow can not be neglected

Page 2: Compress Ible Flow Review

8/22/2019 Compress Ible Flow Review

http://slidepdf.com/reader/full/compress-ible-flow-review 2/14

AE6050 Compressivle Flow -2

School of Aerospace Engineering

Copyright © 2001,2003 by Jerry M. Seitzman. All rights reserved.

• Mass/continuity

• Momentum

• Energy

• Species conservation

0=∂

ρ+

ρ

 j

 j

 x

u

 Dt 

 D

ρ= ii w

 Dt 

 DY  net mass production

rate of species i

 j

 j

 j F 

 x

 p

 Dt 

 Duρ+

∂−=ρ

 body force

qu F t 

 p

 Dt 

 Dh j j

o+ρ+

∂=ρ

volumetric heating,

e.g., radiation

stagnation enthalpy,2

2

1

uhmix +

 j j

 xu

t  Dt 

 D

∂+

∂=

???

substantial derivative

All molecular diffusion terms neglected in these equations

Page 3: Compress Ible Flow Review

8/22/2019 Compress Ible Flow Review

http://slidepdf.com/reader/full/compress-ible-flow-review 3/14

AE6050 Compressivle Flow -3

School of Aerospace Engineering

Copyright © 2001,2003 by Jerry M. Seitzman. All rights reserved.

• Thermal eq. state

• Caloric eq. state

 –  thermally perfect gas

 –  if reacting, R≠ const.

 RT  p =ρ

( )

( ) ( )

( )T  ph

T T  p RT e

T  RY eY hY h

mix

mixmix

iiiiiimix

,

,

=

+=

+== ååå

he,

( ) ;T ee =

ρ+=+= pe pvehwith

thermally perfect (ideal) gas - TPG

( ) RT ba p =−ρρ+ 12 Van der Waals state eq: a,b constants

( ) RT T eh +=

dT decv = v p cc≡ Rcc v p +=dT dhc

 p=

calorically

perfect gas - CPG

c p, cv, γ =constants

Page 4: Compress Ible Flow Review

8/22/2019 Compress Ible Flow Review

http://slidepdf.com/reader/full/compress-ible-flow-review 4/14AE6050 

Compressivle Flow -4

School of Aerospace Engineering

Copyright © 2001,2003 by Jerry M. Seitzman. All rights reserved.

• Properties that would be achieved if flow brought to restadiabatically, reversibly and with no external work 

• Stagnation Temperature – from energy conservation:

no work  but flow work and adiabatic

 R

c

T cT 

T  p

 p

o

12

u11

2

−γ γ 

+=Þ

2o M2

11

T

T −+=

12o

M2

1

1 p

 p −γ γ 

÷ ø

 öçè 

æ  −γ 

+=

( )

2

u2

=−T T c o p

( )1−γ γ 

= T T  p p oo

ÞTo (and ho) constant foradiabatic flow

• Stagnation Pressure – for rev. + adiabatic

=isentropic process (∆∆∆∆s=0)

Þpo (and so) constant if 

also reversible

Expressions for TPG, CPG

Bulk KE

Page 5: Compress Ible Flow Review

8/22/2019 Compress Ible Flow Review

http://slidepdf.com/reader/full/compress-ible-flow-review 5/14AE6050 

Compressivle Flow -5

School of Aerospace Engineering

Copyright © 2001,2003 by Jerry M. Seitzman. All rights reserved.

• Steady, nonreacting,

no body forces

02

12

22

++τ

u

du

 p

u

 p

dpdx

 A

 L

 p

 p x

dx

 p+dp

T+dT

ρ+dρu+du

A+dA

h+dh

 p

T

ρu

A

h

τx

δq0

2

12

2

=++ρ

ρ

 A

dA

u

dud 

02

1q2

22

=−−δ

 RT 

dh

u

du

 RT 

u

 RT 

Mass

Momentum

Energy

Valid only for 

dA/dx small

shear stress normalstress

momentum

change

heat addition KE change thermal energy change

Page 6: Compress Ible Flow Review

8/22/2019 Compress Ible Flow Review

http://slidepdf.com/reader/full/compress-ible-flow-review 6/14AE6050 

Compressivle Flow -6

School of Aerospace Engineering

Copyright © 2001,2003 by Jerry M. Seitzman. All rights reserved.

• In addition, limit to nonreacting

TPG (nonreact.ÞR=const.)

02 2

22 =

γ ++

τ

u

du M 

 p

dpdx

 A

 L

 p

 p x

dx

 p+dp

T+dT

ρ+dρu+du

A+dA

γ +dγ 

M+dM

 p

T

ρu

A

γ 

M

τx

δq0

2

12

2

=++ρ

ρ

 A

dA

u

dud 

( )0

2

1q2

2

2 =−−γ 

−δ

dT 

u

du M 

T c p

Mass

Momentum

Energy

0=−

ρ

ρ−

dT d 

 p

dpIdeal Gas

Eq. State

02

2

2

2

=

γ 

γ ++−

dT 

u

du

 M 

dM 

Mach

Number

Page 7: Compress Ible Flow Review

8/22/2019 Compress Ible Flow Review

http://slidepdf.com/reader/full/compress-ible-flow-review 7/14

AE6050 Compressivle Flow -7

School of Aerospace Engineering

Copyright © 2001,2003 by Jerry M. Seitzman. All rights reserved.

• Combine conservation/state equations

 – can algebraically show if also CPG

( )ïþ

ïýü

ïî

ïíì

−γ +γ +δ

−+

= A

dA

 D

dx f  M  M 

T c M 

 M 

 M 

dM 

o p

21q

1

2

11

22

2

2

2

2

• So we have three ways to change M of flow

 –  area change (dA): e.g., conv.-div. nozzles –  friction: f  > 0, same effect as – dA

 –  heat transfer:heating, δδδδq>0, like – dA

cooling, δδδδq<0, like +dA

friction factor-from τx

Page 8: Compress Ible Flow Review

8/22/2019 Compress Ible Flow Review

http://slidepdf.com/reader/full/compress-ible-flow-review 8/14

AE6050 Compressivle Flow -8

School of Aerospace Engineering

Copyright © 2001,2003 by Jerry M. Seitzman. All rights reserved.

• Subsonic flow ( M <1): 1–  M 2 > 0

 – friction, heating, converging areaÞ increase M (dM >0)

 – cooling, diverging areaÞ decrease M (dM <0)

• Supersonic flow ( M >1): 1–  M 2

< 0 – friction, heating, converging areaÞ decrease M (d M <0)

 – cooling, diverging areaÞ increase M (d M >0)

( ) ïþ

ïý

ü

ïî

ïí

ì

−γ +γ +δ

−+

=  A

dA

 D

dx f  M  M T c M 

 M 

 M 

dM 

o p21

q

1 2

11

222

2

2

2

Page 9: Compress Ible Flow Review

8/22/2019 Compress Ible Flow Review

http://slidepdf.com/reader/full/compress-ible-flow-review 9/14

AE6050 Compressivle Flow -9

School of Aerospace Engineering

Copyright © 2001,2003 by Jerry M. Seitzman. All rights reserved.

• Effect on transition point: sub⇔supersonic flow

• As M →1, 1–  M 2→0, need { } term to approach 0

• For isentropic flow,

 – sonic condition is dA=0, throat

( )ïþ

ïýü

ïî

ïíì

−γ +γ +δ

−+

= A

dA

 D

dx f  M  M 

T c M 

 M 

 M 

dM 

o p

21q

1

2

11

22

2

2

2

2

• For friction or heating, need dA>0 – sonic point in diverging section

• For cooling, need dA<0

 – sonic point in converging section

Page 10: Compress Ible Flow Review

8/22/2019 Compress Ible Flow Review

http://slidepdf.com/reader/full/compress-ible-flow-review 10/14

AE6050 Compressivle Flow -10

School of Aerospace Engineering

Copyright © 2001,2003 by Jerry M. Seitzman. All rights reserved.

• For TPG/CPG + steady, get equations for each TD property

change as function of  Mach number change

• Analytic solutions if ONLY area change (Isentropic Nozzle)

OR friction (Fanno flow) OR heat xfer (Rayleigh flow)

 – usually tabulated for given γ 

2

2

2

2

2

11

2

1

 M 

dM 

 M 

 M 

dT 

dT 

o

o

−γ +

−=

2

2

22

2

2

11

1

 M 

dM 

 M T 

dT 

u

du

o

o

−γ +

+=

 A

dA

u

dud −−=

ρ

ρ2

2

2

1÷÷ ø

 öççè 

æ  +γ 

−= D

dx f 

u

du M 

 p

dp2

22

2o po

o

T cT 

dT  qδ=

2

2

2

2

2

11

2

 M 

dM 

 M 

 M 

 p

dp

 p

dp

o

o

−γ ++=

o

o

o

o

 p

dp

dT 

 R

ds−

−γ =

1

Page 11: Compress Ible Flow Review

8/22/2019 Compress Ible Flow Review

http://slidepdf.com/reader/full/compress-ible-flow-review 11/14

AE6050 Compressivle Flow -11

School of Aerospace Engineering

Copyright © 2001,2003 by Jerry M. Seitzman. All rights reserved.

• Speed of sound and Mach waves

• Shocks – normal shocks

 – oblique shocks

• act like normal shock in direction normal to wave – detached (bow) shocks

• Prandtl Meyer expansions and compressions

• Wave “reflections” – impose/“transmit” some boundary condition

(pressure or velocity) to flow

Page 12: Compress Ible Flow Review

8/22/2019 Compress Ible Flow Review

http://slidepdf.com/reader/full/compress-ible-flow-review 12/14

AE6050 Compressivle Flow -12

School of Aerospace Engineering

Copyright © 2001,2003 by Jerry M. Seitzman. All rights reserved.

• For supersonic flow, can define region where

disturbance has had an effect (been “heard”)

• Conical region delineated by tangents tosound wave spheres

• Waves coalesce at edge of cone,

 produce largest disturbance

 –  Mach wave (Mach line)

• Angle between Mach line

and body motion, Mach angle

0 -1 -2 -3

at

µ

Zone of 

ActionZone of 

Silence÷

 ø

 öç

è 

æ =÷

 ø

 öç

è 

æ =µ −−

v

asin

vt

atsin 11

vt

Page 13: Compress Ible Flow Review

8/22/2019 Compress Ible Flow Review

http://slidepdf.com/reader/full/compress-ible-flow-review 13/14

AE6050 Compressivle Flow -13

School of Aerospace Engineering

Copyright © 2001,2003 by Jerry M. Seitzman. All rights reserved.

1

1lim

1

2

1 p p 12 −γ 

+=

ρ

ρ

>>

• p increase acrossnormal shock isgreatest staticproperty change

• Density ratio andvelocity ratioapproach limit

γ =1.4

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7

M1

       T       2       /       T       1  ,     p       2       /     p       1

  ,      ρ      ρρ      ρ

       2       /      ρ      ρρ      ρ

       1

p2/p1

T2/T1

ρ2/ρ1,v1/v2

v1

ρ1

T1

 p1

M1

v2

ρ2

T2

 p2

M2

• T, p and ρ increase,v decreases

Shock: compression wave with steep gradient

Page 14: Compress Ible Flow Review

8/22/2019 Compress Ible Flow Review

http://slidepdf.com/reader/full/compress-ible-flow-review 14/14

AE6050 Compressivle Flow -14

School of Aerospace Engineering

Copyright © 2001,2003 by Jerry M. Seitzman. All rights reserved.

• Each turn produced by

infinitessimal flow change

• Prandtl Meyer function

1

11 M

1sin−=µ

212 M1sin−=µ

M1

M2

δÞÞÞÞMach waves

d νµM

M+dMM

dM

M2

11

1Md

2

2

−γ +

−= ν