compositional real-time scheduling frameworklee/05cis700/slides_pdf/lec08... · 2005. 10. 5. ·...

47
October 3, 2005 CIS 700 1 Compositional Real-Time Scheduling Framework Insik Shin

Upload: others

Post on 03-Feb-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

  • October 3, 2005 CIS 700 1

    Compositional Real-Time Scheduling Framework

    Insik Shin

  • October 3, 2005 CIS 700 2

    Outline• Compositional scheduling framework

    – Scheduling component model

    – Periodic resource model • Schedulability analysis• Utilization bound• Component timing abstraction

  • October 3, 2005 CIS 700 3

    Traditional Scheduling Framework• Single real-time task in a single application

    CPU

    OS Scheduler

    Task Task Task

    Application Application Application

  • Hierarchical Scheduling Framework (HFS)

    October 3, 2005 CIS 700 4

    • Multiple real-time tasks with a scheduler in a single application, forming a hierarchy of scheduling

    CPU

    OS Scheduler

    ApplicationScheduler

    Task Task

    ApplicationScheduler

    Task Task

    ApplicationScheduler

    Task Task

  • October 3, 2005 CIS 700 5

    Compositional Scheduling Framework

    CPU

    OS Scheduler

    Java Virtual Machine

    J1(50,3) J2(75,5)

    VM Scheduler

    Multimedia

    T2(33,10)

    Digital Controller

    T1(25,5)

  • October 3, 2005 CIS 700 6

    VM Scheduler’s Viewpoint

    CPU

    OS Scheduler

    Multimedia

    T2(33,10)

    Digital Controller

    T1(25,5)

    Java Virtual Machine

    J1(50,3) J2(75,5)

    VM Scheduler

    CPU Share

    Real-Time Guarantee on CPU Supply

  • October 3, 2005 CIS 700 7

    Problems & Approach I

    • Resource supply modeling– Characterize temporal property of resource allocations

    • we propose a periodic resource model

    – Analyze schedulability with a new resource model

  • October 3, 2005 CIS 700 8

    OS Scheduler’s Viewpoint

    CPU

    OS Scheduler

    Java Virtual Machine

    J1(50,3) J2(75,5)

    VM Scheduler

    Multimedia

    T2(33,10)

    Digital Controller

    T1(25,5) Real-Time Task

    Real-Time Demand

  • October 3, 2005 CIS 700 9

    Problems & Approach II

    • Real-time demand composition– Combine multiple real-time requirements into a single

    real-time requirement

    Real-Time Constraint

    Real-Time Constraint

    Real-Time Constraint

    EDF / RM

    T1 (p1, e1) T2 (p2, e2) T (p, e)

  • Compositional Real-time Scheduling Framework

    October 3, 2005 CIS 700 10

    • Goal – to support compositionality

    for timeliness aspect– to achieve system-level

    schedulability analysis usingthe results of component-levelschedulability analysis

    • Scheduling component modeling

  • October 3, 2005 CIS 700 11

    Scheduling Component Modeling• Scheduling

    – assigns resources to workloads by scheduling algorithms

    • Scheduling Component Model : C(W,R,A)– W : workload model– R : resource model– A : scheduling algorithm

    Resource

    Scheduler

    WorkloadPeriodic Task WorkloadPeriodic Task

    EDF / RM

    ???

  • October 3, 2005 CIS 700 12

    Resource Modeling• Dedicated resource : always available at full capacity

    • Shared resource : not a dedicated resource– Time-sharing : available at some times

    – Non-time-sharing : available at fractional capacity

    0 time

    0 time

    0 time

  • October 3, 2005 CIS 700 13

    Resource Modeling• Time-sharing resources

    – Bounded-delay resource model [Mok et al., ’01]characterizes a time-sharing resource w.r.t. a non-time-sharing resource

    – Periodic resource model Γ(Π,Θ) [Shin & Lee, RTSS ’03]characterizes periodic resource allocations

    0 1 2 3 4 5 6 7 8 9 time

  • October 3, 2005 CIS 700 14

    Schedulability Analysis• A workload set is schedulable under a scheduling algorithm

    with available resources if its real-time requirements are satisfiable

    • Schedulability analysis determines whether

    resource demand,which a workload set

    requires under a scheduling algorithm

    resource supply,which available

    resources provide≤

    scheduler

    resourceworkload workload

  • October 3, 2005 CIS 700 15

    Resource Demand Bound• Resource demand bound during an interval of length t

    – dbf(W,A,t) computes the maximum possibleresource demand that W requires under algorithm A during a time interval of length t

    • Periodic task model T(p,e) [Liu & Layland, ’73]– i.e., T(3,2)

    0 1 2 3 4 5 6 7 8 9 10

    tdem

    and

  • October 3, 2005 CIS 700 16

    Demand Bound Function - EDF• For a periodic workload set W = {Ti(pi,ei)},

    – dbf (W,A,t) for EDF algorithm [Baruah et al.,‘90]

    – Example: W = {T1(3,2), T2(4,1)}

    iWT i

    ept

    i

    ⋅⎥⎦

    ⎥⎢⎣

    ⎢= ∑

    t)EDF,(W, dbf

    0 1 2 3 4 5 6 7 8 9 10

    tdem

    and

  • October 3, 2005 CIS 700 17

    Resource Supply Bound• Resource supply during an interval of length t

    – sbfR(t) : the minimum possible resource supply by resource R over all intervals of length t

    • For a single periodic resource model, i.e., Γ(3,2)– we can identify the worst-case resource allocation

  • October 3, 2005 CIS 700 18

    Resource Supply Bound• supply =

    • supply =

    • sbfR(i) = 1

    3

    0 time

    0 time

    1

    R(3,2)

    i

    R(3,2)

  • October 3, 2005 CIS 700 19

    Resource Supply Bound• Resource supply during an interval of length t

    – sbfR(t) : the minimum possible resource supply by resource R over all intervals of length t

    • For a single periodic resource model, i.e., Γ(3,2)– we can identify the worst-case resource allocation

    0 1 2 3 4 5 6 7 8 9 10

    tsup

    ply

  • October 3, 2005 CIS 700 20

    Supply Bound Function• Resource supply during an interval of length t

    – sbfΓ(t) : the minimum possible resource supply by resource R over all intervals of length t

    • For a single periodic resource model Γ(Π,Θ)

    [ ]otherwise

    )1(,2)1( if)1(

    ))(1()t(sbf

    Θ−Π+Θ−Π+∈

    ⎩⎨⎧

    Θ−Θ−Π+−

    =Γkkt

    kkt

    0 1 2 3 4 5 6 7 8 9 10

    tsup

    ply

  • October 3, 2005 CIS 700 21

    Schedulability Conditions (EDF)• A workload set W is schedulable over a resource

    model R under EDF if and only if for all interval i of length t

    dbfw(i) ≤ t [BHR90]

    dbfw(i) ≤ sbfR(i)

    – sbfR(i) : the minimum resource supply by resource Rduring an interval i

    – dbfw(i) : the resource demand of workload W during an interval i

    Resource demandin an interval

    Resource supply during the interval

    (from a dedicated resource)

  • October 3, 2005 CIS 700 22

    Schedulability Condition - EDF

    024

    68

    101214

    161820

    1 4 7 10 13 16 19 22 25 28

    supplydemand

    • A periodic workload set W is schedulable under EDF over a periodic resource model Γ(Π,Θ)if and only if

    )t(sbf t)EDF,dbf(W, 0t Γ≤>∀

    time

  • October 3, 2005 CIS 700 23

    Schedulability Condition - RM• A periodic workload set W is schedulable under

    EDF over a periodic resource model Γ(Π,Θ)if and only if

    • For a periodic workload set W = {Ti(pi,ei)}, – dbf (W,A,t,i) for RM algorithm [Lehoczky et al., ‘89]

    )t(sbf i) t,RM,dbf(W,W T 0t i Γ≤∈∀>∀

    kTHPT k

    i epte

    ik

    ⋅⎥⎥

    ⎤⎢⎢

    ⎡+= ∑

    ∈ )( i) t,RM,(W, dbf

  • October 3, 2005 CIS 700 24

    Utilization Bounds

    • Utilization bound (UB) of a resource model R– given a scheduling algorithm A and a resource

    model R, UBR,A is a number s. t. a workload set W is schedulable if

    A,RW UB U ≤

    ∑∈WT i

    i

    i pe

    • For a periodic workload T(p,e), utilization UT = e/p• For a periodic workload set W, utilization UW is

    scheduler

    workload

    resource

    workload

  • October 3, 2005 CIS 700 25

    Utilization Bounds

    • Example: – Consider a periodic resource Γ(Π,Θ), where Π =

    10 and Θ = 4, and suppose UB Γ,EDF = 0.4. – Then, a set of periodic task W is schedulable if

    – W = {T1(20,3), T2(50,5)} s.t. UW = 0.25, is schedulable

    0.4 UW ≤

    EDF

    workload

    Γ(Π=10,Θ=4)

    workload

  • October 3, 2005 CIS 700 26

    Utilization Bound - EDF

    • For a scheduling component C(W, Γ(Π,Θ),A), where A = EDF, its utilization bound is

    • Pmin is the minimum task period (deadline) in W.• k represents the relationship between resource period Π

    and the minimum task period Pmin, k ≈ Pmin /Π

    )1(2)P(UB minEDF,

    Γ

    ΓΓ

    −+×

    =Uk

    Uk

  • October 3, 2005 CIS 700 27

    EDF Utilization Bound - Intuition• Observation for a component C(W, Γ(Π,Θ),EDF)

    – C is schedulable iff dbf (W,EDF,t) ≤ sbfΓ (t)

    Pmint

    sbfΓ (t)

    dbf (W,EDF,t)

  • October 3, 2005 CIS 700 28

    EDF Utilization Bound - Intuition• Observation for a component C(W, Γ(Π,Θ),EDF)

    – C is schedulable iff dbf (W,EDF,t) ≤ sbfΓ (t) – dbf (W,EDF,t) ≤ UW· t

    UW· t

    Pmint

    sbfΓ (t)

    dbf (W,EDF,t)

  • October 3, 2005 CIS 700 29

    EDF Utilization Bound - Intuition• Observation for a component C(W, Γ(Π,Θ),EDF)

    – C is schedulable iff dbf (W,EDF,t) ≤ sbfΓ (t) – dbf (W,EDF,t) ≤ UW· t– UΓ(t-2(Π-Θ)) ≤ sbfΓ (t)

    UW· t

    UΓ(t-2(Π-Θ))

    Pmint

    sbfΓ (t)

    dbf (W,EDF,t)

  • October 3, 2005 CIS 700 30

    EDF Utilization Bound - Intuition• Observation for a component C(W, Γ(Π,Θ),EDF)

    – C is schedulable iff dbf (W,EDF,t) ≤ sbfΓ (t) – dbf (W,EDF,t) ≤ UW· t– UΓ(t-2(Π-Θ)) ≤ sbfΓ (t) – Therefore, C is schedulable if UW· t ≤ UΓ(t-2(Π-Θ))

    UW· t

    UΓ(t-2(Π-Θ))

    Pmint

  • October 3, 2005 CIS 700 31

    EDF Utilization Bound - Intuition• For a component C(W, Γ(Π,Θ),EDF)

    – for all t > Pmin, if UW· t ≤ UΓ(t-2(Π-Θ))then C is schedulable.

    UW ≤ UΓ(t-2(Π-Θ)) / t

    UW· t

    UΓ(t-2(Π-Θ))

    Pmint

  • October 3, 2005 CIS 700 32

    Utilization Bound - RM

    • For a scheduling component C(W, Γ(Π,Θ),A), where A = RM, its utilization bound is – [Saewong, Rajkumar, Lehoczky, Klein, ’02]

    – We generalize this earlier result, where k ≈ Pmin/ Π.

    ⎟⎟⎟

    ⎜⎜⎜

    ⎛−⎟

    ⎠⎞

    ⎜⎝⎛

    ×−−

    ΓΓ 1

    233)(UB

    n1

    RM,U

    Unn

    ⎟⎟⎟

    ⎜⎜⎜

    ⎛−⎟⎟

    ⎞⎜⎜⎝

    ⎛−+−+

    ×=Γ

    ΓΓΓ 1

    )1(2)1(22)P,(UB

    n1

    minRM,UkUknUn

  • October 3, 2005 CIS 700 33

    Component Abstraction• Component timing abstraction

    – To specify the collective real-time demands of a component as a timing interface

    Periodic (50,7)

    EDF

    Periodic (70,9) timing

    interfacevirtual

    real-time task

  • October 3, 2005 CIS 700 34

    Component Abstraction• Component timing abstraction

    – To specify the collective real-time demands of a component as a timing interface

    Periodic (50,7)

    EDF

    Periodic (70,9) timing

    interface

    periodic interfaceΓ(Π,Θ)

    periodicresourceΓ(Π,Θ)

  • October 3, 2005 CIS 700 35

    Component Abstraction (Example)• In this example, a solution space of a periodic

    resource Γ(Π,Θ) that makes C(W, Γ(Π,Θ),EDF) schedulable is

    (a) Solution Space under EDF

    0

    0.2

    0.4

    0.6

    0.8

    1

    1 10 19 28 37 46 55 64 73

    resource period

    reso

    urce

    cap

    acity

    Periodic (50,7)

    EDF

    Periodic (70,9)

    Γ(Π,Θ)Γ(Π,Θ)

  • October 3, 2005 CIS 700 36

    Component Abstraction (Example)• An approach to pick one solution out of the solution space

    – Given a range of Π, we can pick Γ(Π,Θ) such that UΓ is minimized. (for example, 28 ≤ Π ≤ 46)

    (a) Solution Space under EDF

    0

    0.2

    0.4

    0.6

    0.8

    1

    1 10 19 28 37 46 55 64 73

    resource period

    reso

    urce

    cap

    acity

    Periodic (50,7)

    EDF

    Periodic (70,9)

    Γ(29,9.86)Γ(Π,Θ)

  • October 3, 2005 CIS 700 37

    Component Timing Abstraction• Component timing abstraction

    – To abstract the collective real-time demands of a component as a timing interface

    Periodic (50,7)

    EDF

    Periodic (70,9) periodic

    interfaceΓ(29, 9.86)

  • October 3, 2005 CIS 700 38

    Compositional Real-Time Guarantees

    T21(25,4)

    T22(40,5)

    R(?, ?)

    EDF

    RM

    R2(?, ?)R2(10, 4.4)

    T11(25,4)

    T12(40,5)EDF

    R1(?, ?)R1(10, 3.1)

  • October 3, 2005 CIS 700 39

    Compositional Real-Time Guarantees

    T21(25,4)

    T22(40,5)

    R(?, ?)

    EDF

    RM

    R(5, 4.4)

    R2(10, 4.4)

    T2(10, 4.4)

    T11(25,4)

    T12(40,5)EDF

    R1(10, 3.1)

    T1(10, 3.1)

  • October 3, 2005 CIS 700 40

    Abstraction Overhead

    • For a scheduling component C(W, Γ(Π,Θ), A), its abstraction overhead (OΓ) is 1-

    UU

    W

    Γ

    Periodic (50,7)

    EDF

    Periodic (70,9) periodic

    interfaceΓ(29, 9.86)

    UW=0.27 UΓ=0.34

  • October 3, 2005 CIS 700 41

    Abstraction Overhead Bound

    • For a scheduling component C(W, Γ(Π,Θ), A), its abstraction overhead (OΓ) is

    – A = EDF

    – A = RM

    W

    W

    UkU×+−×

    ≤Γ2

    )1(2O EDF,

    ( )( )

    1

    12122log

    1O RM, −

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−+−+

    ≤Γ

    W

    W

    UkUk

  • October 3, 2005 CIS 700 42

    Abstraction Overhead• Simulation Results

    – with periodic workloads and periodic resource under EDF/RM

    – the number of tasks n : 2, 4, 8, 16, 32, 64– the workload utilization U(W) : 0.2~0.7– the resource period : represented by k

  • October 3, 2005 CIS 700 43

    Abstraction Overhead

    00.05

    0.10.15

    0.20.25

    0.30.35

    2 4 8 16 32 64

    The Number of Tasks

    Analytical Bound - EDF Simulation Result - EDF

    • k= 2, U(W) = 0.4

  • October 3, 2005 CIS 700 44

    Summary• Compositional real-time scheduling framework

    - with the periodic model [Shin & Lee, RTSS ‘03]

    1. resource modeling– utilization bounds (EDF/RM)

    2. schedulability analysis• exact schedulability conditions (EDF/RM)

    3. component timing abstraction and composition• overhead evaluation

    – upper-bounds and simulation results

  • October 3, 2005 CIS 700 45

    Future Work• Extending our framework for handling

    – Soft real-time workload models– non-periodic workload models– task dependency

  • October 3, 2005 CIS 700 46

    References

    • Insik Shin & Insup Lee,“Periodic Resource Model for Compositional Real-Time Gaurantees”, the Best Paper of RTSS 2003.

    • Insik Shin & Insup Lee,“Compositional Real-time Scheduling Framework”, RTSS 2004.

  • October 3, 2005 CIS 700 47

    THE

    THE END

    END

    ENDTHE

    THANK YOU

    Compositional Real-Time Scheduling FrameworkOutlineTraditional Scheduling FrameworkHierarchical Scheduling Framework (HFS)Compositional Scheduling FrameworkVM Scheduler’s ViewpointProblems & Approach IOS Scheduler’s ViewpointProblems & Approach IICompositional Real-time Scheduling FrameworkScheduling Component ModelingResource ModelingResource ModelingSchedulability AnalysisResource Demand BoundDemand Bound Function - EDFResource Supply BoundResource Supply BoundResource Supply BoundSupply Bound FunctionSchedulability Conditions (EDF)Schedulability Condition - EDFSchedulability Condition - RMUtilization BoundsUtilization BoundsUtilization Bound - EDFEDF Utilization Bound - IntuitionEDF Utilization Bound - IntuitionEDF Utilization Bound - IntuitionEDF Utilization Bound - IntuitionEDF Utilization Bound - IntuitionUtilization Bound - RMComponent AbstractionComponent AbstractionComponent Abstraction (Example)Component Abstraction (Example)Component Timing AbstractionCompositional Real-Time GuaranteesCompositional Real-Time GuaranteesAbstraction OverheadAbstraction Overhead BoundAbstraction OverheadAbstraction OverheadSummaryFuture WorkReferences