comprehendingsoilprocess: connec3ng,field,descrip3on ......comprehendingsoilprocess:...

1
Comprehending Soil Process: Connec3ng Field Descrip3on with Quan3ta3ve Process Understanding Stephanie A. Ewing Montana State University Deptartment of Land Resources & Environmental Sciences [email protected] !! !! !! !! ! ! ! ! !! ! ! ! ! ! !! ! ! ! ! " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " Peas A_5 Spring Urea A_4 Split App A_3 Spring Urea A_2 ESN A_1 A4E.04 A5W.04 A4E.07 A5W.07 A5W.10 A4E.10 A5.Wet A5N.02 A4S.02 A3E.10 A4W.10 A2W.01 A1E.01 A1E.04 A2W.04 A1E.07 A2W.07 A2W.09 A1E.09 A4W.01 A3E.01 A4W.04 A3E.04 A4W.07 A3E.07 Site A Soil Sampling " Core Locations ! Pit Locations Management Boundaries ¯ Map by: Adam Sigler Data from: NAIP 2011, Mehrens & Sigler GPS & Survey 0 390 780 195 Meters atmospheric N dissolved losses ON deposiAon fixaAon denitrificaAon volaAlizaAon groundwater PLANTSOIL SYSTEM How does cul7va7on of semiarid grasslands influence N dynamics? NATIVE 1.3 ± 0.2 kg TN m 3 limited NO 3 N in subsoil Water efficient na7ve grasses NO 3 NH 4 + na3ve grasses About the class: Landscape Pedology This upper division undergraduate class of about 40 students focuses on quan;fying processes of soil development, taking advantage of local examples through field trips requiring handson evalua;on of local soils and short, interpre;ve writeups. There are two problem sets for prac;ce in quan;fying soils mass fluxes (carbon, silicon, nitrogen). Students learn fundamentals of soil descrip;on, soil taxonomy and landform assessment; and develop skills in wriHen interpreta;on of soil processes in landscape context based on observa;on of a few soil profiles during each lab. Student learning goals: 1. Describe and interpret soils in terms of key processes; 2. Quan;fy mass fluxes within and through soils; 3. Understand Montana soils in global context and in terms of local land use/management. atmospheric N dissolved losses ON deposiAon fixaAon denitrificaAon volaAlizaAon groundwater NO 3 NH 4 + cereal crops CULTIVATED 0.1 kg TN m 3 (1000 kg ha 1 ) +0.2 kg NO 3 N m 2 in subsoil Water inefficient row crops, fallow ferAlizaAon harvest culAvaAon 1. In a central Montana grassland, 1000 kg N ha 1 is mobilized to the subsoil as nitrate with cul;va;on (Custer 1975); 2. Temperate steppe soils lost 2040% of their organic maHer upon cul;va;on, mostly in first couple of years (Davidson & Ackerman 1993); 3. Recovery of organic maHer is N limited (Amundson 2001). Three clues from the literature The assignment: short writeup based on profile descrip3ons; measured nitrate and water content TABLE 1: ANALYTICAL DATA JRW.A2W.01.20 1207.P JRW.A2W.01.20 1207.P JRW.A2W.01.20 1207.P JRW.A1E.09.201 207.P JRW.A1E.09.201 207.P JRW.A1E.09.201 207.P upper depth, cm lower depth, cm nitrate N, ppm wet BD, g cm-3 dry BD, g cm-3 nitrate N, ppm wet BD, g cm-3 dry BD, g cm-3 0 15 5.79 1.589 1.347 6.995 1.646 1.363 15 30 1.84 1.818 1.532 2.880 1.831 1.480 30 45 2.37 1.694 1.404 2.668 1.769 1.484 45 60 2.83 2.674 2.447 3.518 1.959 1.687 60 75 1.81 1.358 1.294 4.930 1.962 1.706 75 90 1.06 1.861 1.810 4.813 2.118 1.856 90 105 1.40 1.959 1.884 4.760 2.504 2.324 JUDITH BASIN PROJECT - FIELD SHEET FOR RECORDING SOIL CHARACTERISTICS Location: Date 7/24/12 soil map unit Danvers-Judith complex Landform Stanford strath geo map unit Qab Subgroup classification upper depth, cm lower depth, cm horizon color value color chroma est % coarse structure: grade, size, type CO3 efferv roots: qty, size 0 12 Ap 2 2 2 2msbk,2fsbk N mf, mvf 12 32 AB k 4 2 2 2csbk S mvf 32 64 B tk 6 3 10 2cabk,2fsbk V mvf 64 102 B k 5 3 70 sgr V n 102 136 CB k 4 4 90 sgr M n depth, cm depth, in depth, cm depth, in top CO3 detect 5 gravel 26 top CO3 strong 5 54 ox WT 102 41 roots 64 26 moisture increase 41 DOH 54 upper depth, cm lower depth, cm total mass rank sample quality (1-3) density (g cm) density (g cm) sample # tare, kg 1.16 000 015 3.56 1 1.60 1.44 P015 vol, cm015 030 3.88 2 1.81 1.63 P030 moisture, % 030 045 3.72 1 1.71 1.54 P045 045 060 5.19 3 2.69 2.42 P060 060 075 3.23 3 1.38 1.24 P075 075 090 3.99 3 1.89 1.70 P090 090 105 4.13 3 1.98 1.78 P105 105 120 -0.77 -0.70 P120 120 135 -0.77 -0.70 P135 135 150 -0.77 -0.70 P150 Montana State University – Ewing laboratory JRW.A2W.01.201207.P notes weak clay films weak clay films, variegated with 10YR 4/4 films strongly cemented with CO3 in upper part lenses of clean small gravel JRW.A2W.01.201207.P one sizeable rock in sample awkward rock in sample clay/gravel interphase JUDITH BASIN PROJECT - FIELD SHEET FOR RECORDING SOIL CHARACTERISTICS Location: Date 7/24/16 soil map unit Danvers-Judith complex Landform geo map unit Subgroup classification upper depth, cm lower depth, cm horizon color value color chroma est % coarse structure: grade, size, type CO3 efferv roots: qty, size 0 16 Ap 2 2 2 2msbk,2mgr n mvf 16 46 Btk1 5 3 10 2cabk, almost prismatic s mvf 46 83 Btk2 5 4 10 2cabk v fvf 83 108 Btk3 5 6 25 2mabk s n 108 130 CB k 4 4 80 sgr s n depth, cm depth, in depth, cm depth, in top CO3 detect 16 6 gravel 108 43 top CO3 strong 6 50 ox WT 33 roots 33 moisture increase 33 DOH 52 upper depth, lower rank sample density (g ) density (g ) tare, kg 000 015 3.61 1 1.63 1.47 P015 vol, cm1500 015 030 3.90 1 1.83 1.64 P030 moisture, % 0.1 030 045 3.82 1 1.77 1.60 P045 initials 045 060 4.08 1 1.95 1.75 P060 060 075 4.08 2 1.95 1.75 P075 075 090 4.29 2 2.09 1.88 P090 090 105 4.90 3 2.49 2.24 P105 105 120 P120 120 135 P135 135 150 P150 Montana State University – Ewing laboratory JRW.A1E.09.201207.P notes plow boundary at ~10 cm variegated, ox roots, blobs of dary 10YR 4/s ~20% big streaks of dark 10YR4/2 to 10YR 3/2 10%; CO3 rinds on clasts big streaks of dark 10YR4/2 to 10YR 3/2 10%; CO3 rinds on clasts; clay pockets sand matrix corresponding to WT JRW.A1E.09.201207.P stormy weather smashes shades! rock issue 1. Determine total nitrate (kg m 2 ) in each depth increment and in each profile, accoun;ng for es;mated gravel content (show sample calcs); 2. Plot nitrate pools with depth and compare totals; 3. Determine height of water in each depth increment and in each profile; plot water heights with depth (show calcs); 4. Interpret depth trends and total pools of nitrate and water in light of soil development (in discussion sec;on). About the ac3vity: Judith River Watershed virtual lab The effects of cul;va;on and agricultural management prac;ces have transformed the soil proper;es we observe and describe. This exercise asks students to quan;ta;vely assess soil processes related to N leaching with agricultural management prac;ce. They interpret soil descrip;ons in light of measured data from a USDA funded research project related to agricultural prac;ces and elevated nitrate in groundwater. The exercise is intended to build the following skills: 1. Discern how cul;va;on (or other disturbance) changes the way soils look; 2. Quan;fy the effects of soil process using analy;cal data from soil profiles; 3. Write succinctly to relate observed soil proper;es with inferred soil process (nitrate leaching). Results !"#$% '() *$+,*#- '.) /0% $"1* *0%+203 '*)4 Hw,h = "wet # "dry [ ] "water,298K [ ] dh [ 53+#- "--$--6$3#4 cm_ waterh = g_ wetsoil cm 3 soil " g_ drysoil cm 3 soil # $ % & ' ( 1.0 _cm 3 water g_ water # $ % & ' ( 15 _cm [ 786 #*$-$ #0 9$#$%6+3$ #0#": ("#$% +3 #*$ ;%0/+:$ '16) Hw,total = Hw,h h=1 n " (*$%$ 3 +- #*$ 386<$% 0/ *0%+203-= >+#%"#$ '>) ;00:- +3 $"1* *0%+2034 Npool,h = Nconc "dry # f coarse "rocks ( ) [ ]d53+#- "--$--6$3#4 kg_ N ha = mg_ N kg_ soil " # $ % & ' g_ dry _ soil cm 3 _ soil " # $ % & ' ( cm 3 _ rocks cm 3 _ soil " # $ % & ' 2.65 _ g_ rocks cm 3 _ rocks " # $ % & ' ) * + , - . " # $ $ % & ' ' 15_cm [ ] kg 1000 _ g " # $ % & ' 10 6 _cm 3 m 3 " # $ % & ' m 100 _cm " # $ % & ' 10 4 m 2 ha " # $ % & ' kg 10 6 _ mg " # $ % & ?/ #*$-$ "%$ 3$,"#+@$A +# +- 60-# :+B$:C 98$ #0 'D) %$:"#+@$ 831$%#"+3#C +3 $-#+6"#$- 0/ E 10"%-$ 'FDGHIGE)A "39 'I) %$:"#+@$ 831$%#"+3#C +3 <8:B 9$3-+#C 98$ #0 ,%"@$: 'FIGE +3 :0($% *0%+203-)= 786 #*$-$ #0 9$#$%6+3$ #0#": 3+#%"#$ +3 #*$ ;%0/+:$ 'B,J*")4 Npool,total = Npool,h h=1 n " 1. Nitrate and water covary in the lower but not upper soil depths. 2. Peak nitrate occurs at the surface and above the gravel contact. 3. Given iden;cal N inputs in this study, the lower inventory with shallower gravel contact could indicate nitrate leaching (and there are other possibili;es). Two observa3ons and an interpreta3on Outcomes 1. Struggle with algebra and units pays off in many cases but is frustra;ng for some. 2. Discerning observa;on from interpreta;on – tricky to assess. 3. Rela;ng the interpreta;on and discussion to the ques;on posed – rarely accomplished in wriHen reports. Lab Report Rubric (30 pts total) NAME___________________ Landscape Pedology, ENSC 454 Fall 2012 LAB ATTENDANCE AND FIELD NOTES INTRODUCTION _______/3 General statement about larger context of lab (one sentence) Specific statement of lab objective – main point of looking at this sequence of soils (one sentence) METHODS _______/4 Site description – landform context (refer to map with locations marked & site sketch) MAP/MAT (with reference) Vegetation – summarize as part of site description; reflecting moisture conditions, etc. Geological map unit (refer to map) Soil map unit(s) (refer to WSS map) and specify series or complex is mapped Summarize soil character expected based on taxonomy of mapped series Summarize specifics from official series description or specific soil survey report Main method is soil description (cite NRCS field guide) RESULTS _______/5 (a) State main trends observed (refer to description sheets), (1) with soil depth, (2) across soils. For example and if relevant, describe trends in texture, structure, color, pH, clay accumulation/clay films, carbonate accumulation, redox features. (b) State taxonomic classifications to the subgroup level,in the context of observed soil properties and trends. These should be based on your observations, not reiterated from Web Soil Survey! DISCUSSION _______/5 Interpret your observations in light of the objective of the exercise as stated in the introduction. Consider things like parent material age vs. likely soil age or residence time, relative age relationships, parent material issues like texture & mineralogy, hydrologic context, plant community role in soil development, land management effects on observed soil properties, interpreted deposition of loess or colluvium. CONCLUSIONS _______/3 Sentence distilling results into a specific take-home conclusion. What did you learn? REFERENCES _______/1 Provide complete citations to all references, including NRCS field guide, MBMG maps/reports, Munsell color book, Web soil survey, soils text(s) ATTACHMENTS (*text must refer to all attachments) _______/4 Maps illustrating location, soil survey map units and geologic map units Soil photos Official Series Descriptions Completed soil description sheets – class and individual Illustrative cartoon(s) OTHER _______/2 Length (two pages double spaced) Tone (professional, active tense, efficient and direct) Writing quality Creative insight TOTAL _______/30 ! #! $! %! &! '!! '#! ! $ & '# '% +,$-.$"/0 '12 %. /3 * ! #! $! %! &! '!! '#! !(! '(! #(! )(! $(! *(! %(! !"#$% '()* +,$"- '()* +,-(.#-(!'(#!'#!/(0 +,-(.'1(!2(#!'#!/(0 gravel contact gravel contact References Amundson, R. (2001) The carbon budget in soils. Annu. Rev. Earth Planet. Sci. 29:535–562. Custer, S. G. (1975) Nitrate in Ground Water A Search for Sources near Rapelje, Montana. Northwest Geology 25–33. Davidson, E. A. & Ackerman, I. L. (1993) Changes in soil carbon inventories following cul;va;on of previously un;lled soils. Biogeochem. 20, 161193. Soil process at the watershed scale Soil locaAons on field A Soil locaAons A2W.01 (leJ) and A1E.09 (right). Instruc7ons for data development Rubric for the writeup Calcula7ons – a computa7onal challenge Profile descrip7ons Excel plots – also challenging Real data! deep gravel shallow gravel Background in lecture:

Upload: others

Post on 10-Jan-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ComprehendingSoilProcess: Connec3ng,Field,Descrip3on ......ComprehendingSoilProcess: Connec3ng,Field,Descrip3on,, with,Quan3ta3ve,Process,Understanding, StephanieA.Ewing Montana)State)University)Deptartment)of)Land)Resources)&)Environmental)Sciences))

Comprehending  Soil  Process:    Connec3ng  Field  Descrip3on    

with  Quan3ta3ve  Process  Understanding  Stephanie  A.  Ewing  

Montana  State  University  Deptartment  of  Land  Resources  &  Environmental  Sciences    [email protected]  

! !

!!

! !

! !

!!

!!

!!

!!

!!

!

!!

!!

!!

"

"

"

"

"

"

"

"

"

" "

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

""

PeasA_5

Spring UreaA_4

Split AppA_3

Spring UreaA_2

ESNA_1

A4E.04 A5W.04

A4E.07 A5W.07

A5W.10A4E.10

A5.WetA5N.02

A4S.02

A3E.10 A4W.10

A2W.01A1E.01

A1E.04 A2W.04

A1E.07 A2W.07

A2W.09A1E.09

A4W.01A3E.01

A4W.04A3E.04

A4W.07A3E.07

Site ASoil Sampling

" Core Locations

! Pit Locations

Management Boundaries ¯

Map by: Adam SiglerData from: NAIP 2011, Mehrens & Sigler GPS & Survey

0 390 780195Meters

atmospheric  N  

dissolved    losses  

ON  

deposiAon  fixaAon  

denitrificaAon  volaAlizaAon  

groundwater  

PLANT-­‐SOIL    SYSTEM  

How  does  cul7va7on  of  semi-­‐arid  grasslands  influence  N  dynamics?  

NATIVE  1.3  ±  0.2  kg  TN  m-­‐3  

limited  NO3-­‐N  in  subsoil  Water  efficient  na7ve  grasses  

NO3-­‐   NH4+  

na3ve  grasses  

About  the  class:  Landscape  Pedology  This  upper  division  undergraduate  class  of  about  40  students  focuses  on  quan;fying  processes  of  soil  development,  taking  advantage  of  local  examples  through  field  trips  requiring  hands-­‐on  evalua;on  of  local  soils  and  short,  interpre;ve  write-­‐ups.  There  are  two  problem  sets  for  prac;ce  in  quan;fying  soils  mass  fluxes  (carbon,  silicon,  nitrogen).  Students  learn  fundamentals  of  soil  descrip;on,  soil  taxonomy  and  landform  assessment;  and  develop  skills  in  wriHen  interpreta;on  of  soil  processes  in  landscape  context  based  on  observa;on  of  a  few  soil  profiles  during  each  lab.  Student  learning  goals:  

1.  Describe  and  interpret  soils  in  terms  of  key  processes;  2.  Quan;fy  mass  fluxes  within  and  through  soils;  3.  Understand  Montana  soils  in  global  context  and  in  terms  of  local  land  use/management.    

atmospheric  N  

dissolved    losses  

ON  

deposiAon  fixaAon  

denitrificaAon  volaAlizaAon  

groundwater  

NO3-­‐   NH4+  

cereal  crops  

CULTIVATED  -­‐0.1  kg  TN  m-­‐3  (1000  kg  ha-­‐1)  +0.2  kg  NO3-­‐N  m-­‐2  in  subsoil  

Water  inefficient  row  crops,  fallow  

ferAlizaAon  harvest  

culAvaAon  

1.  In  a  central  Montana  grassland,  1000  kg  N  ha-­‐1  is  mobilized  to  the  subsoil  as  nitrate  with  cul;va;on  (Custer  1975);  

2.  Temperate  steppe  soils  lost  20-­‐40%  of  their  organic  maHer  upon  cul;va;on,  mostly  in  first  couple  of  years  (Davidson  &  Ackerman  1993);  

3.  Recovery  of  organic  maHer  is  N  limited  (Amundson  2001).  

Three  clues  from  the  literature  

The  assignment:  short  write-­‐up  based  on  profile  descrip3ons;  measured  nitrate  and  water  content  

TABLE 1: ANALYTICAL DATA

JRW.A2W.01.201207.P

JRW.A2W.01.201207.P

JRW.A2W.01.201207.P

JRW.A1E.09.201207.P

JRW.A1E.09.201207.P

JRW.A1E.09.201207.P

upper depth, cm lower depth, cm nitrate N, ppm wet BD, g cm-3 dry BD, g cm-3 nitrate N, ppm wet BD, g cm-3 dry BD, g cm-30 15 5.79 1.589 1.347 6.995 1.646 1.36315 30 1.84 1.818 1.532 2.880 1.831 1.48030 45 2.37 1.694 1.404 2.668 1.769 1.48445 60 2.83 2.674 2.447 3.518 1.959 1.68760 75 1.81 1.358 1.294 4.930 1.962 1.70675 90 1.06 1.861 1.810 4.813 2.118 1.85690 105 1.40 1.959 1.884 4.760 2.504 2.324

JUDITH BASIN PROJECT - FIELD SHEET FOR RECORDING SOIL CHARACTERISTICSLocation:

Date 7/24/12 soil map unit Danvers-Judith complex

Landform Stanford strath geo map unit Qab Subgroup classification

upper depth, cm

lower depth, cm horizon color value color chroma

est % coarse structure: grade, size, type

CO3 efferv

roots: qty, size

0 12 Ap 2 2 2 2msbk,2fsbk N mf, mvf

12 32 AB k 4 2 2 2csbk S mvf

32 64 B tk 6 3 10 2cabk,2fsbk V mvf

64 102 B k 5 3 70 sgr V n

102 136 CB k 4 4 90 sgr M n

depth, cm depth, in depth, cm depth, in

top CO3 detect 12 5 gravel 64 26

top CO3 strong 12 5 WT 134 54

ox WT 102 41 roots 64 26

moisture increase 102 41 DOH 136 54

SAMPLES COLLECTED

upper depth, cm

lower depth, cm total mass

rank sample quality (1-3)

wet bulk density (g

cm-3)

est dry bulk density (g

cm-3) sample # tare, kg 1.16

000 015 3.56 1 1.60 1.44 P015vol, cm3 1500

015 030 3.88 2 1.81 1.63 P030moisture, % 0.1

030 045 3.72 1 1.71 1.54 P045

045 060 5.19 3 2.69 2.42 P060

060 075 3.23 3 1.38 1.24 P075

075 090 3.99 3 1.89 1.70 P090

090 105 4.13 3 1.98 1.78 P105

105 120 -0.77 -0.70 P120

120 135 -0.77 -0.70 P135

135 150 -0.77 -0.70 P150

notes

Montana State University – Ewing laboratory

JRW.A2W.01.201207.P

notes

weak clay films

weak clay films, variegated with 10YR 4/4 films

strongly cemented with CO3 in upper part

lenses of clean small gravel

JRW.A2W.01.201207.P

one sizeable rock in sample

awkward rock in sample

clay/gravel interphase

JUDITH BASIN PROJECT - FIELD SHEET FOR RECORDING SOIL CHARACTERISTICSLocation:

Date 7/24/16 soil map unit Danvers-Judith complex

Landform Stanford strath geo map unit Qab Subgroup classification

upper depth, cm

lower depth, cm horizon color value

color chroma

est % coarse structure: grade, size, type

CO3 efferv

roots: qty, size

0 16 Ap 2 2 2 2msbk,2mgr n mvf

16 46 Btk1 5 3 10 2cabk, almost prismatic s mvf

46 83 Btk2 5 4 10 2cabk v fvf

83 108 Btk3 5 6 25 2mabk s n

108 130 CB k 4 4 80 sgr s n

depth, cm depth, in depth, cm depth, intop CO3 detect 16 6 gravel 108 43top CO3 strong 16 6 WT 126 50

ox WT 83 33 roots 83 33moisture increase 83 33 DOH 130 52

SAMPLES COLLECTED

upper depth, cm

lower depth, cm total mass

rank sample quality (1-3)

wet bulk density (g

cm-3)

est dry bulk density (g

cm-3) sample # tare, kg 1.16

000 015 3.61 1 1.63 1.47 P015vol, cm3 1500

015 030 3.90 1 1.83 1.64 P030moisture, % 0.1

030 045 3.82 1 1.77 1.60 P045initials KM, SE

045 060 4.08 1 1.95 1.75 P060

060 075 4.08 2 1.95 1.75 P075

075 090 4.29 2 2.09 1.88 P090

090 105 4.90 3 2.49 2.24 P105

105 120 P120

120 135 P135

135 150 P150

notes

Montana State University – Ewing laboratory

JRW.A1E.09.201207.P

notes

plow boundary at ~10 cm

variegated, ox roots, blobs of dary 10YR 4/s ~20%

big streaks of dark 10YR4/2 to 10YR 3/2 10%; CO3 rinds on clasts

big streaks of dark 10YR4/2 to 10YR 3/2 10%; CO3 rinds on clasts; clay pockets

sand matrix corresponding to WT

JRW.A1E.09.201207.P

rocks

stormy weather smashes shades!

rock issue

1.  Determine  total  nitrate  (kg  m-­‐2)  in  each  depth  increment  and  in  each  profile,  accoun;ng  for  es;mated  gravel  content  (show  sample  calcs);    2.  Plot  nitrate  pools  with  depth  and  compare  totals;  3.  Determine  height  of  water  in  each  depth  increment  and  in  each  profile;  plot  water  heights  with  depth  (show  calcs);  4.  Interpret  depth  trends  and  total  pools  of  nitrate  and  water  in  light  of  soil  development  (in  discussion  sec;on).  

About  the  ac3vity:  Judith  River  Watershed  virtual  lab  The  effects  of  cul;va;on  and  agricultural  management  prac;ces  have  transformed  the  soil  proper;es  we  observe  and  describe.    This  exercise  asks  students  to  quan;ta;vely  assess  soil  processes  related  to  N  leaching  with  agricultural  management  prac;ce.    They  interpret  soil  descrip;ons  in  light  of  measured  data  from  a  USDA  funded  research  project  related  to  agricultural  prac;ces  and  elevated  nitrate  in  groundwater.  The  exercise  is  intended  to  build  the  following  skills:    

1.  Discern  how  cul;va;on  (or  other  disturbance)  changes  the  way  soils  look;  2.  Quan;fy  the  effects  of  soil  process  using  analy;cal  data  from  soil  profiles;    3.  Write  succinctly  to  relate  observed  soil  proper;es  with  inferred  soil  process  (nitrate  leaching).  

Results  !"#$%&'()&*$+,*#-&'.)&/0%&$"1*&*0%+203&'*)4&

!

Hw,h = "wet # "dry[ ] "water,298K[ ] dh[ ]&&

53+#-&"--$--6$3#4&

!

cm_waterh =g_wetsoilcm3soil

"g_ drysoilcm3soil

#

$ % &

' ( 1.0_cm3waterg_water

#

$ %

&

' ( 15_cm[ ]&

&

786&#*$-$&#0&9$#$%6+3$&#0#":&("#$%&+3&#*$&;%0/+:$&'16)&

!

Hw,total = Hw,hh=1

n

" &

(*$%$&3&+-&#*$&386<$%&0/&*0%+203-=&

&

&

>+#%"#$&'>)&;00:-&+3&$"1*&*0%+2034&

!

Npool,h = Nconc "dry # fcoarse"rocks( )[ ]dh &&

53+#-&"--$--6$3#4&

!

kg_Nha

=mg_Nkg_ soil"

# $

%

& '

g_ dry _ soilcm3 _ soil

"

# $ %

& ' (

cm3 _ rockscm3 _ soil

"

# $

%

& ' 2.65_ g_ rockscm3 _ rocks

"

# $ %

& ' )

* +

,

- .

"

# $ $

%

& ' ' 15_cm[ ] kg

1000_ g"

# $

%

& ' 106 _cm3

m3

"

# $

%

& '

m100_cm"

# $

%

& ' 104m2

ha"

# $

%

& '

kg106 _mg"

# $

%

& '

&

?/&#*$-$&"%$&3$,"#+@$A&+#&+-&60-#&:+B$:C&98$&#0&'D)&%$:"#+@$&831$%#"+3#C&+3&$-#+6"#$-&0/&E&10"%-$&'FDGHIGE)A&"39&'I)&%$:"#+@$&831$%#"+3#C&

+3&<8:B&9$3-+#C&98$&#0&,%"@$:&'FIGE&+3&:0($%&*0%+203-)=&

&

786&#*$-$&#0&9$#$%6+3$&#0#":&3+#%"#$&+3&#*$&;%0/+:$&'B,J*")4&

!

Npool,total = Npool ,hh=1

n

" &

1.  Nitrate  and  water  co-­‐vary  in  the  lower  but  not  upper  soil  depths.  2.  Peak  nitrate  occurs  at  the  surface  and  above  the  gravel  contact.  3.  Given  iden;cal  N  inputs  in  this  study,  the  lower  inventory  with  

shallower  gravel  contact  could  indicate  nitrate  leaching  (and  there  are  other  possibili;es).  

Two  observa3ons  and  an  interpreta3on  

Outcomes  

1.  Struggle  with  algebra  and  units  pays  off  in  many  cases  but  is  frustra;ng  for  some.  

2.  Discerning  observa;on  from  interpreta;on  –  tricky  to  assess.  

3.  Rela;ng  the  interpreta;on  and  discussion  to  the  ques;on  posed  –  rarely  accomplished  in  wriHen  reports.  

Lab Report Rubric (30 pts total) NAME___________________ Landscape Pedology, ENSC 454 Fall 2012 LAB ATTENDANCE AND FIELD NOTES _______/3 INTRODUCTION _______/3 General statement about larger context of lab (one sentence) Specific statement of lab objective – main point of looking at this sequence of soils (one sentence) METHODS _______/4 Site description – landform context (refer to map with locations marked & site sketch) MAP/MAT (with reference) Vegetation – summarize as part of site description; reflecting moisture conditions, etc. Geological map unit (refer to map) Soil map unit(s) (refer to WSS map) and specify series or complex is mapped Summarize soil character expected based on taxonomy of mapped series Summarize specifics from official series description or specific soil survey report Main method is soil description (cite NRCS field guide) RESULTS _______/5 (a) State main trends observed (refer to description sheets), (1) with soil depth, (2) across soils. For example and if relevant, describe trends in texture, structure, color, pH, clay accumulation/clay films, carbonate accumulation, redox features. (b) State taxonomic classifications to the subgroup level,in the context of observed soil properties and trends. These should be based on your observations, not reiterated from Web Soil Survey! DISCUSSION _______/5 Interpret your observations in light of the objective of the exercise as stated in the introduction. Consider things like parent material age vs. likely soil age or residence time, relative age relationships, parent material issues like texture & mineralogy, hydrologic context, plant community role in soil development, land management effects on observed soil properties, interpreted deposition of loess or colluvium. CONCLUSIONS _______/3 Sentence distilling results into a specific take-home conclusion. What did you learn? REFERENCES _______/1 Provide complete citations to all references, including NRCS field guide, MBMG maps/reports, Munsell color book, Web soil survey, soils text(s) ATTACHMENTS (*text must refer to all attachments) _______/4 Maps illustrating location, soil survey map units and geologic map units Soil photos Official Series Descriptions Completed soil description sheets – class and individual Illustrative cartoon(s) OTHER _______/2 Length (two pages double spaced) Tone (professional, active tense, efficient and direct) Writing quality Creative insight TOTAL _______/30

62  kg  ha-­‐1  

28  kg  ha-­‐1  

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" $" &" '#" '%"

!"#

$%&'()*&

+,$-.$"/0&'12&%./3*&

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!(!" '(!" #(!" )(!" $(!" *(!" %(!"

!"#

$%&'()*&

+,$"-&'()*&

+,-(.#-(!'(#!'#!/(0"

+,-(.'1(!2(#!'#!/(0"gravel  contact  

gravel  contact  

References  

Amundson,  R.  (2001)  The  carbon  budget  in  soils.  Annu.  Rev.  Earth  Planet.  Sci.  29:535–562.  

Custer,  S.  G.  (1975)  Nitrate  in  Ground  Water  -­‐-­‐  A  Search  for  Sources  near  Rapelje,  Montana.  Northwest  Geology  25–33.  

Davidson,  E.  A.  &  Ackerman,  I.  L.  (1993)  Changes  in  soil  carbon  inventories  following  cul;va;on  of  previously  un;lled  soils.  Biogeochem.  20,  161-­‐193.  

Soil  process  at  the    watershed  scale  

Soil  locaAons  on  field  A  

Soil  locaAons  A2W.01  (leJ)  and  A1E.09  (right).  

Instruc7ons  for  data  development   Rubric  fo

r  the  write-­‐up  

Calcula7

ons  –  a  compu

ta7on

al  cha

lleng

e  

Profi

le  descrip7on

s  Excel  plots  –  also  challeng

ing  

Real  data!  

deep  gravel  

shallow  gravel  

Background  in  lecture: