compilation and analysis of bacillus subtilis oa-dependent promoter

10
© 7995 Oxford University Press Nucleic Acids Research, 1995, Vol. 23, No. 13 2351-2360 Compilation and analysis of Bacillus subtilis o A -dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA John D. Helmann Section of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA Received March 3, 1995; Revised and Accepted May 24, 1995 ABSTRACT Sequence analysis of 236 promoters recognized by the Bacillus subtilis cARNA polymerase reveals an ex- tended promoter structure. The most highly conserved bases include the -35 and -10 hexanucleotide core elements and a TG dlnucleotide at position -15,-14. In addition, several weakly conserved A and T residues are present upstream of the -35 region. Analysis of dinucleotide composition reveals A r and T 2 -rich sequences in the upstream promoter region (-36 to -70) which are phased with the DNA helix: A,, tracts are common near -43, -54 and -65; T n tracts predominate at the intervening positions. When compared with larger regions of the genome, upstream promoter regions have an excess of A,, and T n sequences for n > 4. These data indicate that an RNA polymerase binding site affects DNA sequence as far upstream as -70. This sequence conservation is discussed in light of recent evidence that the a subunits of the polymer- ase core bind DNA and that the promoter may wrap around RNA polymerase. INTRODUCTION To define the DNA sequence features associated with promoter recognition by Bacillus subtilis RNA polymerase (RNAP), I have analyzed a compilation of 236 a A -dependent promoters (Table I; refs 1-190). As expected, these studies confirm the presence of highly conserved -35 and -10 hexamers (positions are relative to the transcriptional start site), but they also reveal several more subtle features of promoter structure. In Escherichia coli both sequence comparisons (191-193) and genetic studies (194,195) indicate that the -35 and -10 hexamers contain the bases most critical for promoter function. However, bases outside these classically defined core elements are also important: upstream regions may enhance promoter activity by binding the a subunits of RNAP (196-198) or by facilitating DNA bending (199-201), while downstream sequences can affect promoter clearance (202-204). RNAP from diverse bacteria recognize the same set of strong phage T7 promoters (205) which suggests that the TTGACA (-35) and TATAAT (-10) consensus elements, as defined for E.coli RNAP, are conserved features of eubacterial promoters. However, promoter strength cannot be inferred from sequence inspection alone (195,206). For example, the E.coli lacUV5 promoter is used very poorly by B.subtilis RNAP, despite its close fit to consensus (207). Previous studies identified sequence elements, including the dinucleotide TG (at -15,-14) and an A-rich region near —43, which are conserved in promoters from gram positive bacteria but not from E.coli (208,209). Both of these elements contribute to promoter function: mutations which introduce a TG dinucleotide upstream of the E.coli lacUVS -10 element have a much stronger effect on transcription in B.subtilis than in E.coli (207) and upstream A-rich regions stimulate transcription both in vivo and in vitro (196,210-211). In the present study I have aligned 142 known and 94 putative a A -dependent promoters from B.subtilis to analyze the extent to which these and other sequence features are conserved. MATERIALS AND METHODS Promoter sequence alignments All computer analysis was performed on a Power Macintosh 6100/60 computer using readily available software packages (Microsoft Word, 5.1, DNA Sunder 1.2 and De'ltagraph Pro- fessional). Promoter sequences were obtained from GenBank (212) via the National Institutes of Health gopher server (gopher.nih.gov). Annotations indicating promoter regions were noted and the relevant DNA sequences were copied into DNA Strider 1.2, to remove extraneous characters, and then into Microsoft Word to generate Table 1. References, either cited in GenBank or found by bibliographic database searches, were consulted to verify start sites and the method of transcript mapping. Sequences, aligned by their -10 and -35 regions, were sorted into two groups: (i) 125 chromosomal and 17 strong phage promoters (Table 1 A) supported by experimental transcript mapping; (ii) 94 putative o A -dependent promoters (Table 1B) for which supporting experimental data were not found. Table 1 is available through the World Wide Web (URL http://www.bio.cornell.edu/microbio/ helmann/helmann.html) under the heading of 'papers and publica- tions' or from the author via e-mail ([email protected]). Analysis of base frequencies To determine base frequencies (percent of total) at each position, single character columns from Table 1 (from -100 to +15) were copied into DNA Strider as 'protein' sequences and enumerated Downloaded from https://academic.oup.com/nar/article-abstract/23/13/2351/2400518 by guest on 09 April 2018

Upload: dinhdien

Post on 11-Feb-2017

231 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Compilation and analysis of Bacillus subtilis oA-dependent promoter

© 7995 Oxford University Press Nucleic Acids Research, 1995, Vol. 23, No. 13 2351-2360

Compilation and analysis of Bacillus subtilisoA-dependent promoter sequences: evidence forextended contact between RNA polymerase andupstream promoter DNAJohn D. Helmann

Section of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA

Received March 3, 1995; Revised and Accepted May 24, 1995

ABSTRACT

Sequence analysis of 236 promoters recognized by theBacillus subtilis cARNA polymerase reveals an ex-tended promoter structure. The most highly conservedbases include the -35 and -10 hexanucleotide coreelements and a TG dlnucleotide at position -15,-14. Inaddition, several weakly conserved A and T residuesare present upstream of the -35 region. Analysis ofdinucleotide composition reveals A r and T2-richsequences in the upstream promoter region (-36 to-70) which are phased with the DNA helix: A,, tracts arecommon near -43, -54 and -65; Tn tracts predominateat the intervening positions. When compared withlarger regions of the genome, upstream promoterregions have an excess of A,, and Tn sequences for n> 4. These data indicate that an RNA polymerasebinding site affects DNA sequence as far upstream as-70. This sequence conservation is discussed in lightof recent evidence that the a subunits of the polymer-ase core bind DNA and that the promoter may wraparound RNA polymerase.

INTRODUCTION

To define the DNA sequence features associated with promoterrecognition by Bacillus subtilis RNA polymerase (RNAP), I haveanalyzed a compilation of 236 aA-dependent promoters (Table I;refs 1-190). As expected, these studies confirm the presence ofhighly conserved -35 and -10 hexamers (positions are relative tothe transcriptional start site), but they also reveal several moresubtle features of promoter structure. In Escherichia coli bothsequence comparisons (191-193) and genetic studies (194,195)indicate that the -35 and -10 hexamers contain the bases mostcritical for promoter function. However, bases outside theseclassically defined core elements are also important: upstreamregions may enhance promoter activity by binding the a subunitsof RNAP (196-198) or by facilitating DNA bending (199-201),while downstream sequences can affect promoter clearance(202-204).

RNAP from diverse bacteria recognize the same set of strongphage T7 promoters (205) which suggests that the TTGACA(-35) and TATAAT (-10) consensus elements, as defined forE.coli RNAP, are conserved features of eubacterial promoters.

However, promoter strength cannot be inferred from sequenceinspection alone (195,206). For example, the E.coli lacUV5promoter is used very poorly by B.subtilis RNAP, despite its closefit to consensus (207). Previous studies identified sequenceelements, including the dinucleotide TG (at -15,-14) and anA-rich region near —43, which are conserved in promoters fromgram positive bacteria but not from E.coli (208,209). Both ofthese elements contribute to promoter function: mutations whichintroduce a TG dinucleotide upstream of the E.coli lacUVS -10element have a much stronger effect on transcription in B.subtilisthan in E.coli (207) and upstream A-rich regions stimulatetranscription both in vivo and in vitro (196,210-211). In thepresent study I have aligned 142 known and 94 putativeaA-dependent promoters from B.subtilis to analyze the extent towhich these and other sequence features are conserved.

MATERIALS AND METHODS

Promoter sequence alignments

All computer analysis was performed on a Power Macintosh6100/60 computer using readily available software packages(Microsoft Word, 5.1, DNA Sunder 1.2 and De'ltagraph Pro-fessional). Promoter sequences were obtained from GenBank(212) via the National Institutes of Health gopher server(gopher.nih.gov). Annotations indicating promoter regions werenoted and the relevant DNA sequences were copied into DNAStrider 1.2, to remove extraneous characters, and then intoMicrosoft Word to generate Table 1. References, either cited inGenBank or found by bibliographic database searches, wereconsulted to verify start sites and the method of transcript mapping.Sequences, aligned by their -10 and -35 regions, were sorted intotwo groups: (i) 125 chromosomal and 17 strong phage promoters(Table 1 A) supported by experimental transcript mapping; (ii) 94putative oA-dependent promoters (Table 1B) for which supportingexperimental data were not found. Table 1 is available through theWorld Wide Web (URL http://www.bio.cornell.edu/microbio/helmann/helmann.html) under the heading of 'papers and publica-tions' or from the author via e-mail ([email protected]).

Analysis of base frequencies

To determine base frequencies (percent of total) at each position,single character columns from Table 1 (from -100 to +15) werecopied into DNA Strider as 'protein' sequences and enumerated

Downloaded from https://academic.oup.com/nar/article-abstract/23/13/2351/2400518by gueston 09 April 2018

Page 2: Compilation and analysis of Bacillus subtilis oA-dependent promoter

2352 Nucleic Acids Research, 1995, Vol. 23, No. 13

100

-100 -90 -80 -70 - 6 0 -50 - 4 0 -30 -20 - 1 0 + 1 + 10

Figure 1. Base conservation within the 236 aligned promoter sequences. The abundance of the most frequent base is plotted as a function of position. Those basesfound at a given position >3 SD above the expected occurrence are in capital letters and those occurring between 2 and 3 SD above the expected occurrence are inlower case letters.

with the 'amino acid analysis' function. These data were copiedinto Deltagraph Professional and the highest value at eachposition was used to generate Figure 1. The 236 alignedsequences (Table 1) have an overall base composition of 35% A,15% C, 18% G and 32% T. Therefore, these promoter regions aresignificantly more AT-rich (67%) than the Bacillus genome(~ 57%). Poisson statistics were applied as described previously(213) to assess the statistical significance of conserved bases.Briefly, the expected number of occurrences (and the corres-ponding standard deviation, SD) for each base was calculated bymultiplying the base frequencies noted above by 236 anddetermining the corresponding square root (1 SD).

Analysis of dinucleotide frequencies

To analyze the frequencies of all 16 DNA dinucleotides as afunction of sequence position the data of Table 1 were convertedinto a 16 letter code. First, Table 1 was stripped of all unnecessarytext and the global replace command of Microsoft Word was usedto substitute each character with the same character followed bya comma (e.g. G —*• G,). Every other column of commas wasdeleted to generate a text file of the form AA,CC,GG,TT. Thistext file was duplicated and, for the first copy, 16 global replacesteps allowed all the dinucleotides (beginning at every otherposition) to be replaced with a one letter code. For example, everyoccurrence of 'AA,' was coded as 'D,' and 'CC,' was coded as'P,' and so forth. This procedure was repeated on the second file,except every occurrence of 'A,A' was coded as 'D,' and 'C,Cwas encoded as 'P,' and so forth. Each resulting file was importedinto Deltagraph Professional (as comma-delimited text) togenerate two 56 x 236 matrices. Dinucleotide frequencies at eachposition were enumerated using DNA Strider, as described above,and the two resulting matrices were combined into a single 112x 16 matrix representing the frequency (%) for each dinucleotideat positions between -100 and +13.

Analysis of oligo(dA) and oligo(dT) tracts

The occurrence of An and Tn tracts upstream of the -35 region(e.g. bases -36 to -80) was tabulated using Microsoft Word andthe global replace function. An and Tn tracts were replaced in

descending order beginning with A12 and T12. After eachreplacement the number of text substitutions, corresponding tothe number of words of length n, was noted. This procedure onlyenumerates words of the form BAnB and VTnV (where Bdesignates 'not A' and V designates 'not T'). To calculate theexpected number of occurrences, the frequencies of A and Twithin the region analyzed were used (e.g. A = 0.345 and T =0.332 within the -36 to -80 interval). For example, the expectedfrequency for BA^B equals (1 - 0.345) x (0.345)6 x (1 - 0.345)or 7.23 x 10"4. Although 5978 bases were searched for thispattern, these bases were divided into 142 segments of length ^44(-36 to -80). Therefore, a correction for end effects has beenemployed (214). The actual number of positions at which thepattern Ag could have initiated is 5978 - [142 x (n - 1)], wheren = 6 (therefore, 5268 nt). As a control, the expected and observednumbers of An and Tn tracts were obtained for several 30 kbsegments from the B.subtilis genome (bases 1-30 kb and150-180 kb from D26185 and bases 1-28 206 from L09228). Theresults for the three segments were similar and the data in Figure5 are from the 150-180 kb region of sequence D26185. ForFigure 6 the frequency of An and Tn sequences (n > 4) perkilobase of sequence were tabulated for five different 30 kbregions (two from D26185 and one each from L09228, D32216and X73124) and the average and SD were determined. Thesevalues were compared with the upstream promoter DNAanalyzed in overlapping 20 bp windows. In this case, the SD wascalculated as the square root of the observed number of An andTn sequences within the 20 bp window (the range was 23-70).

RESULTS AND DISCUSSION

Table 1 contains 236 o"A-dependent promoters from B.subtilisaligned based on known start sites, when available, and optimizedfor the best match to the highly conserved -35 and -10 regions.DNA sequences extending to -100 relative to the transcriptionalstart site have been included to detect any sequence conservationin the upstream region. Recent data indicate that RNAP cancontact promoter DNA to at least -60 (198) or even -70 (196).In addition, the upstream DNA provides a sample of the statisticalbackground important for evaluating conserved sequencefeatures.

Downloaded from https://academic.oup.com/nar/article-abstract/23/13/2351/2400518by gueston 09 April 2018

Page 3: Compilation and analysis of Bacillus subtilis oA-dependent promoter

Nucleic Acids Research, 1995, Vol. 23, No. 13 2353

Table 1. Compilation of B.subtilis aA-dependent promoter elements

GENE SEQUENCE-100 -90

5L SS REF-10 -70 -to -50 -40 -JO -20 -10 • 1 • 15

(A)•brB•cJu• C«AacnA•d>•ddA• Id•lkA• Il3uyLY*n*A*prE«HCudedddtAdtBcitedtRcitl

ctaAdclA

divIBdn*Ado*E P2dnacdnaKffhzpspftlA PIft«A P3gc*D(tju)qlnBglpDglpFTglpTOjltAgltcijltxgluB(jntRgxoESL

gutBgyrBhb»

hutil»BklnCIon 11Ion S2ly.C

n*dBnj«ADASBnifsnrgAnujAodhAorfjphpD

phoApplBpCUHIparAparP

pyrrb.r«cArlbcrp»H

PROMOTERS WITH BIOCHEMICALORCENETIC SOPPORTIMG DATAATTTTCTCCAAT 17

17AAAATACATCLLI ICI1lAACAATACCAAATTATAAAULUI I1 ILAACATCCTTTATATTTTAAAAAJjaAfiftAGAATA TCAATATATATTATAATAATTCTTArAAl-TTTA^r»»»rra 17OCTCAACTTOTCACAATTATTATACTATATATTCATAIICI IL lUWTTTTTAAAATATAAACCATCIiaAAAACCCTT TATAATTiaEIinCrTAAACAaCSCATCTATTTTTCATA I fT T C A A A T T A C T T T A T C A C A T A A T C A I L I I l A C T C A l I I I U I I A T I T 1 U l . T A T T A T A T T T T A A r r A r C T T A I I I I I I I I I ATrtATGACCTIAIAJHSTACrTlTCAACAATCCTAAACCC 17

17-AAATATCAASdACjaAAAAATaTCACAtATACAOGACSA 17

TCAATATCCA11LL11 ILLATA«rrrAATAATTCCrATTACATATTAATaaAAQgrC<»ATPaTAIjaiAfigrCAAT—TTCCAAA<«CT<3AJAi3)SAAACTT«TCACAACATATTTAAA IIACa^ACUJllLACJgTrrCO«KJ^LlllllllATASCAACATT(^UlUlATTCACTCT^^ AgTgATTOTaATAATTTTAAATCT. ACT-CTTAAC AAAATTT 17Tl I I II ATrri-naarrCATTATATCATATAm^ATTACiaAgKriTirerCAATTCAATAATAATUIl.l IUTJJTATTTTA I I I TIJCTIITI rATAATTfir»Tm»«^T»T^fvafiflftnn; 17muTTTTT^ArnrJU>ATAaCa>CAnATCATATArrrriUUITACAlIATAAAATrATTTTrAAAAAAAT<aarrrTArTAAAATA-TTATT^ II I I I I U g 19

CCTCTCAAAakTCACAAITCCCATTaAACA<»AAATTTATAAAT<aWTAAAAATATTJ ^ TTATTCATjniAJAAlBTTAAAT»ATTTCACAAAaACCAA If

CAACCCATTraUWTCCAlllLIATTCTCCCTCTOgTAATAiUIIAArrAAJlLU.IUAAAAIAJieAJIAlllU TAAAIATTATAlHA£lATAATA«CACAAAACCATAaBOCC 17At-jmTAAAAATTACCOCTACA I I I I IL I LATAACTrCAArTTATTeTATTTAATAAAAArATTCATTTTArTATATCT—ATCAl I I IUI I I I AATATnAAATTYTraUIAAAATTCTfJTCC 1 |

TOmi l . I I IIIACACATCTAAIILLLII 1AATCCOTAATOTACCAI I IU IATTCCCCCTATLLI I I ILIUTTATTATAC TAAATATAATATTTAAAAAATAJTT AATATTTT» » »nrv» » 17AArrrCTAAATAAACgCUl I I I I ILfy¥-r»»»TCArACAATrT»»» »»» »»»ATTATAgCTAAArATTTAArAAATCTr TEATTATTCTTUI&AZgACAATaCaCTTAAACTTAAATAA 17AACTGAACCAAACUUL 111AACCCTCATATTCAAATCOAATTOTAATOOATTTATAACOCAAACQACnBflCAjCAGCCC JUU.II.I I I I I I ATAAAATCnaBi*n*<ITCAaT*fc*>rrfiA IIT i x r m u r r a i i . I I li-ATTrm-mn/ainrTAiii u n I I I ATCTATATATTA i ATim-rACArA* 11 III .II AAATTATTTCATATH-rrAanagi AAAgrr-m-n-frrATTe 20TrrcnrTrrnnrACAATrAAAAAAAeATTrTtjjui 1111 i iiATgrtjTAAAATTauiTATTrrrAATTecAgrTrAan-ATnTrrAi 11 i UL i ArAATrrATArrA^AATTpAATCAgrAAA 19CAACCCCCA<aAATCAAAAACCATCUlllLLlAAJVAC(aTUillllllAAAAllXllllUAlULllliljaCTACACA reAArCTATaA/TATArTrnrrT.rju-.ATgAJUU IUI 17Ullll IIIAAATAACCrrAAAII . lu .u ACACrCCACA I I ATATTCTTATTTTAATAnTTCCArACAAAAT ATTTATTTAecr ATAI. I U I I ll AAAgCACerCTCrTATtlT 17LI I I I I III lUULACAAAflAAl IUUI I I I I LAOCATATAACATCTCACAAAATCAm I I I ILLLIUI I IUATTA1JI I I II I II. 1.1 ATAATA I H i . I I T»»»nr»n»mr.AATrA 17TATTATTACTT^TTTAm'AgrATTAAATATgATTAAAArATiaTTTTATrTTAAATCTTAAAAAAAri lu l l Ul I I I AT—AAAAACACATaATArcATTATTAnTATAAATTTTnr»r.AAAAA 11I I I I I II.UI lllAaaaTAraATAAAT<aMTAAACTATTATATiaTTgITAAAAAACaAAAAAgCTCrTtrn?rTTTAAA— 11

!TCC(n^AATAAATATC3UU^TTaUU^AATAAATAT<a^ATTTrCaaAAAAAAATTrCAATAACCA<aiaLU. 111L1 u • » ' - » ' - " ^ T ( y 7 r B i A j n " " r " * " " " *"~ 17TrrACAAerrCTCATTCTATTATAI I I I lUICAACAAAAgCTTCTCQCAATTOCCACAAAAeAgATAI ILL1I lAf-APT TCCAACCTATAIA^AAJTOCsSCASTATCTTAAaAACCTGA 17CAAACATCAAILL 11UAAASACCA1 ILI 111111ATCACTCAATCATTCACA11111LCCACTTATMICCAJ.111 ILL n I AATATAAI I IUI I W^ATATTTATAATTTtCT 17AI II i I I iugTAT»»nr:»fTTATTCAgATTTaraiTTnTrAfnrAnmu I n i l IHTATJU I 11 n u m u u m T a r rrmutAerAeATArArTATTAijTAArAnATrAAATArr-nu: 17T^^<XACCATOCTAOCTOUXCT<XTCCTAACCATAAAACACTCCCTATACAAATTCCTACAU1LI 1HCAAJ.111 ILI OCCTATniSSXAlCAIAAAGACTAOTACTATATAAAAAT 17<Ti^AAA»TArmigATT<aTAT<yAr.ArAMam-mAAATrATrTrara»»»TrmT^ I tT » r r » r m - T n T n - j u - i m f i L AATVXI I m i l i ui I Miiiu^ATAjuiATTCTrjirAAiTATTm-AAcr-n-rr—grrTAl I I IIJUIATTATAI i i u i v i i i m . n I l u r r y 17

A A C T C A C a t C S C T C T A T C C T C O G T T T r T a X T S T < X X » A A A a » U A T A A T C A A A A A a v A ^ ^ I I»rJUlTTT(lTI-r»rAT<rrmiATAUJ l l . l l . l I II I l u l l I I I I II «i -AAn^ATrrATAAATrrArTuaJTr«-rAI-rATTJU I II I»TTA ATAAATATAT.TATTAATArATTATrrCT —TTATTTCACrCATCAACCAAATTATTACCCAATCAAUl 1111UCUA.I I U I 11 USeTCAGTTATAAimCA. 1111 IL 1 II.IUUII IgATAII I I I u I I AT«CAATT AQT ATTtxt I IA 17rerJL>TAAATTnaTCATATTTACrCTATTTTrr»»>ArTTAATCeiJXJ-l I IUArAACATAAAAArTTCArACTCTrA " ' " " T T f t M T T " ^ • " - ^ ~ ' » . » v » - » » » » » - » > » J 7AAATCTnUHHIinrACATAAAAATAI i L l U t l l i l I A I I I I I IUI I ACAgACTTCTAAACCCACATTgATTCTATTCTTCT TfTgrAAATAATArtAATAeAAATTATrgAAATnTnAraiAni: 17CTACATATCATCAAATOSTA11 ILI 1ILLLU11 ILI 1111 lAATATTATATTOBCAATAACTTTAUJlllLlU-mOT nr» III IU.IUI Amu I I u I ATTTACrAmTTATATTrcr AT 17

AATTI-TI-JH I I I llAAATTTAm Ta.ATTrAATACAAAA I 11 I I g-ArTTrATTJIACTI H i f IUAAATTACAA CATATTTACCATATA I I I I 11.1 tTrjCATJI»» »nrJItT*TTO 17CAAAAOCAATTAATTTAAAI11111 lAAAATTICACraAATTTaATCTTAACAATCCTTACATCCTAIIgMACAAAAT ATAATA1T.ArCTATAATgAAArTA.nTT»>fl»»»»rr»rr» 17

T TCATOCAClfiMA£AAlTSCACT«COTTAATACATTOTaAT 17ATTTCAAAATTACCgCTTTArATTCCrT—TTgaACTATCATAATITAAnAAAgrarTATrATnATAAK 17

CrcrArCTrrAIUIIIUlLlLACATCCATCTATCTCAIII IUACAIILI I I I eATCTAAATTATATATTCTTTATATrC TTTTTH » » »rrTArAATCATTAT«eACTTgTTACATTlTAT 17TrrTTTrrrrrnATCAAl I I LmATAATAgCOCTrATAAAATrTAArAArTrTATAATTATTCTAUU I I ITTAAAATCA TATAAACAATAlAliAJTTAOATC««AAGAATCTCAAAATC 17ATTTACA<gCCTTC(XCCAACOWTACCCa^CACCCCACACTACTCATACAAAAACCCTAAL11U11 JJLUAjecCCCCT " " ' ' " J "lfrTTIWaiT* / '" ' w '* T "'* * 17rTTATTTJUITAniCATAGA«^U«rrnU3MagrrTTAeAarrerr» » » » ACAAQAAATTAOgTTaATACArAATCATC ATJUUICATTTTTArAATCAeTTry arTTATAACAAAnAnr 17.••^••^»vt.nin..friCTim.f^lll.n..ll».lllimfliHf.l | | U - J ^ T * " " " "TATTrArmTATTATArTTCTATjrAAnTATAJ III III. 17nKK*KArrTAAreCAAAAfTnrKrrrTnK»»W*KTCATCTAAmUTUAAAAAI I I I I I ATrTTATrATTTCAAATTOgAA QQOA/3AI ILI llApAJAAflAATtglUI lAOCALILIl 1AC 17n.ll . l l l iJIAAAAlJi .UIUI.f UlfUJJUHACrrCAAATTrCArAAIIUIJUl IAI IIIL.J.IIL III III III—TTgTAAATATCATAAAATATCACT.Tr.Tl-JJJITAATTrAAA I frjUUUSrACArecACACCCCCATCCCCCTULI III IIIAOTQCAAAgATACCCAATU'lUIII IUI I IUI IIAAAAOAATT <TTtf V^VTfl^ftCMCflfl"*ft«/'fl"*^flTTTIflfl<?TW7<an 17ftVifllM I II fy7"'1^TftTT.f^AAT13ATTrCAflArtflf7TTftTTrtJSAAAATTTftATTftAAAflAAflftTQiii.i !• %LJ,1,1 TTftT ftW 'I'VI'I IUI lflfiAATTY7rfrAjTftTTflTTf3ft'J I' I'^W 17AIJJ.I I I I I I u I ATATGAAAAAATAAAACTACACTCr.nXT£TlL I I I I ATAfATrAfinnHAQeiLllil luAATUrunA lll»»rr»rATAAAATegCCCrjCTAArAr«n«»»ArAAA 15

ACCL111II lLTCAA^aACAICAMTCCA«^T<XXrr«*AIACCTATATATTCTA«JUCTTAAT^^ —AAIU I luATATOia-rf TTTATAT<aSmaCI*gATAC»gAAAIlLl lLALIl lu | 17

ATTCTTAATACHAATCL I ILI I I ILLLIUAAUI I I I IL I AATATAar^TAACAATTTTAAAATrTeTTrArATTTTOTfl»» lfT» AACTATOTTATAATTATTATAAATAATCAOTTFTATCT 20TAATrA-TTA/-AAAAAATCATAAAATA»»l»Ary»»n»rnTATrAATATT 19

17CAATAATC»AA<XOTATACAATATAaArroATTAATCAAAATTCrCTAATAATTTTAAAAAATOCTOT^^ rrAAACgncrgTAATATCACTTr^rAAAACATAAATnTAA 17TTt^rY^|-fJ-f^AA^ATAACArATTAAgAT»1TT<arrAATrJUITrJTTTaaZATArTTTArATATTTT»rTr>A^ 19TCAATAAACAATLU.111AAACCCTA1111UATAAIAUUUI111111LATCAAOCACA1LI111LLlHUCftTATCAC »»HTJ>>AflnGTATArTAI-r.AraATx IUI I I IATACAAAA If

ATTOTATAAanATCI—AAAAA<7rTOTATlAlAA10CTTCAT«CTAAACTCACOGACCT I I1717

A A C L I I U I I I L I II I I I - A I I I L I U AAATTACGTTIAlAAZAOCTAAqSCACOCCATTTOEACTC I ffCAl IIJUI I IUUlAAAATA^Taurra>CTTTTCArAAirj>TCrra>rTrATTCAgATArjrjUITAAAA miJTrtTrmtmTfJi'm.iiirmimariti 17

Tirrr.TCATrAnrAATATrTACTAAArrAACAULI IUACALI I IO-UU1CCAAULIUI I I ILI I I ILAATATACArATT TTACCTCCaUJAJSUH«CATGCTCACACAACACCCCAAC IfCU lIUTU«rrCCATAATCTAAATAAATCAILLUurLlILLlLLAlLLUULlLCATAAAAAACTaBaCrTTArrT TATCCTTClCTUftlAlAOOTCTClAOACAOOTOTAAACA 17CTArrAAAAATTATCTCACAATaarrgrTAACCCATTAAACOTCTCACAAAAACTTACACAl U1L IXLCCCftCAAAAT AATOSTCCTAUICCZTGATTCaGAAAATCTAAAATAATC I f

20TATAIJ-IUILI lUATATrTATA—TTTACACAACCATAAAATAAArTgjACAUl I I I I IATCCACA II

TCCATAAj>TTTCTCAAAAACCMETCASaWATCTTACATaAAAAT£XSTATCAT II I I I I I II. ILI ATAATCAACAA»T»TAATAA I l u l l I I I 17AAAAACTCCCATCCTAATATTACACl 11LIUILAL1 IU.1 lACCTATCAAOOTAAOCCTATATCCAmgCAATAAAAA TATCCTTAlflCIAIiflTTTTATtijCAAATOCTAACCATTA 17

y r > I Ii, | i w ^ l III 11-I I 11 11 I I II I I El I II I II PmT*TAAT*i.TI T*l II l l f i a f l I I J JL H^nr»TTT II II I I I IUI I U I ATAfTf^TA I IUI Mi UT I AT* KTTA/3CA 1 (

CCCAAACATTCTTAT< CAAA<KaUU» CATTCCCACAAAAAACrAAaaATCTTCTAAATTTAACCIIClCCTAATCT i- i i» inm«ITlir iTtTmrr. i i» iTTTimtini i i i f i 17»»T»lr^ ;»»r^ t !TtT»T !T^T^a^rl •AAA^n^T^^T- AAr^ lAJU lATTTTTrAAAAT»TTT^A^^ 19TACaATCCTrrrTAAAAAATCCOCTOTCCCATATCTAATATJUUtfrTTCATATCAOCCALL ILL ILLJlkCItCTATAT rAAAArjun^CTATAACTTTrTATTi^arnAa I Of. T IIX1AAT 17AgCCAACATAACCAAAAgCul 1111ILAI11LLI lACAAC<gTTTCATTATTCrTTACAT«TCAACACCCCCATTTAA rAAAUl I IIJJ-I AArATCATAAAOjCAATArATTAAACCAC —TrtTTi-iTTACTAAAm-rrraa^cA 111 I.I 1 1 11 rra-rrj^AAmiTiritlrrrATAATAOr^frrjrAA^jirJirjirArjrT ATAACCTATACAIAAILIU.I II7AAAATTAAAATAAACA I fCCTTCAgTaUU^UlACAACAAgAAaaArrCrOUU^TTCAAAAATAACOCTCTTACTACCLU. I ULXmcaCATCAC »«^TArcnrrOTATCATATAAT»TTOTCAAeTAATAAAerT 17AACCCTTATAAAACWlATaHUUXCAACCAATATAmrrTACAATJUKATTAATCTrCCaiTTTAC^^ III TTl-jrTCATAAArTTCAl I I7I I IUAATACAA 11J. I I I 17

LTAATATTCTTKATATTATrr ATL1U-I . I1U11AA^AJAAACJTGAAATCAAAACACGACCT 17III ILimUIATAATAAArCAATgTCAATACATTgTTTA 17

i - . ^ n l i n i v ^ T n l T T T m ' l i m n T m r t l t T t i r l H T m i III ^TtTTTTTtTTf^^ltrTTrt^-fJTTITTTrJITtlATAATrTATrTATYTAAAreeTTArATAAAr 1 |T<^T«rA^»T»^TATTTT^ATAgl^UITrjirjayjUiaiAAAAATrt^IAATATCrgTTCULI I I I I I L I I UCCAAATCCC TTT AAAfACCCTATAeTATAiy AgmnTAArAT»»A^ntn 17ATTAAAAAACATCACTTTCiaATCCAACCCTCMUllllulllllLILAAATTCTAACTTTArrWAIBaCIACrTTA AAAAGUTCOdAT2AJAACCAATaACaACAAATaAATAAA J 7

ACCTAAAASTTTACCACTAA1111 IUI 1 lATTATATCATAAACCOT^AA«aUgAATCOACCAATeCIIgA£rTCAAAA eaAATAAATTAIAIflAJCALLUHlulCAAATATTCCACC 17

PEPI

PE

PE

PE

PE

PI

PE

PE

SI

PE

PE

PE

PESI

PI

wPI

PE

PE

SI

PE

PE

PE

PEPI

PE

PE

PE

SI

PE

SIPI

PI

SISI

SIPI

PE

PE

PE

mmPEPI

SI

SISI

SI

SI

SI

PE

PE

PE

PI

PE

SI

PE

PEPI

PI

PEPI

PE

PEPI

PEPI

PE

PE

PE

PE

PE

PE

PE

PE

PE

SI

PE

PEPE

PE

PEPE

PE

SISI

PE

11

PE

SI

PE

(1)(2)(3)

(3)

(4)(5)

(f)(4)

(7)

(1)(9)

(10)

(11,12)

(13)

(14,15)

(16)

(17,11)

(If)

(If)

(If)(19)

(19)

(20,21)

(22)

(23)

(24)

(25)

(2f)

(27)

(21)(29)

(10)(31)

(32)

(33)(34)

(33)

(35)(34)

(37)

(37)

(17,31,39)

(40)

(41)(42,43)

(44)

(45)

(45)

<4f)

(47)

(41)

(49)

(50)

(50)

(51)

(52)

(53)

(54)

(55)(54)

(57)

(51)

(59)

(fO)

(fO)(fl)(42)

(43)(43)

(43)

(44)(45)

(45)

(M)(64)

<f7>

(fl)(f9)

(70)

(71)(72)

(73)

(74)(75)

(51)

(74)

(77)

(11)(71)

(79)

(10)

(11)

Downloaded from https://academic.oup.com/nar/article-abstract/23/13/2351/2400518by gueston 09 April 2018

Page 4: Compilation and analysis of Bacillus subtilis oA-dependent promoter

2354 Nucleic Acids Research, 1995, Vol. 23, No. 13

Table 1. continued

rmA PIrrnA P2rrnB PIrrnB P2rrnD PIrrnD P2rrnCrnU PIrraJ P2rruO PIrraO P2rTBWucSMCXY•dh• i fB•P*apoOABpoOBapoOEapoOFapoOH•poIIE•pane•rfAtatthrStrnStrpEtartyrSv*jxylRfOl.pr#105#appl»pr•01.22•01.3•105»pr•29 Al•29 A3•29 B2•29 Ec3#29 02•29 C3a#29 C3b•42-129••2-154••p*2

CCCTTAeTCCTakTTAACCAATTTATCATTTAATTCATATTATCTATT£A£TTACACACTCAACCTCTTATTCTAATATCCCTCATCACGAACACl H U H lAAAAMAAATgCTAAAAACTTlgTCACACTACCg (XCCTAAAIflTIAIfiAIAATAAA COCT

-AATACAgCT£TJATATTArrAAAC9TCCCTCATCCA£AOCC

(B)aadKalaRanylaan>R

•PParoC«rolbctaMbqlutnr2harxcad PIcad P2cccAccpAct l l lchaR

cyiEcyakdatldinAdlnfldlnCdoaBdnalXdnpopdra

fauAfhoD«lpp9lpTgrpEban

lurSlhjrflllvAipa27UtAkaqAl«nSl«xAl i p a xly> d»c

CACACCCTTTACAAATCATCCCCACGATTATACTTrAl 11U1111ATACA11111111 AAAAAATTATTCTAATAAATAATTATTAAACCTCCCTWTCCACACCCCACAOlACTA«TIXTTa*AAACAACTTI

AACCTCTCCCACATACAAACX»AACCACAa»7ri7TCTATCA<XCASa^TATTCTTTrAAAAAACC^ CTTCACCGTCTTATATTATTAAACCTCCTCATCCCCTTCTBTTAAACCTCCTCA1U-U.1 ILlCACAAAACAAgTICACACCgKCCCAAAATAAATCAAAAAAACATTTCACAAAACAA ACTCAAAATCTTATATTAATAAAaTCCCTrCAACAACAACTUl 11 LU-U-TCACACACTACCACOCCCCCAACCAATTCCACATTAgTCTAAl 11111 AAAAAACTTAIIgAmTlAAe AACTCACATTglATACTAATAAAUl 1UL1 llAACAAACCCC

AAAAAAACTAUBCACTATTAT TTArTACrrrCCTATATTATTATTrilT TO I U I l l l T i i a ;CTa^ATArrATTATTCCTTCCCCCTAAACAACCaUiTAAaaUKAAAAACAACTTCAAAAAAACTTATTCAC^^ ACTCAASCACTIATAATAATAAACTaXTrGAACCAACTGAACAACAACAACAAOWCTirrCAAAAAAACCCCACCTCAAATA«rroCCCTTTTrT^^ AAAATTAIggTATAAJCAlULlgUUlLl 11 UAAACAC111L1U11U1LI1111AAACACACAACCATCACCATTATCACTACTAAAAAL11111 LAAAAAAGTATTGACCTAgTTA ACTAAAAAS^TACTATTAACTA^rCaCrrrCAgAaAAaCArgCTTTCCACGCACCACCTCACU^IlL«TCCTCCTACCCTCC«CAAAAUlllllAAAAAA^^TCTTTAC(KCCCTACTCT«yuUVTCCTTTTATGArrTTCTATCAAACAAAACACCAAAATA«CC^^AAO.111111 l^TTCTAACAAaiCCACACACAACCTTCCCAICCATTCTACAGCl-111 lUATACTAJIgjaTACAeC CAT<aiAOiaJaAAAiEawCCTTaTTACACTTATC*CATAATTCATAAAATAAAAl 111 lLAATCAACTAATCAATTCCgAAAATTATAATTTATCTACCCl.111 ILilCACSCCLl 11 TCAncCACgACTAAAATgAAATT^TrAATAAATr-l-rmTAAACAAATCACITTCCCACTCATTCA1111 lAflACATATTTCCACCTTeCTCAAATAGACCAAl. 1111 l l l k i l l l l - A A A A AACATAAACCMAIAAIASTqAaaTAACSAAAAAATATCTT

TATTTATCCAAAAgAAAAACCAACCTGACTCCCCCAUl 11 U-UCCAl. 11111 11AI111bATCCCTCgCA£TTC 1'Utf AATATATArnqTAAAATATArAAJ

AAAAI m i l I A T T

A I U U W l M

TTCTTTTCATAAACGAATATtai,AAACTaaCCCCCCCACACTTACATTAACrrCACCLl I I I I — TCTrCAATACTOTATAATAI 1 I L l i

CAACAI I II II m . l A r T C T T A T l . l 11.1 I TTnATAAAATTT-TATl-TCTCfTrCi-.TATAATgArAeerAi

TTiarJUUlTTAAjyjeATTTlU:rTaUUUUtTTCTAITTTrrTl-TrJUU-.ATTAATTCACACALll UJ.rAf.ACAtJ.1 111. I irATATTTATCA«nrAAgAAflCarJL»rACrr.AAJWKTATTCCTCTAAATAAACTCCAATL11 IT-UXATCCCSCATGAAAi-l 111LACCCA11111 LdgTSAIAAAAACA I ATTTAAArTnAArnCT.CAAtr.ATAAAAAAT»T

SCATCACCCAAATTrTTATAAAAAAACTAAAACTH&AT£CTTACT CTATATATAAXAA£AT£ATATC*ATCAAATCTAGCCGCAGTTTAAAAAAAAgCAAACgCCATCCTGTjaAXI.II 11U. ATTCAArAATTTATAATAr-ATji^AgATTAAnAAAeArArA

CACGAATAT(K»ASCCTATCTrACATTATAAAACTl»T<JU3iAaAUTAAATAAAAACArrTACC^ ATTAACCrTCATATAATAACTr.i l . j l l 11 ATTATTTTArv.

CTCCCTCAiMMTCACATUaACATGTATATrrAaAAAAACTTCTCCTATT<UUK»^ —AgTCAAAAAATATCT(XCCCTCAACTCTAA<7rCACAAAAAaAACAAACAAATCAATCATgTCATTCTCTTj]C£a>TTTeTCCT(UA(»XATIXCACCTTAATCTCCCCarrgCACATCTCTCAACAATCCACCATTAAAAC«»i^^ TTTATTTATCTTAAAAATgATATjm-rTTATATCAAAAntTrCATAGAArrTTCTCAAAATAATTrrATTCACAACCTCTTATTAACCTTCATATAATTTAAATTTTATTTfiACAAAAATG COT. I I I . IL. I IL. I AgAATAAATCTjirrCAggTgCATerAATC

AA1.I I IIIUAAAACATCTTCAAAAAnTrr: AAASCATTTTAIMIAJT AACTCAACTT Al. 1111.11 luATCATTCAAACAATTAACaAgCATACAGTAAAATTrTATATCTCTTACa^UUTATTCAAgATCaXXrrTT^ AAA I I m.rATAArgCTgAmT.rACTmuuzAAl I I I II

TTaiCGCAAATACAA^TAAATACTCrCTOAATCTrTAAAATgCTTCAATTTCGTC^ (STaAATACCAI^AATTTASACATACCrrAACCCCACCTCCCCTAACCTACCAAATTATTCACCTCAATCAAAATATTTCAIL111111 lAAAAATAUlUmmXHlLTAT (.lTTH.'1'AIl.llliAAIACAATCATAaAOAOOOgOgCACAA

I Ar»Trr»TJ»<-AIU-f-rrTmTAAAATTrrTr.AAAAA I I I IU-AAAAA1.1 I I T rCATTTTATl-rAQAQAOTATTTATCrrCTATTTCCCTCAATTTACTAAAAAATACTTCTAl 11LLU1L11111 lACTATJCJAXl fLLUA CATT«CATACTATAATT<mmaTOCCACAA0ACACACTGm--ACTrrATrTAATTCTiu:AAATAAAfTJATrAAAIIi.l I I I AtaATfiaiACAATTAArTATTAATCTTTCArAArTATT ACAUGTATCCTATAATCCTAgTaTCAATGCTACCCTACTT

UAATCCTTATCTATCAACCCTTCACamaiATAATTAAOTAqTACTAATAeATTATA —

TTr-ATrrnTATrjuyjurrr AjutTATrrrjATTTTTltfrrtarjTt^Tn^A^arrTCCTTAATgAAu. I I rACAAAGTGA ACACCAAdfiTTAAACIATATACacjACACAOCOCACATACTACAATCTAACAACTAAATCACCACTATATACCTATACTATTrATTATCATaWTTTCTC»AAAXaHaAJJACAAACTAr—CCTTTAACAIfiTUJACTATAATAqAACTAACCTAATAACAC

AjUTn-mATArATAA^eATi-rrrrnnnn.1 H I lijrrcAAAAAarivAArATTTTATAAAAAACTrTTcrAAAAACTT—ATArACCTeTeeTTAAATACACAAr^TACArAArAArr-i-rrr

GAaAACCTACACAACAACCTTTTArcAAAACCTTCTAAAACTTTCTCGAACTTTTTATASAA^ gAACACCCUAIATJtATAAAafACTASAACM3ATACASACTCCCATCCAT£C3AT^ATAAACTCaTA CACTATC

1ACATCCACAACAACCTCTCCTAAAATTCCTCAAAAA1"11 lBCAAAAAinCJJfiAiJ.11L11.T tnmyiTCTprrmmiTfTT.i iLI 111 lllACATATTCAIIfiAiUTCUJJ. ArTAACTCTCrAATAATTATACTAArATTArAgAgAAATAg

ATCAT^ n . i I I ATrcmrrAA

PDTATIVX PROMOTUIS (WITHO0T BIOCBBMICALLT MAPPED START SITXS)ASCTTAaAACAATACAT£A£&TTCAAC—ACTAAJUUUVATCIAT^ACACCTTrrACACTTACATArrAA

AAACaTAAAATTTTAAATA 1 L I 11.1 CATAAgTTTCACTATACACTC 111 CCAAATTCACCTCCAATAICaAIICCACCT TATCATTAATATCTAATArCAATTATTAATrTATncAAACCACCCACCaAAACASTCTCCCCCAl.1111 1ATACCAACATTCATTTCTATTCACTCTGCCAA1.11U1 lilflAIACACTgA TTCT«TAATrT^AAMCTAACCCTgAACAAAATTCTCCACCCCATACTTTTAATCCAATTATACACACgCAAAATAAAATAC«»ACACATTATTAITCAAITC<»aAi^ClTCCTM TArCTATATCATATAATrACCTTAAmrrrjuumAgrjlgf-mTCCAAT<KTTTAAAAC<»TAAAATAAI«yATTrCATTAATAATATTACATTTA«XTAAAAAATTCTTlJATTTTCCAA AATCATTCTAATAATATACAACTATAAAATTTTTTeATAATTCCCA!IIlXITAJtfiCTAAAAAeACCCCrrrAACU.lLUllllAgTTarfATT<^TATAATACAAATTTT^AAAAAAA ACTTCTAgCTCTATAATAAAACAAgCTAAACATTt:»l>»ra:»CCrCCACAAATCTTCTACAATCAAT(nX»TTCACCCAAAAAT<»KTAaU^CAAACCCCACTATAAC(3T£AJXC^ gCCCCTATCTAIAIAAATATTCCCTAAATAAOCATATAATC

CCCACCtni.Tl.^l.ITTUTUiTU-CCTTCACLl 11 ICATCATgCATCACCATCA^l llXCCTLVfl^UT^TTTCTA—AATCCACCTCAAT^MCTCACCCTTCAl 1111 lUJCACTTTTTTTTCA0ACCCAACATOATOATACrrACAgCATTCAACTAACTAACArrCgCTAlTATCATTATTTTiaKC«^

OKa*CACCTTCgAAAACT<XCCT<rrTCTC>AAATACTTCTTAA£*TCrra«rrcATAAAAArCTCC^^ATATCGACATCCTTOTTCCCSCAAATCAATAACTCTCATAACSCTTTACAAACATTrr<X»AATCCCXI£^CICTC(XC-TA^UllLllCAllLLUUTACATTTAi. l lLLLllAACACAAACCAILTrLATTTgATCATAAAlll i irmCATAAATTCTTCTTTACATTCTTrCAACTn»TAATATAATTCATTT<rrTTTACCTCTAAAAAACCCTTjaC^^

AAAATCATCTCATTTCCAAATOU«aTTCTCCT<»AAAATTTCAAAATCTAATTCCATAI 111 CTATJglAACCGTAT ArAATArATTATArAATACAAT»»»»AmATATTACAr.ATTAAAACCCCCCCCCTSCO^.tl 1II111ATCC111L1L1.11 lATTTACTTATAAAAACCAACTATACgmiCftTCATCT ATAAAAACGT<3ATAATTTCATCA£AAGTAATTAAATTTSA

CTSAACAACACAAAAACACCAAATTOXACCCTTTTAAAa»XTAAAAAaUCAAATTAGCTTaVI^ —ACAAACATTTTTTATAATQAGTCrj;TIJl TATAAAACTeAAACTCCCACTCTCCATCACACCTCTUX11 Im-AACCATCTAAAATCACCTCAAAACCTCAI 111111AITCAAACAATAC AATTTCCTCATAAAACAACCTATArTACeArAAAAACArA

TCTrATTCAATCCACATJUa^CAAATTOAauacTTTTAAACCTCCCAAAAACAAGAAATTACC^CTAACCTTTCACCAATACCTCAAAACTCATTTCACAAAATAAASTCTTCCATTACACTAAJtm^»^^

ArTTACACCCCCCCCCCAACCAATAgCSCCTCACCCCACACTACTCATACAAAAACCCTAA). 11 Ul imAJSCCCCCT rTA M I mi ingTAgAATACATTTATATA J rTgAan(iACAOTTAAeACACTTTCCAAACAACCCCATCTAltl 1U.111 lATgOCCAAAAAACTACTAACTCAIiaACAAAAAAT TTTaAAATICAIAC&IIATATACATAATACCAATACAAATA

rACrTCCAAAATAAAAAAgCArrCAArTTTIU.1 I1J.IAI I I I IACTCAATTTTC f-TTTrATTt.11.1 TATTATATCTATAi

TTCATCCAAAATTTAATJUUgTAAATCATCACAJ-llUllCAAAAr^CAACAAOll.llLllllllCrATjaAXACCTAAJUaAACWXSTTAAAACACCrAACACCATTCTTCTACL 'K. 111 ^TCATCTCCAAAATTCCCATTjaAJftCATATA A

11-1111.11.1 ATAATCAAACTTATrcTATl.1 I IU-1 I I AATgTAATTAl. I m l IATGCCACCAA

-rAAnrjTTTATCTATAATCCCAATCATCAATAAAATCAAICATCAAATTTTCACACTCACCTAATATTACCTCAi.111I1IU lATCTAAAAAaACCTTXtgfiAATCCAAA-i^u-rrm^r.AA<rrAACjTrTrjaj«m:Trrm-r.rrrAgAcri.l I I I n n.i I n TTAgAAATrAgcrouiTeAAAmT—mj-pyAerrTCTATAATAAAACrAAATrAAAACCACTTTTA

CCCACCCCU. 111.1 lAATCATTTCTCACACCTTCAAALLI 1 IIJTTCAACAAAATTTCAATTACCAAIIIAC&TATCTT CAAJSACT«HniATCCTAAAAAAIATCTTAACAAAAAACCACTTATTCATTCCA«nACAJXAAATTl»CAC<KTITTAAACCTaXCAAAA£J*A«AATTAC^^ ACAAACATTTTI^tATCAl.11U. I UL itATAACAACTgTA

rf!TATr(n-rr>n-AAAi l i . l I li I I I »l-r»T«-rm^mATTrrrrrATr.ATAAATrAgCAA I I ll.ll'lJtTCCTeTTATAT—I Till llATTr.TCTATAATTCCAATTCATAATACTTATCAATTATCAL111111 LAJCTCATTTAATACACTCTTTTCAACAAAAATCAAAATgCATTTlX^ A£TTgCACZfiEIAUATCACASATGATAATCAllLlLl 111CaATCTCATCC3ttCTTCC(XCCCCAllllU-LlUACACAACACCACLlllLClllATCCT&AAAAaamiAAft^^ TTTCAAACCAlAIiATATAAAACTCAATTATTAAAOCAa:AAAATATAATTCCATrTACTAAAACCATAATATTCACTrCarTAAC«XCAATTTCAAAATTACCaa^ CCCCACTAISAIAATTTAACAAACCCCTATCATCATAAC

(^Ti^rrr jTi^iAArir i i^-r i rTi^^^rj trrTT-AAAAArArrATrATArtrTAAATrA^TAAgTTmyACfATrt—rrAAl-AAC^^AAATAAACAATCTTCTCATATCAATCCgTTAWX(nTTACATTCGCAAJMTTCACCCTAATCATCTCTTGTCAAAA£AC r.Am-er.crTTATATAA I li I I I I . IAATTTATATUTLT1.T1.TTn«^TAAnr»f - r»f f r r»Tr- i iT iTTr j»AT»T«rm-jr f r rTTTr i . ••mnTATAATTTAAATTAATAerra-rt TAATTTCCglAliAJArtAACATAAAACCTCATTCCAAT

AAAACAA<JkTCTCTAI»CTA1irrCTAArrCT(UTAAACCCTCCTCAAAACTACCACCAiUCTTTATTCTGTTAAT^AAUL1 lIXlAAAAATT^UUU^TtrlTAATACrCACATTTTAATAAJUU^ATCTAACCCrC^mACICTCATA TTCTTCATATTATCCAAAT n. I IACTAAATACTATCT

g»C(aCAACTAeCACCAACATTTCCTCCACATACTCTCTAl 11111 tAATTATTAAATAAAAATAAnCIgTAl 1111 lUJJATTCAICTIAjaATCgeATATTAAATACCCATTTAAAAAACCl^lUllLlUTAAAA<K»CAt^UllllULlUlLCATCAAX^llllCACAU.IlLAAATTTTAATIiaCA^ACCAC ACGAACTCCC1A2CATTATCTTATACAATCATAATCATTTTCTTACAATTTCCAIACTATATATCCATTAAMCACATAACTATTTTATAATAATTATAAAATAATATTi^3TTTTAC TTACACATrjlTATTA 11.1 IL1 IATAAATTCCAACACCTCAaaTgCCCAAATAAAAXaCTCAAAATTAAAATCrrAAATTACTATATACTTAICTArrOlCACCCTTTTjaj^CCI 11 11111LU11AIAA2AGACAAACTCCA1111L10C! 1ATCACCCCTCCTCAAACTCAATCAA^lllUUlLU^UKCTa^arrCACAJ.IIIXAtgCCTCAAAACCCamiAC^^ TCCCTTAAAACaATC^ACTCACTCCCCCCTATCCCgCCCTATTCCCAI111 lATAATTTCACTATATACCAACAAALUI 11 CTCTCAATTt. 111111 LGAACCTATCTTJCJACTCTAAg BAAAATrATnrTATA»TLTTC.TTAA»ATCCACCTTTTa>oe

CTTTrTACCACCAATAATCACCTCTCAATCTT AAAAI 11L111AAAAATAACCCAAAATTACCCIHACTTAATTA ATTTCCTAA£C1AA1A1AATTCCACAATTTCTTACAAAAAArhr.AT^rATrJlTATAATAACCTirrAACAACACACATTCAAA

nnn171717171717

is1717171717172017—17191119—17It1717111717171714171717171717—191711111717171720

It17171717171711IB19191719171711It1111171711It11171617It17171117It17111715191}201CIt1(17171717

SIJlSI)1---

nmsisi-siPESI

rePCsisiPCSIPEPEPEPESIPE

msisiPE

----pa

mPE

mPE31SI

mPESISI

m-si

(•2)(•21(•3,14)(•3,M)(•5)(•5)(•()K7)<«7>(•2)(•2)(It)(••)(•9)(90)(91)(92)(93)(94)(95)(«9)<9C)(97)(91)(99)(100)(101)(102)(103)(C9)(104)(17,105)(IOC)(107)(101)(109)(110)(111)(112,113)(114)(115)(lit)(117,111)(117,119)(114,115)(114)(120)(120)(121)(122)

(123)(7)(124)(125)(12C)(127)(121)(129)(130)(131)(132)(133)(133)(134)(135)(13t)(137)(131)(22)(461(139)(140)(71)(141)(141)(142,143)(144)(1451(145)(146)(147)(141)(149)(44)(ISO)(151)(152)(Stl(153)(154)(1551(15*1(139)(157)(15»)(159)(139)

Downloaded from https://academic.oup.com/nar/article-abstract/23/13/2351/2400518by gueston 09 April 2018

Page 5: Compilation and analysis of Bacillus subtilis oA-dependent promoter

Nucleic Acids Research, 1995, Vol. 23, No. 13 2355

Table 1. continued

ly»AlysRhonMt3•rgA9T9C«tr*BDPnprBorfl7orfXUj»bPTpdhAp*CptfilD

ph.3phoPprkAp»pydhyoSrib P2mpAroderpl»rpoBrp«rrtporf1•cBta»CA•on!Hll•In• lpS•IpipaOK«9UnUt«tewthrlthyBtmjtrpStycA

aAATTCGCCCASAASA£AAACCATTACAaVATACACCCTAAAATACCCAIIBAAAATCATT—-CTCAACCAtBTJAAAAICC

TCACTAAALUI lU-CCIfu:CCCTCCCATCCTCCTgrATCACTTOCOICCATACT6ILiCCCCAACCC TTCCAI 111 11.1 ATAATACAATATAATATTTr AJUUUUTCTTTTTACTATAAATCAAACCeCTATCATAAACUIH 11Al 11LI 11 lAAAAATCATCTAAAAgCCCAAHaTCCCAATCT LL IUL11 ILUTAAAATAAAATCATCAAATATCTTAACATr.II I I I L L U U I L I U CACTCTGCATCA I If.TBTH I.I I I ATTATCAArCCTrCCAnTCTn^TTgTTAArCATC TAICACTAICTTlAtlTir**0***CCAAA0CATOTATCAA1XJLLI1I IL-Il I ATCrCCT.enCJTAAAATACT'AAnCAArATCAAAAmtTTnCr.ATTrA I AAAACCTAA -T.AAATCTTCTATAATAATACAATTTr.AA 11.1 ILJTGCTCATCTCTICTIAI 1111LALI1111 ll^TTCAATTTCACTATTCCATTTATACAOCACCGCTATJlgMAATCTC CCCATCGAndAIASJAOAAATTCTCAACATTaOOOSATT

SAACCCAAACAATAT TTrA I I I OLCATTTAATCTATACaATCgAl. I H.TAAAGCCAT AASAOCnXSC3AIAAJATAAAATTCTCA0TAATAGAATTATTCAATAICTAATTAAACTACTTCTTATTCAAATAACAACIAl. 11111 T U I I U TTACATTCA111 JH^lfiiCTAAAG—TATCCOCCTACAlAJAAiTTTCAAIOATCATAIATTCTACAI

AAAATaa^TU>TATrfrrrjUUaTrATCgAAArTrCTrr.ATTl-TlTtCAArTAA«-|.'ri I L J I . H I A C T T R J J U . 1 I U I I J . AACAACCICnATTAICTAATAAACTrCOQlATTCTTTTTAACTgITCGATCAAl.11 ILCOIU-t lU\AAAAAAa^AAO(^TATT*TATXaTAAAAeCAAAAAAACTIiaACICCCTAT TTTAACTAtfiTlAAlAITOIAAAAIOCCAATCTATATATTT

rT-AAACCCAl. I I I I II AATTrAATCCArATAAAATAAACAAAATeTAAATrCCArAAIU.r I I L-ACATTCAACATArCC T(»AAATCCA<3ATAAIACAACTAACTCAACTCTCAACCAACTaAATACTACCCa^ «SGAAACASAIAJA£XTAAOTCTOCATCCTAATACATGCAA AAAOCTAlfiM41BAIAATCAGAGCTAIACATOGACTACT

3 I I i A £ ^ ^fyAiJ N.T r 1 UT 1 LJUUkTnfrTT^^Ua^LATATAAfTAAAAiayAfT"^^ATAAAArACTT&AAJU^'.TLTt. GAAACTTATACTATATTATAACCACAAATAAACATrCAAAA

TCATTTCTa^^

CATATCTAAACTTCCCCAATACCIUX1UXCATCTCTATA

17CAAAACTAACACCC«^TCCTTOUXCCAAAAATCGCTTAAOKAaXTACCAArrCATAATC< CAACACTATgATAATCTATCTCTTAATTATCAACr^ATAtrrATTCATAAACAATCATU-111A11H.1IACCAATTCAAACAIH.TCCAMUI.11IATATTATTATCHMCALLU111. ATATATCTTCTATAATCCATATAAAATAH1.1 I I I1ATTJ-At II II I r l A I I I IIATTAAAGAII 1 I I AATTTTAATTA I H I I II ILAmja-gTATgTATATATTrTT|-JTrTTAAAC -GCTAACAICGIAT£AJACATAAACGATAAATATAAATAAT 1 (

ATCCT<»«aU»AAJiCCTJirrcACCTCATCTJUU»TTATAAITATTATAATTrACTAnaAIITTTATT TACTATATgATATAATTAACTCAACACATTArAACrjira-Jl I t17II17TCATATTATTCAACAAAAACAAACACACGACAATACTATCAA111 llllTACTTATCTTA).! 111!MH«AfiIATTCCA MATgrTACTTTAATATAACAATATAAACTTTTrAgTATTT

CCAAATATCTCTGLU-11L111111 U»SAAATAAGAACCAACCACCACATACAAI. 11111UTAI1 UJLAX&CGATCA ACAAAAATnCTAnATTCCCAACCATI.IM.II.I I I m fJ-A 1 (TCATfATCTCTACAATCACAACC^L I I I A II. 111. 1 I I ttgACAATCCATAUl L ILL- I I 11.LU11 1LACTTATACTTAATATCTAGPL A^CTAAT 19

AACSCTCAaUXACTGGCCGATCACOTrAAAAACCCTrrCTAAATTTCACATAACCTTCAAA —aKXrTCGATTAAAAAAACCCAAAACTCCLU;! 1LUXGCGA1.1111111 ATAl 1 IU.mATCAAATAJJaE*.TCTCTC CCAa3AAJfiTIAT3crTCSAAgACAAATTCAL 111111 LA 1 (

arrTaV-JUlTAArTfaJjaTACTMrrCrr-m-»»ATerTrrATTATCATTrAl ll I I rTAgATTATTTTCATI^UUUU>CeCATJUUtTJUtACAATACAAT»»»>n>»»>l^r>CATCCCACA 20ATTA1. I ATAArTTCatAATAATArj^TTrJUlAnrJUaCTCrAACTATrfTArATAAAA<ariTTT<a»-JUUlCT^ 19

ATin&&ICAAACTaCATAATXSACAOCCAAC 21CCTAnKKBtCStMCCM^CnUSX^UkAATtXAaAAATJCAakT^AASCCTTIACTGAK 20

l l l l l l l U U ^ l L l l l ( g C g r a g » l l l T U J G A A r a X < a a A C T C < a T A C C B a U i C A m CAATTTOCTATTATAI rTTTLlCATAAATTOCAATAAAATr 17IC.r IUTTrTATTTTTATlAA.LI 11.1 11 I CgrAACTTATAAAAATATAArjtTrAATTCATTCTA 11. I I I ATTAOrOOr—AAAfillJ.l 111-1 I ATAfTAACTCTgATOrtCAAArAI-rTrAAA H

gAAASCATAAACCCTCCTTgAATTTTCAATTAl 1 ILLLl lLlU^TTC«aACAAAAT^»TCAAAAAAAJaAMCCCTTT-AAlt 11111 liBVIA^a*»U»ACCAASATACTACATCTTCAT 19

I I 111 I UtCAAAATItOlATTATAATA^U^ATATTrcAJJUUL^TTr Tt^TT^TTTAATa^rjiTTTAi i l l I I ii AATAI I I 11 AncrrTAnTTATrjTrrju-AACAAAAAATArjj-ATeATrrrcncTArjACATnAAn—ATTAACACTTTCTAAAATCACTrcAATCCTlXTAAToagATT

ATAAAAAATAAAAAaCCATCCCCCTTTAACCCCCAIll. 1 11 I !TIIALILIIIJTaUKQUXMCATTCACATTCTCC-eCACCAACTTCCATATAATCTTCTCAL 11 1L rLATCTTrAAACACAAaaVTAT^ATCTTCATCCAAOUlAAACTAACCAArnTTAAATATTTTAAAT^CATAAAATAATAntKiiTAAATT AflTCIITLATIAIAAlCAALl 11.11LACTCTATTCTTACATCTAAACATAATCTTAATCC1111.1 HAU^TTTATCTTAAAATATAACCTACC 1 1 I A 1 1 1 1 U . 1 1 lIAgAAAgTCTCC (TrrTTTAACTAIAT^AATACAATCTTAAAGaAACSAGCACC11J-I I lAATTCTrArrntaTrTrCCfiCCTArCTAAftaaTtriT'AACAAAArATTr^AACCATAAATrTTf^rrAAATAA glATTCCTCTTAATATACACCTCCAGAArAATTCAATATC K

ACTTCACATAAATneCAATAACI.1 I I I I LL 1 l u l I ILiyjUlTCTariTAAATTTrrATAAAAAAACTAAAACTTTAATCCTTACTXTATATATAATAACATCATATCAATrAAATCTAnnC CSAATATATAdAASAIATAAAAAATTATTSA

1717ItII

1719II191717

17II

17TATGCCCCTgTAra-rr AAT TCCTACACf AATTT.ArTTCTAATrACTAGC1 I l^maMTCAAl. I LL IL I I LiTf-CrATTA LTT 11ATATCATATAATACTCAACTLIL 1 IUI ACAACACTrAACCTrAauiTrjTTCMTTTTAATarMATAATCAOCCTCnTACCArLJ.1 UJH IU.1LLLI1I II I ACACCGGAAGAATCAILL 1 I I I I I ATTA I Ul I 1 I AACAAATTJCCTTCATflTT 20

TTCCATTTArnTAAAAACCTTCTAAAAAAJU.I 11. I II-AATI I I I lULAAAATATTrrTAl I I I I I AATrCATTTrCAAT 1T 11L1 CUJLXMaAJCAJ. 111LACCCTCAOTAACCTACT 1 (

CCCCATTATAT TACTCTTAATAATAAAAAa•ty-AAAACATCATTCATCAATCAA—AAACACTTTTATTATAATAAACAACATAAATAATeTATArAA I I

-TGAACCTACTACATAATAATAATAAAACTCACTATAJCACAC 17

(1(0)(139)(139)(1(1)(1(1)(1(2)(1(3)(1(4)(1(5)(127)(ltt)(1(7)(Id)(Id)

(1(9)(170)(171)(172)(173)(1741

(127)(139)(175)(17O(177)(139)(132)(171)

(110)(139)(111)(112)(Id)(113)(114)(115)(100)(IK)(117)

(111)(119)(190)M 39)

The left column is the gene designation for each promoter sequence. Promoters are defined by the first downstream gene if an operon is present. In the case ofmultiple Stan sites, promoters are designated PI, P2, etc., as in the original citation. The spacer length (SL) and the method used to determine the start site (SS)are indicated to the right of each sequence. The abbreviations used are: PE, primer extension transcript mapping; S1, S1 nuclease transcript mapping; RN, RNAanalysis by either high resolution run-off transcription or, in some cases, by RNA sequencing. The last column contains the reference to the promoter sequenceor, when available, to determination of the start site.

Conserved bases in the promoter region

The most highly conserved bases have been identified for all 236promoters (Fig. 1) and for a subset of 125 promoters with the mostcarefully defined transcription start sites (data not shown), butboth analyses yielded similar results. Overall, the pattern ofnucleotide conservation is reminiscent of that observed for E.colipromoters (190,191) and can be summarized as TTGaca (N11± \)TAtAAT (where bases in capital letters are present in >70% ofpromoters). As inferred from biochemical studies (207,209),B.subtilis appears to be less tolerant of deviation from this 12 bpconsensus than E.coli: on average B.subtilis promoters matchconsensus at 9.1 positions, compared with only 7.9 for E.coli(193,215). Perfect (12 out of 12) matches to this consensus arefound in four out of the 125 chromosomal promoters in Table 1A(glnR, rpmH, spoIIE and trnS), but in none of the 298 tabulatedE.coli promoters (193). In addition, relatively few B.subtilispromoters (seven out of 125 in Table 1 A) lack an identifiable -35region (<3/6 match to consensus), although not all of the assigned-35 regions are necessarily functional.

Many other positions within the promoter exhibit a lesserdegree of sequence conservation. Statistical analysis revealsconservation of a T at -48, an A-rich region near -43, TnTG at-17 to -14 and a downstream extension of the -10 region (Fig. 1).Each of these features was noted previously based on an

alignment of 29 promoters from several different gram positiveorganisms (208), but they are not prominent in alignments ofE.coli promoters (191-193).

The conserved -35 and -10 elements are most frequentlyseparated by a 17 base spacer region (Fig. 2A), as found for E.coliRNAP. There is no apparent correlation between the occurrenceof the TG dinucleotide at -15,-14 (see below) and spacer length.The average distance between the -10 region and the start oftranscription is seven bases, although values between four and 10bases have been measured by primer extension start site mapping(Fig. 2B). B.subtilis RNAP appears to initiate transcriptionpreferentially with a purine, as noted previously for E.coli RNAP(192). This is most apparent where transcription initiates at eitherof two purines while an intervening pyrimidine is largely ignored(e.g. gsiA and nrgA).

The conserved TG dinucleotide

Alignment of nine strong oA-dependent promoters led to aproposed consensus of RTRTG for the -18 to -14 position* ofB.subtilis promoters (209). Recently a class of E.coli promoterslacking a conserved -35 region but containing a TG dinucleotideat -15,-14 has also been described. These 'extended' -10promoters include a derivative of X Pre (216), Gal PI (217) andcysG (218). This element may play a role in promoter melting,

Downloaded from https://academic.oup.com/nar/article-abstract/23/13/2351/2400518by gueston 09 April 2018

Page 6: Compilation and analysis of Bacillus subtilis oA-dependent promoter

2356 Nucleic Acids Research, 1995, Vol. 23, No. 13

UNK13 14 15 16 17 18 19 20Spacer Length

3 ' 4 ' 5 6 7 8 9 1 0 11Distance from -10 Hexanucleotide

Figure 2. (A) Distribution of spacer lengths for the 142 promoters of Table 1A.Spacer lengths were assigned by optimizing the match to consensus for both the-35 and -10 regions. When no -35 region was discernible (<3/6 match toconsensus) the spacer is assigned as UNK (unknown). (B) The distribution ofmapped start sites as a function of distance from the last conserved base of the-10 hexamer (TATAAD.

since a single base change which creates a TG dinucleotide in aderivative of Gal PI reduces the transition temperature by 20°C(219).

In the promoter alignments presented here, the T at -15 and theG at -14 are both conserved (58 and 52% respectively).Moreover, the T at -15 and G at -14 are positively correlated: TGoccurs in 45% of promoters (Table 1 A), significantly more thanexpected from the product of the individual base frequencies,30% (0.58 x 0.52). This suggests that the important conservedelement is at least a dinucleotide. Indeed, dinucleotide composi-

tion is a more precise indicator of DNA structural properties thanbase composition (220,221). The RTRTG motif proposed for thisregion (209) is supported by the presence of a weakly conservedT at -17 (Fig. 1) and the observation that T(-17) and R(-16) are52 and 69% correlated with the presence of a TG dinucleotide.

Analysis of dinucleotide frequencies

Next, I analyzed the dinucleotide composition as a function ofpromoter position (Fig. 3). This analysis reveals the same overallpattern as when the most frequent base is plotted (Fig. 1): in eachcase the -35 and -10 regions contain the most conservedelements. However, since there are 16 dinucleotides, the back-ground signal is reduced by at least a factor of two. In thisanalysis, 'TG' at -15 (position indicates the upstream base)clearly emerges as a conserved feature. Throughout the upstreampromoter region (-100 to -36), 'AA' and 'TT' are the mostfrequent dinucleotides at 60 of the 64 positions. The exceptionsare -92 and -48 (TA), -74 (GA) and -68 (AT). This is consistentwith the AT-rich nature of this region and with the abundance ofAn and Tn tracts (see below).

Closer inspection of the dinucleotide frequencies upstream of-35 reveals a striking pattern (Fig. 4). There are regions enrichedfor 'AA' centered at —43, -54 and -64, with intervening regionsenriched in 'TT.' This suggests that the binding of RNAPinfluences the DNA sequence as far upstream as -70. Non-randomness in dinucleotide composition upstream of E.colipromoters has also been reported (206), but no helical phasingwas noted.

Statistical analysis of oligo(dA) and oligo(dT) frequencies

Inspection of the aligned promoter sequences suggests that theupstream regions are enriched for short An and Tn tracts, a featurenoted also in promoters from Lactobacillus (222). Indeed,statistical analysis of An and Tn sequences within the upstreamregion (-36 to -80) of the 142 promoters of Table 1A reveals asubstantial over-representation of longer repeats (n > 4) (Fig. 5 A).In contrast, analysis of randomly chosen 30 kb regions of theB.subtilis genome revealed only a slight (2-3-fold) over-representation of longer A^ and Tn repeats (Fig. 5B). Note thatsince the relative AT-richness of the upstream region has been

-100 -90 - 8 0 - 7 0 -60 - 5 0 - 4 0 - 3 0 -20 -10

^ Figure 3. The frequency of the most commonly occurring dinucleotide at each position is indicated for the 236 promoters of Table 1 (the jr-axis indicates the positionof the upstream base of the dinucleotide).

Downloaded from https://academic.oup.com/nar/article-abstract/23/13/2351/2400518by gueston 09 April 2018

Page 7: Compilation and analysis of Bacillus subtilis oA-dependent promoter

Nucleic Acids Research, 1995, Vol. 23, No. 13 2357

-80 -75 -70 -65 -60 -55 -50 -45 -40 -35Position within Promoter Sequence

-93 -85 -75 -65 -55 -45 CTLPromoter Position (20 bp windows)

Figure 4. Frequency of AA (o) and TT (•) dinucleotides in the region between-35 and -80. Three regions where 'AA' is the most abundant dinucleotide (-40to -45, -50 to -56, and -62 to -67) alternate with regions where 'TT is mostabundant.

0.11 2 3 4 5 6 7 8 9oligo-d(A) or oligo-d(T) length

1 2 3 4 5 6 7 8 9oligo-d(A) or oligo-d(T) length

Figure 5. Enumeration of An and Tn sequences. The expected (open symbols)and actual (closed symbols) occurrence of An (squares) and Tn (circles) areplotted for (A) the upstream promoter regions (-36 to -80; Table 1 A) and (B) a30 kb segment of the B.subtilis genome. The expected occurrence of eachdinucleotide is a decreasing exponential function of sequence length (n)calculated using the actual base frequencies within the corresponding DNAregion.

Figure 6. Enumeration of A, and Tn sequences for n > 4. The occurrence of Anand Tn sequences (n > 4) was determined for 20 bp windows centered at theindicated base in the upstream promoter regions (Table 1A). As a control(CTL), An and Tn sequences (n > 4) per kb of sequence were enumerated forfive regions of 30 kb each from the B.subtilis genome. The error bars represent1 SD based on Poisson statistics (for the promoters) and on the five independentdeterminations of An and Tn frequencies for the control. Note that no correctionhas been applied to account for the difference in AT-richness between thepromoter DNA and B.subtilis genomic DNA.

of the DNA in the promoter complex is not known, these twoexplanations are not mutually exclusive.

The observation that the average DNA sequence inferred fromalignment of 236 promoters contains alternating A and T tracts inthe region between -70 and -36 (Fig. 4) predicts that an upstreamregion conforming to this pattern might be stimulatory fortranscription. This appears to be the case: the upstream regions ofboth the aH-dependent spo VG promoter (210) and the <t>82alu 156promoter (120; Table 1) closely match the derived consensus,contain intrinsic DNA bends (211,224) and activate transcriptionin vivo and in vitro (210,211,225).

ACKNOWLEDGEMENTS

I thank Kurt Fredrick for pointing out the similarity between thespoVG UAS and the upstream promoter consensus. This workwas supported by National Institutes of Health grant GM-47446.

taken into account in calculating the expected number of repeats,the abundance of An and Tn (n > 4) in the -36 to -80 region is notsimply a consequence of high AT content (Fig. 5A). Next, 1measured the total number of An and Tn repeats (n > 4) inoverlapping 20 bp windows throughout the upstream promoterregion. This analysis revealed that the over-representation oflonger An and Tn tracts (n > 4) noted for the -36 to -80 intervaldecreases with increasing distance from the start site (Fig. 6).

The significance of these periodically repeated An and Tn tractsis not known, but two possibilities warrant consideration. First,this upstream region may contact the a subunits of RNAP, asdemonstrated for both the E.coli rmB PI and the B.subtilisflagellin promoters (196-198). Secondly, the upstream region ofthe promoter may wrap around RNAP during transcriptioninitiation (reviewed in 201). In fact, there is a very goodcorrelation between those An and Tn tracts which are over-represented in the upstream region and those which induce a staticDNA bend: An tracts of at least four bases in length are neededfor production of a DNA bend and bending is maximal when n -6 (223). Since the relationship between a binding and the writhe

REFERENCES

1 PeregcM., Spiegelman.G.B. and HochJ.A. (1988) Mol. Microbiol. 2,689-699.

2 Grundy.FJ., Waters.D.A. and Henkin,T.M. (1993) / Bacteriol. 175,7348-7355.

3 Grundy.FJ., Turinsky,AJ. and Henkin,T.M. (1994) J. Bacterial. 176,4527-4533.

4 MorohoshiJ7., Hayashi.K. and Munakata^l. (1993) / Bacteriol. 175,6010-6017.

5 Haijema,BJ., Hamoen,L.W., KooistraJ., Venema, G. and van Sinderen, D.(1995) Mol Microbiol. 15, 213-223.

6 Siranosian,KJ., Ircton, K. and Grossman^A.D. (1993)/ Bacteriol. 175,6789-6796.

7 RennaAI.C., Najimudin, N., Winik, L.R. and Zahler^.A. (1993)/Bacteriol. 175, 3863-3875.

8 Nicholson,W.L., Parlc,YX, Henkin.TJvl., Wbn,M., WeickeruMJ.,GaskellJ.A. and Chambliss.G.H. (1987)/. Mol. Biol. 198, 609-618.

9 SunJ). and Setlow,P.L. (1991)/ Baaeriol. 173, 3831-3845.10 Henner,DJ., FerrariJE., Perego». and HochJ.A. (1988) / Baaeriol. 170,

296-300.11 O'Reilly,M., Woodson,K., DowdsJ3.C. and Devine,K.M. (1993) Mol.

Microbiol. 11, 87-98.12 SmithJvi.C.M., Mountain^, and Baumberg, S. (1986) Gene 49, 53-60.

Downloaded from https://academic.oup.com/nar/article-abstract/23/13/2351/2400518by gueston 09 April 2018

Page 8: Compilation and analysis of Bacillus subtilis oA-dependent promoter

2358 Nucleic Acids Research, 1995, Vol. 23, No. 13

13 Chen.N.Y., Jiang,S.Q., Klein,D.A. and Paulus,H. (1993) / Biol. Chem.268,9448-9465.

14 Song3.H. and NeuhardJ. (1989) MoL Gen. Genet. 216, 462^*68.15 Wang,P.-Z. and Doi,R.H. (1984) / BioL Chem. 259, 8619-8625.16 Ju^S. and SonensheinAL. (1994) J. Bactcriol. 176, 4680-4690.17 Whipple,F.W. and SonensheinAL. (1992) / MoL Biol. 223, 399-414.18 FouetA, Jm,S.-E, Raffel.G. and SonensheinAL. (1990) / Bacterial. 172,

5408-5415.19 Weinrauch.Y., Guillen^, and DubnauJ)A (1989)/. Bacterial. 171,

5362-5375.20 Mohan,S. and DubnauJD. (1990)/ Bactcriol. 172,4064-4071.21 Mohan.S., AghionJ., Guillen^, and DubnauJD.A. (1989) J. Bactcriol.

171,6043-6051.22 HahnJ., Inamine.G., Kozlov.Y. and Dubnau.D.A. (1993) MoL Microbiol.

10,99-111.23 Londono-VallejoJA and DubnauJ). (1993) MoL Microbiol. 9, 119-131.24 Albano,M., Breitling,R. and Dubnau,D.A. (1989) / Bactcriol. 171,

5386-5404.25 Van-SinderenJ}., Ten-BergeA, Jan-Hayema3., Hamoen,L. and

Venema,G. (1994) MoL Microbiol. 11, 695-704.26 Weinrauch.Y., Msadek,T, KunsUE and DubnauAA. (1991) J. Bactcriol.

173,5685-5693.27 Willimsky.G., Bang.H., Fischer.G. and MarahielJVl.A. (1992) / Bactcriol.

174,6326-6335.28 MuellerJ.P. and Taber.H.W. (1989) J. Bactcriol. 171, 4979-4986.29 SlackJU., MuellerJ.P., StrauchJvl.A., Mathiopoulos,C. and Sonen-

sheinAL. (1991) MoL Microbiol. 5, 1915-1925.30 Yang,M., Ferrari^., Chen,E. and Henner.DJ. (1986) / Bacteriol. 166,

113-119.31 Msadek,T., KunstP., HennerJ)., KlierA, Rapoport,G. and Dedonder,R.

(1990) J. Bacteriol. 172, 824-834.32 Harry,EJ., Rowland.S.L., Malo,M.S. and Wake,R.G. (1994) / Bacteriol.

176, 1172-1179.33 Moriya,S., FukuokaJ., Ogasawara^J. and YoshikawaJH. (1988) EMBO J.

7,2911-2917.34 Wang,L.F. and Doi,R.H. (1987) MoL Gen. Genet. 207, 114-119.35 Wetzsteinjvl., Voelker.U., DedioJ., Loebau.S., Zuber.U., Schiesswohljvl.,

Herget,C, Heckerjvl. and Schumann,W. (1992) / Bacterial. 174,3300-3310.

36 Honda,K., Nakamura,K., Nishiguchi,M. and Yamane.K. (1993) /Bacteriol. 175, 4885-4894.

37 Gonzy-Treboul.G., Karmazyn-CampeUi.C. and Stragier,P. (1992) / MoLBiol. 224, 967-979.

38 Hove-Jensen3. (1992) / Bacteriol. 174, 6852-6856.39 NilssonJ)., Hove-Jensen3- and Amvig.K. (1990) MoL Gen. Genet. 218,

565-571.40 Strauch,MA, AronsonAL, Brown,S.W., Schreier.HJ. and Sonen-

sheinAL. (1988) Gene 71, 257-26.41 Holmberg,C. and Rutberg3- (1991) MoL Microbiol. 5, 2891-2900.42 Holmberg.C, BeijerX-, Rutberg.B. and Rutberg.L. (1990) J. Gen.

Microbiol. 136, 2367-2375.43 Beijer,L., NilssonJt.R, HolmbeiTg.C. and RutbergX- (1993) / Gen.

MicrobioL 139, 349-359.44 Nilsson,R.P., Beijer^. and Rutbetg,B. (1994) Microbiology 140, 723-730.45 BohannonJ)£. and SonensheinAL. (1989) J. Bacteriol. 171, 4718-4727.46 Gagnon.Y, BretonJL, Putzer.H., Pelchat>l., Gninberg-Manago,M. and

LapointeJ. (1994) / Biol Chem. 269, 7473-7482.47 Robson^LM. and Chambliss.G.H. (1987)/ Bacteriol. 169, 2017-2025.48 Fujita,Y. and Fujita,T. (1986) Nucleic Acids Res. 14, 1237-1252.49 LiM. and Wong^.-L. (1992) /. Bacteriol. 174, 3981-3992.50 MuellerJ.R, Bukusoglu,G. and SonensheinAL. (1992) J. Bacteriol. 174,

4361^373.51 Maentsaelae,P. and Zalkin^. (1992) / Bacteriol. 174, 1883-1890.52 Ye,R. and Wong^.-L. (1994) J. Bacteriol. 176, 3314-3320.53 OgasawaraJ>J., Moriya,S. and Yoshikawa,H. (1985) Nucleic Acids Res. 13,

2267-2279.54 Micka,B., GrocVJ., Heinemann.U. and Marahiel>l^. (1991)7.

Bactcriol. 173, 3191-3198.55 Petricekjd., RutbergX-, Schroeder.I. and HedeisteduL- (1990) J.

Bacteriol. 172, 2250-2258.56 Xu,G.L., Kapfer.W., WalterJ. and Trautner.TA. (1992) Nucleic Acids Res.

20,6517-6523.57 WrayX.VJr and Fisher^.H. (1994) / Bacteriol. 176, 5466-5473.58 GrandoniJA, Zahler,SA, and CalvoJ.M. (1992)/ Baaeriol. 174,

3212-3219.

59 LeDeauxJ.R. and GrossmanAD. (1995) / Baaeriol. 1T7, 166-175.60 Rie<hdorf,S., Voelker.U., Gerth,U., WinklerA, Engelman.S. and

HeckerAI. (1994) / Bacteriol. 176, 6518-6527.61 CheivN.Y., Huf.-M. and Paulusjl. (1987) / Biol. Chem. 262, 8787-8798.62 Kong,L, Siranosian,KJ., GrossmanAD. and DubnauJ). (1993) MoL

Microbiol. 9, 365-373.63 DriscolU.R. and Taber^.W. (1992) / Bacteriol. 174, 5063-5071.64 SunJ). and SetlowJ1. (1993) J. Baaeriol. 175, 1423-1432.65 NakanoM.M., Yangp., Harding, and Zuber^. (1995) / Baaeriol. 177,

573-579.66 Wray,LV., Atkinson^.R. and Fisher.S.H. (1994) / Baaeriol. 176,

108-114.67 Shazand,K., TuckerJ., Grunberg-Managojvi., RabinowitzJ.C, and

Leighton.T. (1993) / Bacteriol. 175, 2880-2887.68 Resnekov,0., MelinJ^., CarlssonP., Manneriov>1., von GabainA and

Hederstedt,L. (1992) MoL Gen. Genet. 234, 285-296.69 Trach,K., ChapmanJ.W., PiggotJ., Lecoq.D. and HochJ.A. (1988) /

Bacteriol. 170,4194-4208.70 Popham,D.L. and SeUowJ". (1994) / Bacteriol. 176, 7197-7205.71 Popham.D.L. and Setlow^.L. (1993) / Bacteriol. 175, 2917-2925.72 PophamJD.L. and SeUowJ1. (1993) / Bacteriol. 175,4870-4876.73 HulettJ.M., LeeJ., ShiJ.., Sun.G., Chesnut,R., Sharkova^., Duggan>1.F.

and KappJM. (1994)/ Baaeriol. 176, 1348-1358.74 Herriei\M., Bang,H. and Marahiel^lA. (1994) MoL Microbiol. 11,

1073-1083.75 Gonzy-Treboul.G., Zagorecjvi., Rain-GuionJVl.C. and Steinmetz>l.

(1989) MoL Microbiol. 3, 103-112.76 EbboleJDJ. and Zalkin.H. (1988) / Biol Chem. 263, 10894-10902.77 Quinn.C.L., Stephenson.B.T. and Switzer.R.L. (1991) / Biol. Chem. 266,

9113-9127.78 ChecD.L., Bayles,K.W. and Yasbin,R.E. (1993) / Bacteriol. 175,

5907-5915.79 Kil.Y.V, Mironov,VJ>I., GorishinJ.Y, Kreneva,Rj\. and Perumov.DA.

(1992) MoL Gen. Genet. 233, 483-488.80 Monya,S., Ogasawarajvl. and Yoshikawa,H. (1985) Nucleic Acids Res. 13,

2251-2265.81 Grundy^J. and Henkin.T.M. (1990) / Bacteriol. 172, 6372-6379.82 OgasawaraJ>J., Moriya,S. and YoshikawaJ4- (1983) Nucleic Acids Res. 11,

6301-6318.83 Stewart,G.C. and Bott,K.F. (1983) Nucleic Acids Res. 11, 6289-6300.84 OgasawaraH, Moriya,S., von-Meyenburg,K., Hansen^.G. and

Yoshikawa,H. (1985) EMBO J. 4, 3345-3350.85 Jarvis,E.D., Cheng.S. and Rudnerji. (1990) Genetics 126, 785-798.86 Green.CJ. and Vold3.S. (1992) / Bacteriol. 174, 3147-3151.87 WidonvR. (1988) Heterogeneity of ribosomal RNA operons in Bacillus

subrilis. PhD thesis. City University of New York, New York, NY.88 Shimotsu.H. and Henner,DJ. (1986) / Baaeriol. 168, 380-388.89 Crutz^Jvl. and Steinmetzjvl. (1992) / Bacteriol. 174, 6087-6095.90 Melin,L., Rutberg.L. and von GabainA (1989) / Bacteriol. 171,

2110-2115.91 WiseAA. and Price.C.W. (1995) / Bacteriol. 177, 123-133.92 HansenJ.N. and Chung.YJ. (1992) J. Baaeriol. 174, 6699-6705.93 ChibazakuraJ., Kawamura,F. and Takahashijj. (1991) / Baaeriol. 173,

2625-2632.94 TrachJC. and HochJ.A. (1989) / Bacteriol. 171, 1362-1371.95 Peregojvl and HochJ.A. (1991) / Baaenol. 173, 2514-2520.% WcirJ., Predich>l., Dubnau^E., Nair.G. and Smith J. (1991) / Bacteriol.

173, 521-529.97 Kenney.TJ., York,K., YoungmanJ3. and Moran,C.P.r)r(1989) Proc. Nail.

Acad. Sci. USA 86, 9109-9113.98 YorkJC, Kenney.TJ., Satola,S., Moran.C.P.Jr, Poth,H. and YoungmarU1.

(1992)/ Bacteriol. 174, 2648-2658.99 Nakano,M.M., XiaX. and Zuber.P. (1991) / Baaeriol. 173, 5487-5493.

100 Sakaguchi,R., Amanojl. and Shishido.K. (1988) Biochem. Biophys. Ada950,441^*44.

101 GendronJM^ Putzerjl. and Grunberg-Manago,M. (1994)/ Baaeriol. 176,486-494.

102 GarrityJJ.B. and Zahkr^A. (1993) / Bacteriol. 175, 6512-6517.103 ShimotsiOi. and HennerJ)J. (1984) Proc. NatL Acad ScL USA 81,

6315-6319.104 Henkm,T.M., Glass3L. and Grundy^J. (1992) J. Baaeriol. 174,

1299-1306.105 LeGnccS.FJ. and SonensheirM\.L. (1982) / MoL Biol. 162, 551-564.106 Krcuzer,P., GaertncrJD., Allmansberger^. and Hillen,W. (1989) /

Baaeriol. 171, 3840-3845.

Downloaded from https://academic.oup.com/nar/article-abstract/23/13/2351/2400518by gueston 09 April 2018

Page 9: Compilation and analysis of Bacillus subtilis oA-dependent promoter

Nucleic Acids Research, 1995, Vol. 23, No. 13 2359

107 OsburocM.S. and CraigJU. (1986) J. Gen. Micwbiol. 132, 565-568.108 Osbume,M.S., CraigJU. and Rothstein,D.M. (1985) J. Bactcriol. 163,

1101-1108.109 Tailor,R., Bensi,G., Morelli.G., Canosi.U. and Trautner,T.A. (1985) / Gen.

Microbiol. 131, 1259-1262.110 Lee.G. and PeroJ. (1981) J. MoL Biol. 152, 247-265.111 Lee.G., Talkington,C. and PeroJ. (1980) MoL Gen. Genet. 180, 57-65.112CuUyJ).F. and GarroAJ. (1985) Gene 38, 153-164.113 DhaeseP., SeurinckJ., De Smet,B. and Van Montagu^!. (1985) Nucleic

Acids Res. 13,5441-5455.114 Murray.C.L. and RabinowitzJ.C. (1982)/ Biol. Chem. 257, 1053-1062.115 Rojo,F., Nuez3., Menciajvl. and Salas,M. (1993) Nucleic Acids Res. 21,

935-940.116 Mellado,R.P., BarmelemyJ. and Salas,M. (1986) Nucleic Acids Res. 14,

4731^4741.117 Garvey.KJ., Yoshikawa,H. and ItoJ. (1985) Gene 40, 301-309.118 Dobinson,K.F. and Spiegelman.G.B. (1985) J. Biol. Chem. 260,

5950-5955.119 Dobinson,K.F. and Spiegclman.G.B. (1987) Biochemistry 26, 8206-8213.120 McAllister.C.F. and Achberger^.C. (1988) J. BioL Chem. 263,

11743-11749.121 Achberger,KC., HiltonJvi.D. and Whiteley,H.R. (1982) Nucleic Acids Res.

10,2893-2910.122 BuhUl.-J., Behrens3., Tailor.R., Wilke,K., PradaJJ., Guenthert,U.,

Noyer-Weidner,M., Jentsch,SP. and Trautner/TA. (1984) Gene 29, 51-61.123 Ohmiya,K., Tanaka,T., Noguchi,N., O'Hara,K. and Kono,M. (1989) Gene

78, 377-378.124 Emori,M., Takagijvl., Maruo,B. and Yano.K. (1990)7. Bacteriol. 172,

4901^*908.125 SunJ). and SeUow.PX. (1993) J. Bacteriol. 175, 2501-2506.126 KoideA and HochJ.A. (1994) MoL Microbiol. 13, 417^*26.127 SorokinAV., Zumstein,E., Azevedo.V., Ehrlich.S.D. and SerrorP. (1993)

MoL Microbiol. 10, 385-395128 NakaneA, Ogawa,K., Nakamura,K. and Yamane.K. (1994) / Ferment.

Bioengng TJ, 312-314.129 MendozaJ>).S., Ueda^l., Kawaguchi.T., Joson,L.M. and Arai,M.

(unpublished) D37964.130 Tezuka,ft, Yuukj.T. and Yabuuchi.S. (1989) Agric. BioL Chem. 53,

2335-2339.131 Ahmed^l., Lyass,L., Vazquez-Laslop,N. and NeyfakhAA. (unpublished)

L32599.132 NeyfakhAA., Bidnenko.V.E. and Chen,L.B. (1991) Proc. Nail. Acad. Sci.

(7X4 88,4781^785.133 Hemilae.H., KoivulaJ. and Pauling, (unpublished) X58433.134 von Wachenfeldt,C. and HederstedU.. (1990) J. BioL Chem. 265,

13939-13948.135 Henkin,T.M., GrundyfJ., Nicholson,W.L. and Chambliss.G.H. (1991)

MoL Microbiol. 5, 575-584.136 Seo.Y.S., Lee.Y.H., Pek,U.H. and Kang,H.-S. (1986) Korean J. Microbiol.

24, 236-242.137 Kirsch,M.L., ZuberiAR-, Henner.D., PetersJ>.D., Yazdijvi^. and

Ordal.G.W. (1993) J. Biol. Chem. 268, 25350-25356.138 ParicS.H., Kim,H.K. and PackX.Y. (1991) Agric. BioL Chem. 55,

441^48.139 OgasawaraJM., Nakai,S. and Yoshikawa,H. (1994) DNA Res. 1, 1-14.140 MorohoshiJ7., Hayashi,K. and MunakataJM. (1989) Nucleic Acids Res. 17,

6531-6543.141 Cheo,D.U Bayles,K.W. and Yasbin.R.E. (1991) J. Bacteriol. 173,

1696-1703.142 OgasawaraJM., Moriya^., Mazza^.G. and Yoshikawa^l. (1986) Nucleic

Acids Res. 14, 9989-9999.143 Hoshino.T., McKenzie.T, Schmidt,S., Tanaka,T. and SueokaJ>J. (1987)

Proc. NalL Acad. ScL USA 84, 653-657.144 StruckJ.C, Vogel,D.W., UlbrichJ*!. and Erdmann.VA (1988) Nucleic

Acids Res. 16, 2720.145 Saxikm.H., AndersenJ^N. and Hammer.K. (unpublished) X82174.146 MacKay,R.M., LoA, Willick,G., Zukerjvl., Baird,S., Dove,M.,

Moranellif. and Seligy.V. (1986) Nucleic Acids Res. 14, 9159-9170.147 QuiricJ'.G., GuffantiAA., Clejan^., OiengJ. and Kiulwich.T.A.

(unpublished) LI9954.148 Hantke.K. and Schneider^ (1993) MoL Microbiol. 8, 111-121.149 Beijer,L., Nilsson,R.-P., Holmbeig.C. and Rutbeix4- (1993)7. Gen.

Microbiol. 139, 349-359.150 Wetzstein,M. and Schumann,W. (1990) Nucleic Acids Res. 18, 1289.151 Parso.C. and Cohen,G.N. (1988)/ BioL Chem. 263, 14654-14660.

152 WalterJ., Noyer-Weidner>l. and Trautner/T.A. (1990) EMBO J.9,1007-1013.

153 Kapfer.W., WalterJ. and Trautner.TA (1991) Nucleic Acids Res. 19,6457-6463.

154 ArmpriesterJ.M.Jr and FinkJ>.S. (unpublished) M58606.155 Glaser,P, KunstJ., ArnauiM., CoudartJviP., Gonzales,W., HulloJvlJ.,

Ionescujvi., Lubochinsky3-, Marcelinojw., MoszerJ., PresecanJE.,Santana>!., SchneiderJE., SchweizerJ., VertesA, Rapoport,G. andDanchinA (1993) MoL Microbiol. 10, 371-384.

156 BolJD.K. (1991) Bacillus subtilis responses and mechanisms of resistanceto hydrogen peroxide. PhD thesis. University of Maryland BaltimoreCounty, Baltimore, MD.

157 Vander Hom,P.B. and Zahler.SA. (1992) / Bacteriol. 174, 3928-3935.158 Raymond-DeniseA and GuiUenJ>J. (1991) / Bacteriol. 173, 7084-7091.159 Dartois,V., BaulardA-, SchanckJC. and Colson.C. (1992) Biochim.

Biophys. Acta 1131, 253-260.160 YamamotoJ., Shimizu,M. and Yamane.K. (1989) Nucleic Acids Res. 17,

10105-10105.161 ChenJ.., JamesXP. and HelmannJ.D. (1993) / Bacteriol. 175,

5428-5437.162 GollnickP., Ishino.S., KurodaJvl.I., HennerXU. and Yanofsky.C. (1990)

Pwc. NatL Acad. Sci. USA 87, 8726-8730.163 Yoshimoto.T., OyamaJI., Takeshita,T., Higashi,H., Xu^. and TsuruJ).

(1991) J. Ferment. Bioengng 70, 370-375.164 TrarO,., Wu^.-C. and Wong^.-L. (1991) / Bacteriol. 173, 6364-6372.165 StruckJ.C., FarJUC, Schroder.W., HuchoJ^., Toschka^.Y. and

Erdmann.VA (1990) Biochim. Biophys. Acta 1050, 80-83.166 SlockJ., StahlJJ.R, Han,C.-Y, SwJ^.W. and CrawfordJ.P. (1990) /

Bacteriol. 172,7211-7226.167 AwadeA, CleuziatP., Gonzaks.T. and Robert-BaudouyJ. (1992) FEBS

Lett. 305, 67-73.168 Hemila,H.O., PalvaA-, Pauling., Amdson.S. and PalvaJ. (1990) /

Bacteriol. 172, 5052-5063.169 Nasser.W., AwadeAC, Reverchon.S. and Robert-BaudouyJ. (1993)

FEBS Lett. 335, 319-326.170 van DijlJM., de Jong A , NautaA-, Venema,G. and Bron,S. (unpublished)

Z35652.171 BraknageAA., Woznyjvl. and PutzerJH. (1990) Biochimie 72,725-734.172 Seki.T, YoshikawaJH., Takahashi^- and Saitoh. (1987) J. Bacteriol. 169,

2913-2916.173 Fischer.C. and DeutscherJ. (unpublished) X79388.174 Okadajvl., Matsuzaki.H., ShibuyaJ. and Matsumoto.K. (1994) /

Bacteriol. 176, 7456-7461.175 HoneymanAL. and Stewart,G.C. (1989) MoL Microbiol. 3, 1257-1268.176 Henkin.TJvi., Moon.S.H., MattheakisX-C. and Nomurajvi. (1989) Nucleic

Acids Res. 17, 7469-7486.177 Price.C.W. (unpublished) L24376.178 StruckJ.C, Vogel.D.W., UlbrichJ>J. and Erdmann.V.A. (1988) Nucleic

Acids Res. 16, 2719.179 Sadaie.Y, Takamatsu.H. and Yamane.K. (1991) Gene 98, 101-105.180 WangX.-F. and Doi,R.H. (1990) / Bacteriol. 172, 1939-1947.181 Gaur^J.K., DubnauJS. and SmithJ. (1986) J. Bacteriol. 168, 860-869.182 van DijlJ.M., de Jong A , VehmaanperaJ., Venema,G. and Bron^. (1992)

EMBOJ. 11, 2819-2828.183 Rudner,D.Z., LeDeauxJ.R., Ireton.K. and GrossmanAD. (1991) /

Bacteriol. 173, 1388-1398.184 Mauel.C, Youngjvl. and KaramataJD. (1991) / Gen. Microbiol. 137,

929-941.185 PangAS.-H., Nathoo^. and Wong^.-U (1990)/ Bacteriol. 173, 46-54.186 Putzer,R, GendronJ4. and Grunberg-Manago,M. (1992) EMBO J. 11,

3117-3127.187 Iwakurajvl., Kawata>4., Tsuda,K. and Tanaka,T. (1988) Gene 64, 9-20.188 Chow,K.-C. and WongJ.T.-F. (1988) Gene 73,537-543.189 Furbass.R. and Marahiel,M A (1991) FEBS Lett. 287, 153-156.190 Putzer,H. and LeauteyJ. (unpublished) X77239.191 Harley,C.B. and ReynoldsJi.P. (1987) Nucleic Acids Res. 15, 2343-2361.192 HawleyAK. and McClure.W.R. (1983) Nucleic Acids Res. 11, 2237-2255.193 Lisser,S. and MargaliUl (1993) Nucleic Acids Res. 21, 1507-1516.194 McClure,W.R. (1985) Annu. Rev. Biochem. 54, 171-204.195 TraversAA. (1987) CRC Cril Rev. Biochem. 22, 181-219.196 Frednck,K., Caramori.T., Chen,Y.F., GalizziA and HelmannJ.D. (1995)

Proc. NatL Acad ScL USA 92, 2582-2586.197 RaoJ--, Ross,W., ApplemanJA, Gaal.T., Leirmo,S., SchlaxPJ.,

ReconiM.T.Jr and GourseJtL. (1994) / MoL Biol. 235, 1421-1435.

Downloaded from https://academic.oup.com/nar/article-abstract/23/13/2351/2400518by gueston 09 April 2018

Page 10: Compilation and analysis of Bacillus subtilis oA-dependent promoter

2360 Nucleic Acids Research, 1995, Vol. 23, No. 13

198 Ross,W., Gosink,K.K., SaJomonJ., IgarishiJC, Zou.C, IshihamaA,SeverinovJC. and GourscRX. (1993) Science T&l, 1407-1413.

199 Hlinger.T., BehnkeA, Knaus.R., Bujantfl. and GraUaJ.D. (1994) J. MolBiol. 239, 466-475.

200 Lavigne,M., HerberuM., KolbA and Buc,H. (1992) J. Mol Biol. 224,293-306.

201 Perez-MaitinJ., Rqjo,F. and deLorenzo.V. (1994) Micmbiol. Rev. 58,268-290.

202 Knausjt. and Bujard,H. (1988) EMBOJ. 7, 2919-2923.203 Kammerer.W., Deuschle.U., GentAR. and BujaniH. (1986) EMBO J. 5,

2995-3000.204 Hlinger.T., Behnke.D., Bujard,H. and GrallaJ.D. (1994) /. Mol Biol. 239,

455-465.205 WiggsJ.L., BushJ.W. and ChamberiinJVlJ. (1979) Cell 16, 97-109.206 Lisser,S. and MargaliOl. (1994) Eur. J. Biochem. 223, 823-830.207 Henkin,T.M. and Sonenshein^i.L. (1987) Mol. Gen. Genet. 209, 467^74.208 Graves,M.C. and RabinowitzJ.C. (1986) /. Biol Chem. 261,

11409-11415.209 Moran.C.P.Jr, LangJ^., LeGrice^.FJ., Lee.G., Stephens>l., Sonen-

shein^.L., PeroJ. and Losick,R. (1982) Mol. Gen. Genet. 186, 339-346.210 Banner.C.D.B., Moran.,C.P.Jr and Losickjl. (1983) J. Mol Biol. 168,

351-365.

211 McAllistcr.CF. and Achbergei\E.C. (1989) J. Biol Chem. 2M,10451-10456.

212 BensonJ5.A., Boguski,M., UpmanXlJ. and OstellJ. (1994) Nucleic AcidsRes. 22, 3441-3444.

213 MulliganJrf.E., HawleyJJ.K., Entrikenjl. and McClure.W.R. (1984)Nucleic Acids Res. 12, 789-800.

214 McGhceJ.D. and von Hippel^.H. (1974) J. Mol. Biol 86, 469-489.215 O'Neill,M.C. (1989)/ Biol Chem. 264, 5522-5530.216 Keilty.S. and Rosenbergjvl. (1987)7. Biol. Chem. 262, 6389-6395.217 Chan3., Spassky,A. and Busby.S. (1990) Biochem. J. 270, 141-148.218 Belyaeva,T., Griffiths^.. Minchin^., ColeJ. and Busby,S. (1993)

Biochem. J. 296, 851-857.219 Bums,H. and Minchin.S. (1994) Nucleic Acids Res. 22, 3840-3845.220 SaraiA, MazurJ., Nussinovjt and JemiganJt.L. (1988) Biochemistry 27,

8498-8502.221 Petcolas.W.L., Wang.Y. and Thomas,GA. (1988) Proc. NatL Acad. Sci.

USA 85, 2579-2583.222 Matem,H.T., KleinJ.R., Henrich.B. and Plapp,R. (1994) FEMS Micmbiol

Lett. U2, 121-128.223 Crothers,D.M., Haran.T.E. and NadeuJ.G. (1990) J. Biol Chem. 265,

7093-7096.224 Strauch,M.A. and Ayazifarjvi. (1995) Mol. Gen. Genet. 246, 756-760.225 Frizby.D. and Zubei\P. (1991) J. Bacienol 173, 7557-7564.

Downloaded from https://academic.oup.com/nar/article-abstract/23/13/2351/2400518by gueston 09 April 2018