comprehensive particle characterization by homogeneous...

69
© 2015 LUM GmbH 1 Comprehensive particle characterization by homogeneous-start centrifugal sedimentation technique Dietmar Lerche, Prof. Dr. Dr. LUM Berlin, Germany 1. Introduction 2. In-situ visualization of separation by STEP-Technology 3. Velocity and size distribution of particles 4. Magnetophoretic velocity 5. Density determination of particles dispersed in liquid 6. Characterization of particle surface properties Focus User Meeting: The Centrifugal Sedimentation Technique Bushy House, London; 29 30 Nov. 2016

Upload: truongthuan

Post on 29-Jul-2018

229 views

Category:

Documents


2 download

TRANSCRIPT

© 2015 LUM GmbH

1

Comprehensive particle characterization

by homogeneous-start

centrifugal sedimentation technique

Dietmar Lerche, Prof. Dr. Dr.

LUM Berlin, Germany

1. Introduction

2. In-situ visualization of separation by STEP-Technology

3. Velocity and size distribution of particles

4. Magnetophoretic velocity

5. Density determination of particles dispersed in liquid

6. Characterization of particle surface properties

Focus User Meeting: The Centrifugal Sedimentation TechniqueBushy House, London; 29 – 30 Nov. 2016

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

2

420 ha area

>12.000 employes

>710 companies

18 Scientific Institutions

When and where LUM started?

Established 1994

Hi-Tec

Park

Business idea:

Accelerated and Direct

Stability Testing

of Dispersions

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

3

Multisampling

SEPView 6.4 Software

Real-time Accelerated

Multi-wavelength

SEPView 7

Efficient and easy

Units placed in 45 countries all over the world

LUM now provides solutionsfor entire life cycles

1.Particles 2. Dispersions3. Composite

Materials

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

4

1. Foöl. LUMiReder

2. Folie LUMiReader x-Ray

www.LUMiReader.com

www.LUMiReader-xr.com

Microsites

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

5

www.LUMiFrac.com

www.LUMiSizer.com

www.LUMiFuge.com

Microsites

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

6

1.Particles 2. Dispersions3. Composite

Materials

Multisampling

SEPView 6.4 Software

Real-timeISO/TR 13097, ISO 13317

ASTM D7827-12

AcceleratedISO/TR 13097

ISO 13318

Multi-wavelength

SEPView 7

Efficient and easyEN ISO 4624 DIN EN 15870

CharacterizationState,

StabilityStrength

LUMiINSTRUMENTS are state-of-the-art

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

7

In-situ visualization of dispersion stateby STEP-Technology

NIR

VL

X-Ray

12 channels,

l = 870, 470 nm

t1 > t0

Conventional“one point” techniques

Space and Time resolved

Extinction Profiles

Animation see:youtube

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

8

Partical velocity due to gravity fields

Stokes law

Physical Basics

Dr > 0, settling, sedimentationDr < 0, creaming, flotation

t = t0 t1 > t0 t2 > t1

Limitations: Newtonian Liquids, Re < 0.5

v = = n . . g .2 Dr . x2

9 hRCAf(a)

h

t

RCA = CA / g = w² . r [m] / 9.81

=1.1179E-3 * RPM²*r[m]

f(a) = hindrance function

n = shape factor

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

does for youvisualization+ quantification

1. Windows 7 based with Ribbon User Interface

2. plug and play, pack and go

3. Simultaneous analysis for 12 samples

4. Individual user customization

5. Full SOP concept (Creation, capture, data analysis)

6. Seven different tools to understand (quantify) even

the most complicated dispersion::

Time lapse measurement replay

Dispersion fingerprint

Instability index

Clarification

Phase separation

Sedimentation and creaming velocities

Particle density and size distribution

7. Windows Explorer based data management

8. Comprehensive database security and full audit log

9. Complies with 21 CFR Part 11

Software

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Meniscus Cell Bottom

STEP-Technology: In-situ visualization of separation behavior

Qualitative: FingerprintsQuantitative: Instability Index,

Fronttracking, IntegrationParticle velocity and size

1 = Red

last = Green

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Concentration 10.5% (v/v)

Concentration 19,8% (v/v)

Fingerprint: Monodisperse silica particles

monomodal

Silica, 280 nm,

1100 x g

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

12

Green: Last profil

1100 x g, 20 °C

Quartz: 400 nm – 10 µm

First profile

Red: 21

%

15

%

9 %

4.6

%

3.3

%

1.3

% 2.3

%

1100 x g

Residual turbidity

30 %

Fingerprint: Polydisperse quartz particles

Polydisperse (swarm) sedimentation

Quantification by fronttracking

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Fingerprint: Sedimentation types

Polydisperse (Swarm) Sedimentation

Aeroxide AluC

(Evonik)

Colloidal stable

pH = 5, z = 40 mV

Colloidal stable

pH = 9, z = 0 mV

Flocculated, Network forming

filling heightfilling heightfilling height

Zone Sedimenatation

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

14

In-situ visualization of phase separation

Instantanuous profiling ofTransmission,Clarification,orConcentrationchanges duringparticle separationfrom bottom to top!

I

I0- lg = Et,p = e . Ct,p

. dCt.p = Tt,p - T0

Clarification Extinction/Concentration

Tt,p = TransmissionIt,pI0

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

STEP - Fingerprints

Suspension

monomodal monodisperse

Suspension

tetramodal monodisperse

Suspension

polydisperse

Suspension

particle – particle - interaction

Emulsion

rather monodisperse Suspoemulsion

flotation and sedimentation

First transmission profil: red Last transmission profil: green

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Zeit t [s]

0 100 200 300 400 500

Po

sit

ion

r [

mm

]

90

95

100

105

110

115

1.3 %

2.3 %

3.3 %

4.6 %

9 %

15 %

21 %

Phase separation

Particle interaction

Consolidation

Shelf life prediction

Particle characterization

Transmission Fingerprints

“Fingerprint”

“Good” or “Bad” product

Formulation ranking

Process optimization

Radius [mm]

110.0105.0100.095.090.0

100.0

50.0

Quantification

What tell us STEP-Technology ?

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Partikelgröße x [µm]

0.1 1

dif

f. V

olu

men

vert

eilu

ng

q3(l

n x

) [-

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ku

mu

lati

ve V

olu

men

vert

eilu

ng

Q3(x

) [%

]

0

20

40

60

80

100

q3(ln x)

Q3(x)

Velocity distribution

Particle size distribution

Density distribution

Magnetization

Zeit t [s]

0 100 200 300 400 500

Po

sit

ion

r [

mm

]

90

95

100

105

110

115

1.3 %

2.3 %

3.3 %

4.6 %

9 %

15 %

21 %

Phase separation

Particle interaction

Consolidation

Shelf life prediction

Particle characterization

Transmission Fingerprints

“Fingerprint”

“Good” or “Bad” product

Formulation ranking

Process optimization

Radius [mm]

110.0105.0100.095.090.0

100.0

50.0

Quantification

What tell us STEP-Technology ?

Original concentration

no dilution, no preparation!

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

18

From Particle Characterization…

Multi-wavelengthLUMiReader®PSA

ISO 13317

1.Particle properties of micro- andnanoparticles

Multi-wavelengthDispersion Analyser LUMiSizer®

ISO 13318

MICROPARTICLES NANOPARTICLES

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

T

r

Spatially and time resolved transmission profiles

Classical PSD analysis according to ISO 13318-2

rmeas

)ln(TE

Time curve of extinctionConstant position

E

svrt D

tmeas

Radial extinction profileConstant time

E

meass tvr D

)ln(TE

Q3

conversion Qext Q3

requires optical model Cext(xStokes)

size distributionQ

Stokesx

Qext

Detloff et al., Part.Part.Syst.Charact. 23,2006,184 and Powder Technology 174,2007,50

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH20

E(t)

t1 t2 Zeit t

E(t)

t1 t2 Zeit t

Velocity distribution

Velocity v Particle Concentration

v

)E(max

E)v(Q ii

tm

r0rt

Time

Distancev

-==

Determination of velocity distribution: 2 modes

Mode: Constant time Mode: Constant position

Important: Absolute method, no assumptions, no calibration, no gradient, constant T

E(r)

Position r

E(r)

r1 r2

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

21

92 94 96 98 100 102 104 106 108 110 112

Position r [mm]

100

0

50

Lig

ht

tran

sm

issio

n [

%]

114

Space and Time Resolved Extinction Profils

Mixture by volume A: 66,7%, 280nm; B: 33,3%, 545 nm

Fingerprint: Bimodal Silica

X50=280 nm

X50=545 nm

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

22

0

0.2

0.4

0.6

0.8

1

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94

Velocity v [mm/s]

Cu

mu

lati

ve

Ve

loc

ity

Dis

trib

uti

on

Qv(v

) [-

]

0

5

10

15

20

25

30

35

40

Ve

loc

ity

Dis

trib

uti

on

qv(v

)

[s/m

m]

Velocity distribution

Bimodal silica: 280 nm + 545 nm, Ratio: 2/1

Sepview 6: Mode particle characterization/velocity distribution

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

23

Particle characterization (I)

1. Velocity and velocity distribution

PMMA

PMMA+ 1% oversized

API

Mono- & polydispersity

Duration,Grinding bodies

Hindrance function and shapeDetection of oversized

Optimization of milling

Redpigmentpastes

Peng He(2010)

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

24

Particle size x in µm

1 10 100 1000

Cu

mu

lati

ve

vo

lum

e d

istr

ibu

tio

n Q

3(x

)

0.0

0.2

0.4

0.6

0.8

1.0

Emulsion A

Emulsion B

15 min at 26.000 rpmrotor-stator homogenizer

Longer treatment with rotor-stator homogenizer

Droplet Size of Emulsion B << Emulsion A

30 min at 24.000 rpmrotor-stator homogenizer

Velocity distribution provides PSD for suspensions and emulsions

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Extinction/volume weighted distribution

Bimodal silica: 280 nm + 550 nm, Ratio: 2/1

Ratio: 2 : 1

( )( )

( )

( )

( )( )

( )Tlndxk

x

Tlndxk

x

1xQ0

Tln ext

0

Tln ext

i3

0

i

Stokes law( )

0

2ln

18

r

r

tx t

mFP

F

wrr

h

x

- Extinktion

- Volume

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

0

0.2

0.4

0.6

0.8

1

100 1000 10000

particle size x [nm]

cu

mu

lati

ve d

istr

ibu

tio

n Q

(x)

[-]

280 nm LUMiSizer

280 nm PCS 173 °

550 nm LUMiSizer

550 nm PCS 173 °

550 nm SEM

1550 nm LUMiSizer

1550 nm PCS 173 °

1550 nm SEM

LUMiSizer vs. PCS 173° und SEM

PCS...Photon Correlation Spectroscopy SEM...Scanning Electron Microscopy

Validation

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

27

Reference particlesSpherical micro silica particles with excellent shape stability and narrow size distribution for use as sedimentation and particle size standard for optical sedimentation analyser LUMiSizer®

SpecificationNominal particle sizes:: 170 nm, 250 nm, 550 nm, 1100 nmDensity: 2000 kg/m³ Refractive index: 1.460Suspension medium: 0.1 % Na4P2O7*10 H2O + 0.05 % NaN3 in ultrapure water

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Klebosol

1508-35 150H50 1630/26

Me

an

pa

rtic

le s

ize

[n

m]

0

20

40

60

80

100

120

LUMiSizer

XDC

PCS

TEM

SEM

Klebosol – different measurement techniques

XDC…X-Ray disc centrifuge, PCS…Photon correlation spectroscopy (dynamic light scattering),

TEM…Transmission electron microscope, SEM…Scanning electron microscope

T. Detloff, D. Lerche: Evaluation of particle size analysis by novel centrifugal sedimentation method,

Proceedings and poster Partec 2007 Int. Cong. on Particle Technology, Nuremberg, Germany, 27–29.3.2007

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Round Robin Test, Colloidal silica nanoparticles

29

2 LUMiSizer

2 Analytical Ultra Centrifuges

1 X-Ray Disc Centrifuge

9 CPS Disc Centrifuges

“Interlaboratory comparison of methods for the measurement of particle size, effective particle density and zeta potential of silica

nanoparticles in an aqueous solution”, Final report, A. Lamberty, K. Franks, A. Braun, V. Kestens, G. Roebben, T. Linsinger, Joint

Research Centre Institute for Reference Materials and Measurements

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

30

Flexibility by variability of optical path and wavelengtho.p. = 1, 2 and 10 mm, l = 470 and 870 nmAu, Ag1, Ag2: 470 nm, 2 mm Ag3: 870 nm, 10 mm

Sobisch et al., Dispersion Letters 4 (2013) 9-11

SAXS (BAM) size:

Au NP 8; 54 nm

Au NP II; 18 nm

SAXS (BAM) size:

Ag 1; 59 nm

Ag 2; 37 nm

Ag 3: 19 nm

Size distribution of Au-NP and Ag-NP bymultiwavelength LUMiSizer compared to SAXS

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

particle size [nm]

100 1000 10000

cu

mu

lati

ve

vo

lum

e w

eig

hte

d d

istr

ibu

tio

n

[

%]

0

20

40

60

80

100

NN 22317 (25°C)

NN 22317 (45°C)

Effect of 53 hours of storage at 25/45 °COstwald ripening

Emulsion B (Lemon + WA)

25°C 45°C

x10,3 220 nm 277 nm

x50,3 414 nm 893 nm

x90,3 4009 nm 10220 nm

Data LUMiSizer 611

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

32

10 100 1000 10000

0

20

40

60

80

100

PEI-to-iron w/w ratio (%): 0 4 6 8 10 12

Volu

me

weig

hte

d

cum

ula

tive s

ize

dis

trib

utio

n Q

3 [%

]

Hydrodynamic diameter [nm]

equivalent particle diameter [nm]

300 500 2000 3000 5000 200001000 10000

cu

mu

lati

ve i

nte

ns

ity w

eih

gte

d

dis

trib

uti

on

[%

]

0

20

40

60

80

100

Iolitec

Nanocyl

Polytech&Net

0

Dispersed brands of MCNT

Soft silica shell magnetic core NPParticle recharging by PEIStable-flocculation-stable

Note: Large dynamic rangefrom 10 nm to 50 µm (LUMiSizer)

.

Size distribution of very polydisperse samples by LUMiSizer NIR

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Klebosol 1508-35 150H50 1630/26

1 “batch” /

6 repetitions

49 nm 0.05 nm

= 0.1 %

84 nm 0.27 nm

= 0.3 %

102 nm 0.42 nm

= 0.4 %

6 “batches”49 nm 0.54 nm

= 1.1 %

84 nm 0.33 nm

= 0.4 %

103 nm 0.63 nm

= 0.6 %

Median x50,0 of different colloidal silica suspensions

LUMiSizer - Measurement Repetition

T. Detloff, D. Lerche: Evaluation of particle size analysis by novel centrifugal sedimentation method, Proceedings

and poster Partec 2007 International Congress on Particle Technology, Nuremberg, Germany, 27–29.3.2007

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Particle size x in µm

0.6 1.0 1.4 1.80.4 0.8 1.2 1.6 2.0

Cu

mu

lati

ve

vo

lum

e d

istr

iuti

on

Q3(x

) in

%

0

20

40

60

80

100

0 %

4.1 %

8.3 %

16.5 %

20.6 %

28.9 %

34

0,03 % m/m 1.1 µm polysterene in 0% - 30% m/m sucrose solutions, 4°C, 2000 rpm,Fluid density and viscosity according to Stokes taken into account

x50,3 = 1.081 µm

0.012 µm

1.07 %

Particles dispersed in different sucrose solutions

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Particle size distribution at high concentration

0

20

40

60

80

100

50 100 150 200 250 300

Particle size x [nm]

Cu

m.

vo

l.-w

eig

hte

d

pa

rtic

le s

ize

dis

trib

uti

on

Q3(x

) [%

]

9.9% 7.2% 5.2% 3.2% 2.2%

1.1% 0.7% 0.4% 0.2% SEM

0

20

40

60

80

100

50 100 150 200 250 300

Particle size x [nm]

Cu

m. vo

l.-w

eig

hte

d p

art

icle

siz

e

dis

trib

uti

on

Q3(x

) [%

]

Correction for onlymulitiple scattering

Silica 175 nm

Correction for mulitiplescattering and hindrance

Silica 175 nm

0

20

40

60

80

100

50 100 150 200 250 300

Particle size x [nm]

Cum

. vol.

-wei

gh

ted

par

ticl

e si

ze

dis

trib

uti

on

Q3(x

) [%

]

Detloff et al., Powder Technology 174,2007,50

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

LUM workshop 2016, Berlin

Concentration profile analysis by AUC approaches Direct boundary method (DBM)

Walter et al., Nanoscale, 7(17):6574-6587, 2015

measured by K. Obata, Y. Mori (Doshisha University, Kyoto, Japan)

polydisperse silica polydisperse silica, different grades

„S“ = 0.1-0.5µm „M“ = 0.15-0.6µm „L“= 0.2…1.2µm

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Investigation of Multimodal Distributions

Investigation of trimodal gold nanoparticle mixture with AC and dynamic

light scattering experiment (DLS)

Direct Boundary Model reduced noise and determines meniscus (start-line) more

accurate

Individual sizes nicely reproduced, superior resolution by AC combined with DBM

Walter et al., Nanoscale (2015)

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

1. Velocity Distribution Qv(v), qv(v)

Direct measurement no calibration / no material properties

Information directly related to separation processes

Sufficient for quality control

Qualitative information about particle size distribution (PSD)

2. Extinction Weighted Particle Size Distribution QInt(x), qInt(x)

Quantitative information about particle size

3. Volume Weighted Particle Size Distribution Q3(x), q3(x)

Quantitative information about particle size

and volume fraction of each class

Comparison with other measurement methods possible

Conversion into mass or number distribution

Particle Size Distributions obtained by LUMiSizer

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Material properties to be known for PSD

Extinction Weighted

Particle Size

Distribution

Volume Weighted

Particle Size

Distribution

Depends on

Particle Density -

Fluid Density Temperature

Fluid Dynamic Viscosity Temperature

-Particle Refractive

Index (complex)Light Wavelength

- Fluid Refractive IndexTemperature,

Light Wavelength

Note: Velocity Distribution, no Parameters required!

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Characterization of magnetic properties(responsiveness) of magnetic particles

1. Superposition of ambient/high gravity fields and magnetic fields

Magneticfields

Gravity fields

2. Determination of particle migration velocity distributionby STEP-Technology in dependence on magnetic fields/gradients

3. Result: Magnetophoretic mobility distribution and magneticresponsiveness of magnetic particles and assemblies.

O. Mykhaylova, D. Lerche et al., IEEE Magnetic Letters, 6 (2015), Open source

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

MP1 magnetic nanoparticle 20µgFe/ml,

500 µl, h=10 mm

Variable distance

between magnet sets

d

Z

Y

Magnetic Force

STEP-Mag: Measurement principleCustomized LUMiReader

Optical window 40 mmResolution < 30 µmDT = 0.1 s to hours3 Wavelengthes1000 ProfilesDifferent optical cells30 °C – 60 °COperation and quant-ification by SEPView

Magnetic fields and gradients in a measuring window: from 1÷200 mT and 0.5÷10 T/m)

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Unstable suspension, Settling of MP6 under gravity

0 200 400 600 800 1000

24.5 mm

34.4 mm

43.6 mm

53.4 mm

63.4 mm

73.4 mm

no MF

Choice of the conditions for registration of the clarification in applied magnetic fields (Sedimentation vs. Magnetophoresis)

84.1 mm between magnetsMesurment duration 15 min

No magnetsMesurment duration 15 min

Time (s)

Microparticles MP6, 20µgFe/ml

D470

nm

averaged through the profile and

norm

alized

Magnetophoresis Sedimentation

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Magnetic particles and nano-assemblies exhibitlarge range of magnetophoretic velocities

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

LUMiReader-Mag: In-situ visualization of MP-migration due to magnetic and/or gravity fields

-14 -12 -10 -8 -6 -4 -2 0 2 40.0

0.1

0.2

0.3

0.4

B [T

]

X [mm]

-14 -12 -10 -8 -6 -4 -2 0 2 4

-60

-40

-20

0

1st

de

riva

tive

of

"B"

[T/m

]

X [mm]

NeoDeltaMagnet® (NdFeB),

IBSMagnets NE155;

Magnet disc:

D=15,0 mm, h=5,0 mm

height probe

over Averaged

T/m 19.4dB/dx

T 0.1B

<

<

2 magnet discs at bottom

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

v (µm/s)

Inte

gra

l e

xtin

ctio

n

Inte

gra

l e

xtin

ctio

n

Time (s)Time (s)

No magnetic field Magnetic field: 0.104 T, 19.4 T/m

Determination of magnetophoretic mobility distribution

MP 11, (Monodisperse)No dependenceon wavelength

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

410 n

m630 n

m870 n

m

0 20 40 60 80 100-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No

rma

lize

d I

nte

gra

l E

xtin

ctio

n

Time (s)

l = 410 nm

l = 630 nm

l = 870 nm

height sample

over Averaged

T/m5.33dB/dx

T16.0B

<

<

Magnetophoretic mobility analysedat different wavelengthes

MP 1, Polydisperse,Blue light datafocus more onsmall particles

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Self-assembling of MNP with viral complexes:

SO-Mag6-12 withAdenoviral (Ad)and VSV-particles

Magnetophoretic velocity of SO-Mag-NP viral complexesdoes not depend on viral objects

84 µgFe/ml, B = 0.421 T, 33 min

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

1. „Zero interpolation separation velocity” (Archimedian) approach (ISO/WD 18747-1):

Density determination by „keeping particles in suspense“, then density of the particle equals density of the fluid

Hydrodynamic density determinationof nano- @ microparticles dispersed in a liquid

49

Following slides see also: Woehlecke et al., Dispersion Letters 3 (2012) 12-15

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

52

liquid density rL in kg/m³

pa

rti

cle

ve

locit

y y

× v

isc

os

ity h

in µ

m/s

× m

Pa·s

1050 1100 1150 1200 1250 1000

200

150

100

50

0

-50

-100

-150

sedimentation creaming

droplet density Interpolation y = 0

rP = 1139,6 kg/m³

Birch oil droplets. LUMiSizer, 25 °C, 2 mm glass cells, Sucrose solutions

Determination of oil droplet density byzero velocity interpolation approach

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Sodium polytungstate concentration in % m/m

0 20 40 60 80

Den

sit

y r

in k

g/

1000

1500

2000

2500

3000 Vis

co

sity

hin

mP

a s

0

10

20

30

40

50

60

DensityViscosity

TC-Tungsten Compounds, Germany

25°C

Density, Viscosity of sodium polytungstate solution

53

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

54

liquid density rL in kg/m³

parti

cle

velo

cit

y y

× v

isco

sit

y h

in µ

m/s

× m

Pa·s

1100 1150 1250 1300 1350 1050

100

80

40

20

0

-40

-60

-80

60

-100

-20

1200

rP = 1202 kg/m³

Continuous phase polytungstate solutionLUMiReader PSA, T = 30 °C, 10 mm PC cells

Determination of PMMA particle density byzero velocity interpolation approach

Density doesnot dependon particle sizeand shape (not

shown)

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

1. „Zero interpolation separation velocity” (Archimedian) approach (ISO/WD 18747-1):

Density determination by „keeping particles in suspense“, then density of the particle equals density of the fluid

2. „Two separation velocity” approach (ISO/WD 18747-2) :

Density determination by measuring separation velocities of dispersed particles in two continuous phases with different density

Hydrodynamic density determinationof nano- @ microparticles dispersed in a liquid

55

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Starting point: Stokes Law

Methodical approach: Determination of Stokes velocity of same particles in two different continuous phases*

Monodisperse particles

* First application Mc Cromeck, later Mächtle, 1984

2211

1,F222,F11

Pvv

vv

hh

rhrhr

( )r

18

xv

1

22

1,FP

1 h

wrr

( )r

18

xv

2

22

2,FP

2 h

wrr

2. Principle: „multi- separation velocity“ approach

56

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

2211

1,F222,F11

Pvv

vv

hh

rhrhr

Mean value: r= 1053 kg/m³

s.d. = 0.4 %

0.03 % m/m 1.1 µm Polystyrene in:0%, 4.1%, 8.3%, 16.5%, 20.6% and 28.9 % Sucrose solution, LUMiFuge RCA, 11.5 °C

Density calculated based on any pairs of sedimentation velocities (vi, vj)

r = 1055 kg/m³ (supplier data)

Dr12 Dr13 Dr14 Dr23 Dr2

4

Dr34Dr15 Dr25 Dr35

Density

2. Principle: „multi-separaton velocity“ approach

57

980

1000

1020

1040

1060

1080

1100

Density difference Dr

Parti

cle

den

sit

y

rP

in k

g/

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Creaming velocity v in µm/s0,1 1 10 100C

um

. in

tensity d

istr

ibution Q

(v)

in %

0

20

40

60

80

100

Creaming of loaded beverage droplets dispersed in H2O and D2OLUMiSizer data, Velocity distribution, 4000 rpm, 7°C

H2O(r = 997 kg/m³)

D2O(r = 1100 kg/m³)

2. Principle: „Multi-separation velocity“ approach

58

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

940

945

950

955

960

0 20 40 60 80 100

Quantile velocity distribution Q(v) in %

Parti

cle

den

sit

y r

Pin

kg

/m

³

))v(Q(v))v(Q(v

))v(Q(v))v(Q(v

21

1,F22,F1

P

rrr

59

Large droplets,less dense

Small droplets,more dense

2. Principle: „two separation velocity“ approach

Density distribution of loaded droplets calculated based on creaming velocity distribution in H2O and D2O

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

60

in concentrated sodium polytungstate solution

72 %

55 %

„zero velocity extrapolation” „two velocity“

Ludox 50 nm 2012 kg/m³ 1950 kg/m³

Koestrosol 15 – 20 nm 2037 kg/m³ 2026 kg/m³

H2O

D2O

in H2O and D2O

60

*results were obtained in cooperation with the Institute for Reference Materials and Measurements (IRMM)

which is part of the Joint Research Centre (JRC) of the European Commission (EC).

Density determination of nanoparticles: different colloidal silica

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

61

Characterization of particle surface properties

a) Electrostatic properties

DLOV-Theory

El.- Interaction

VW- Interaction

Total

Source: Wikimedia Common

Repulsion

Attraction

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

63

Electrostatic surface structure of„electrokinetic soft particles“ are not

assessible by Zeta

Contradictions to Smoluchowski:

1. 3D distribution of charges (radial, circumferential), volume charge

density [As/m³]

2. 3D-surface structure comparable to Debye-Hueckel length

3. Ion penetrable surface layer of e.g. polyelectrolytes

By Oshima

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

25 kD branched polyethylene imine

SO-Mag5 SO-Mag6-n

n=PEI-to-iron

w/w ratio (%)

Decoration of plain SO-Mag5 with branched 25 kDpolyethylene imine (PEI) to recharge surface

TEM AFM

Adenovirus-MNP-Assemblies

200 nm

MS = 94 emu/g iron; PO4 sites 8.4/nm²Zeta = -34 +/- 2mV

Primary CS-MNP Final Viral-MNP-Complex

Pharm Res. Mykhaylyk et al.,

DOI 10.1007/s11095-011-0661-9

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

0 5 10 15

-50

-25

0

25

50

Ele

ctr

okim

etic

pote

ntial [m

V]

0 2 4 6 8 10 12

10

100

1000

10000 Intensity PSD

NumberPSD

Hyd

rod

yn

am

ic d

iam

ete

r [n

m]

n= 0 1 1.5 2 4 6 8 10 12

In water

„Stability“ characterization by naked eye, electrokinetic potential, and particle size (DSL)

PEI-to-Iron w/w ratio n [%]

Nanosizer data

Conclusion: Ratio 4 – 5 is o.k. but clinical evaluation did not proof!

Decoration of plain SO-Mag5 with branched 25 kD

polyethylene imine (PEI) to recharge surface

Pharm Res. Mykhaylyk et al.,

DOI 10.1007/s11095-011-0661-9

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Transm

ission (%

)

Position (mm)

0 1 1.5

10

2 4

12

6

8

PEI-to-Iron w/w ratio n [%]

SO-Mag5, n=0

z −34 ± 2mV

+35 mV to +39 mV

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

68

0 2 4 6 8 10 12

1

2

4

8

16

32

64

128

256

Me

an

ma

gn

eto

ph

ore

tic

mo

bili

ty [

µm

/s]

PEI-to-Iron w/w ratio [%]

1 10 100 1000

0

20

40

60

80

100

120

PEI-to-Iron w/w ratio

0 12 1 1.5

2 4 6 8 10

Cu

mu

lative

dis

trib

utio

n f

un

ctio

n [

%]

Magnetophoretic mobility [µm/s]

10 100 1000 10000

0

20

40

60

80

100

PEI-to-iron w/w ratio (%): 0 4 6 8 10 12

Vo

lum

e w

eig

hte

d

cu

mu

lative

siz

e d

istr

ibu

tio

n Q

3 [%

]

Hydrodynamic diameter [nm]

SO-Mag5 SO-Mag6-6 SO-Mag6-12

Stabilization of recharged SO-Mag for Magnetoinfection needhigher PEI decoration than predicted by Zetapotential

Behavior of concentrated (original) MNP dispersion

Particel analysis of diluted MNP dispersion

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

69

Good Affinity = Particles easy to disperse and stay dispersed

Bad Affinity = Particles difficult to disperse, state unstable

Prediction: 1. Measure the dispersibility of nano particles in different solvents with known HSP.

2. Calculate HSP (HDP) for particles.

Characterization of solubility (1936)

Hansen:

Dispersion forces (dD),

Polar interactions (dP),

Hydrogen bonding (dH).

Characterization of particle surface propertiesb) Hansen Solubilty Parameters (HSPs)

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

72

General SOP: 3. Calculate sedimentation time (ST)

based on Integral Extinction

Sedimentation time

E0 = extinction ofpure liquid

ST = time toreachE0 + 0.15

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

73

𝑅𝑆𝑇 =𝑡s 𝜌m − 𝜌s

𝜂

Absolute sedimentation timesof particles dispersed indifferent continuous phases

General SOP: 4. Relative sedimen-

tation times RSTto eliminatedensity andviscosity effects

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH74

Score 0, 1

HSP-value: Finn Talc 15

δd =12.1 MPa0.5; δP =17.7 MPa0.5

δh =3.9 MPa0.5; R0 =9.1 MPa0.5

by HSPiP-software, Abbott

Lerche et al., Dispersion Letters (2015)

𝑅𝑆𝑇norm =

𝑅𝑆𝑇

𝑅𝑆𝑇max

Normalization of RST

General SOP: 5. Score RST to 0, 1

6. Calculate HSP

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

77

Particle sedimentation or creamingSeparation velocity distributionParticle size distributionParticle density (distribution)Particle magnetizationSurface characterization of particles

Summary: Particle Characterizationby Analytical Centrifugation

with STEP-Technology

The Next STEP® in Dispersion Analysis & Materials Testing www.lum-gmbh.com www.dispersion-letters.com

© 2015 LUM GmbH

Thank you so much for spending your time with us !!!

More Information: See exhibition by Adaptive Instruments (Colin Jenkins).

[email protected]

www.LUM-GmbH.com, www.adaptive-instruments.com

www.Dispersion-Letters.com