competing orders: beyond landau-ginzburg-wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf ·...

44
Competing orders: beyond Landau-Ginzburg-Wilson theory Colloquium article in Reviews of Modern Physics 75, 913 (2003) Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton Burkov (UCSB) Eugene Demler (Harvard) Matthew Fisher (UCSB) Anatoli Polkovnikov (Harvard) Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta (Karlsruhe) Talk online: Google Sachdev

Upload: others

Post on 24-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Competing orders: beyond Landau-Ginzburg-Wilson theory

Colloquium article in Reviews of Modern Physics 75, 913 (2003)

Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton Burkov (UCSB) Eugene Demler (Harvard) Matthew Fisher (UCSB) Anatoli Polkovnikov (Harvard) Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta (Karlsruhe)

Talk online: Google Sachdev

Page 2: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Competing orders: beyond Landau-Ginzburg-Wilson theory

Colloquium article in Reviews of Modern Physics 75, 913 (2003)

Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton Burkov (UCSB)Eugene Demler (Harvard) Matthew Fisher (UCSB) Anatoli Polkovnikov (Harvard) Krishnendu Sengupta (Yale)T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta (Karlsruhe)

Talk online: Google Sachdev

Page 3: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Possible origins of the pseudogap in the cuprate superconductors:

• “Phase fluctuations”, “preformed pairs” Complex order parameter: Ψsc

• “Charge/valence-bond/pair-density/stripe” orderOrder parameters:

(density ρ represents any observable invariant under spin rotations, time-reversal, and spatial inversion)

•“Spin liquid”……………

( ) .ieρ ρ= ∑ Q rQ

Qr

symmetry encodes number conservisc sce

θΨ → Ψ

encodes space group symmetryie ϑρ ρ→Q Q

ation

Page 4: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Order parameters are not independent

Ginzburg-Landau-Wilson approach to competing order parameters:

[ ][ ]

charge int

2 41 1

2 4

charge 2 2

22int

sc sc

sc sc sc sc

sc

F F F F

F r u

F r u

F v

ρ

ρ ρ ρ

ρ

⎡ ⎤= Ψ + +⎣ ⎦

Ψ = Ψ + Ψ +

⎡ ⎤ = + +⎣ ⎦

= Ψ +

Q

Q Q Q

Q

Distinct symmetries of order parameters permit couplings only between their energy densities

S. Sachdev and E. Demler, Phys. Rev. B 69, 144504 (2004).

Page 5: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Predictions of LGW theory

First order

transition

Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

0, 0sc ρΨ = ≠Q

1 2r r−

Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

0, 0sc ρΨ = ≠Q

(Supersolid)

0, 0sc

Coexistence

ρΨ ≠ ≠Q

1 2r r−

Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

0, 0sc ρΨ = ≠Q

" "

0, 0sc

Disordered

ρΨ = =Q

1 2r r−

Page 6: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Predictions of LGW theory

First order

transition

Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

0, 0sc ρΨ = ≠Q

1 2r r−

Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

0, 0sc ρΨ = ≠Q

(Supersolid)

0, 0sc

Coexistence

ρΨ ≠ ≠Q

1 2r r−

Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

0, 0sc ρΨ = ≠Q

" "

0, 0sc

Disordered

ρΨ = =Q

1 2r r−

Page 7: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Non-superconducting quantum phase must have some other “order”:

• Charge order in an insulator

• Fermi surface in a metal

• “Topological order” in a spin liquid

• ……………

This requirement is not captured by LGW theory.

Page 8: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

OutlineOutlineA. Superfluid-insulator transitions of bosons

on the square lattice at fractional fillingDual vortex theory and the magnetic space group.

B. Application to a short-range pairing model for the cuprate superconductors

Charge order and d-wave superconductivity in an effective theory for the spin S=0 sector.

C. Implications for STM

Page 9: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

A. Superfluid-insulator transitions of bosons on the square lattice at fractional filling

Dual vortex theory and the magnetic space group.

Page 10: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Bosons at density f = 1Weak interactions:

superfluidity

Strong interactions: Mott insulator which preserves all lattice

symmetries

LGW theory: continuous quantum transitions between these statesM. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Page 11: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Bosons at density f = 1/2

Weak interactions: superfluidity

Strong interactions: Candidate insulating states

12( + )=

( ) .All insulating phases have density-wave order with 0ieρ ρ ρ= ≠∑ Q rQ Q

Qr

0scΨ ≠

C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, 134510 (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)

Page 12: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Predictions of LGW theory

First order

transition

Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

0, 0sc ρΨ = ≠Q

1 2r r−

Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

0, 0sc ρΨ = ≠Q

(Supersolid)

0, 0sc

Coexistence

ρΨ ≠ ≠Q

1 2r r−

Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

0, 0sc ρΨ = ≠Q

" "

0, 0sc

Disordered

ρΨ = =Q

1 2r r−

Page 13: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Superfluid insulator transition of hard core bosons at f=1/2

A. W. Sandvik, S. Daul, R. R. P. Singh, and D. J. Scalapino, Phys. Rev. Lett. 89, 247201 (2002)

Large scale (> 8000 sites) numerical study of the destruction of superfluid order at half filling with full square lattice symmetry

( ) ( )i j i j i j k l i j k lij ijkl

H J S S S S K S S S S S S S S+ − − + + − + − − + − +

= + − +∑ ∑g=

Page 14: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Boson-vortex duality

Quantum mechanics of two-

dimensional bosons: world

lines of bosons in spacetime

xy

τ

C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981); D.R. Nelson, Phys. Rev. Lett. 60, 1973 (1988); M.P.A. Fisher and D.-H. Lee, Phys. Rev. B 39, 2756 (1989);

Page 15: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Boson-vortex duality

Classical statistical mechanics of a “dual” three-dimensional

superconductor:vortices in a

“magnetic” field

xy

z

Strength of “magnetic” field = density of bosons = f flux quanta per plaquette

C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981); D.R. Nelson, Phys. Rev. Lett. 60, 1973 (1988); M.P.A. Fisher and D.-H. Lee, Phys. Rev. B 39, 2756 (1989);

Page 16: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Boson-vortex dualityStatistical mechanics of dual superconductor is invariant

under the square lattice space group:, : Translations by a lattice spacing in the , directions

: Rotation by 90 degrees.x yT T x y

R

2

1 1 1 4

Magnetic space group: ;

; ; 1

ifx y y x

y x x y

T T e T T

R T R T R T R T R

π

− − −

=

= = =

Strength of “magnetic” field = density of bosons = f flux quanta per plaquette

Page 17: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Boson-vortex duality

At density = / ( , relatively prime integers) there are species of vortices, (with =1 ), associated with gauge-equivalent regions of the Brillouin zone

f p q p qq

qq

ϕ …

Hofstädter spectrum of dual “superconducting” order

2

1 1 1 4

Magnetic space group: ;

; ; 1

ifx y y x

y x x y

T T e T T

R T R T R T R T R

π

− − −

=

= = =

Page 18: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Boson-vortex duality

21

2

1

The vortices form a representation of the space group

: ; :

1 :

i fx y

qi mf

mm

q projective

T T e

R eq

π

π

ϕ ϕ ϕ ϕ

ϕ ϕ

+

=

→ →

→ ∑

Hofstäder spectrum of dual “superconducting” order

At density = / ( , relatively prime integers) there are species of vortices, (with =1 ), associated with gauge-equivalent regions of the Brillouin zone

f p q p qq

qq

ϕ …

See also X.-G. Wen, Phys. Rev. B 65, 165113 (2002)

Page 19: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Boson-vortex duality

The fields characterize superconducting and charge orderbothϕ

Superconductor insulator : 0 0 ϕ ϕ= ≠

( )

* 2

Charge order:

Status of space group symmetry determined by 2density operators at wavevectors ,

: ; :

mn

qi mnf i mf

n

i xx y

p m nq

e e

T e T

π π

πρ

ρ ϕ ϕ

ρ ρ ρ ρ

+=

=

=

→ →

∑i

mn

Q

Q

QQ Q Q Q

Q

( ) ( )

ˆ

:

i ye

R Rρ ρ→

iQ

Q Q

Page 20: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Boson-vortex duality

The fields characterize superconducting and charge orderbothϕ

21

Competition between superconducting and charge orders:

" LGW" theory of the fields with the actioninvariant under the projective transformations: : ; : i f

x y

Extended

T T e π

ϕ

ϕ ϕ ϕ ϕ+→ →

2

1

1 :q

i mfm

m

R eq

πϕ ϕ=

→ ∑

Immediate benefit: There is no intermediate “disordered” phase with neither order

(or without “topological” order).

Page 21: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

First order

transition

Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

0, 0sc ρΨ = ≠Q

1 2r r−

Analysis of “extended LGW” theory of projective representation

Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

0, 0sc ρΨ = ≠Q

(Supersolid)

0, 0sc

Coexistence

ρΨ ≠ ≠Q

1 2r r−

Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

0, 0sc ρΨ = ≠Q

" "

0, 0sc

Disordered

ρΨ = =Q

1 2r r−

Page 22: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

First order

transition

Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

0, 0sc ρΨ = ≠Q

1 2r r−

Analysis of “extended LGW” theory of projective representation

Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

0, 0sc ρΨ = ≠Q

(Supersolid)

0, 0sc

Coexistence

ρΨ ≠ ≠Q

1 2r r−

Second order

transition

Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

0, 0sc ρΨ = ≠Q

1 2r r−

Page 23: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Analysis of “extended LGW” theory of projective representationSpatial structure of insulators for q=2 (f=1/2)

12( + )=

unit cells; , , , all integersq q aba b a b q×

Page 24: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Analysis of “extended LGW” theory of projective representationSpatial structure of insulators for q=4 (f=1/4 or 3/4)

unit cells; , , , all integersq q aba b a b q×

Page 25: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

B. Application to a short-range pairing model for the cuprate superconductors

Charge order and d-wave superconductivity in an effective theory for the spin S=0 sector.

Page 26: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

A convenient derivation of the effective theory of short-range pairs is provided by the

doped quantum dimer model

( )

( )

dqdH J

t

= +

− + −

∑Density of holes = δ

E. Fradkin and S. A. Kivelson, Mod. Phys. Lett. B 4, 225 (1990).

Page 27: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Duality mapping of doped dimer model shows:

(a) Superfluid, insulator, and supersolid ground states of a theory which obeys the magnetic algebra

2

1 with 2

ifx y y xT T e T T

f

π

δ

=

−=

Page 28: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Duality mapping of doped dimer model shows:

(b) At δ = 0, the ground state is a Mott insulator with valence-bond-solid (VBS) order. This associated with f=1/2 and the algebra

x y y xT T T T= −

or

Page 29: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Duality mapping of doped dimer model shows:

(c) At larger δ , the ground state is a d-wave superfluid. The structure of the “extended LGW” theory of the competition between superfluid and solid order is identical to that of bosons on the square lattice with density f. These bosons can therefore be viewed as d-wave Cooper pairs of electrons. The phase diagrams of part (A) can therefore be applied here.

2

1 with 2

ifx y y xT T e T T

f

π

δ

=

−=

Page 30: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

g = parameter controlling strength of quantum fluctuations in a semiclassical theory of the destruction of Neel order

Global phase diagram

La2CuO4

Neel order

Page 31: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

g

La2CuO4

Neel order

Global phase diagram

VBS order

or

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

Page 32: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

g

Global phase diagram

VBS order

or

La2CuO4

Present “Extended LGW” theory for interplay between charge order and d-wave superconductivity

δHole densityNeel order

Page 33: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

g

Global phase diagram

VBS order

or

La2CuO4

δHole density

Microscopic mean-field theory in the large N limit of a theory

with Sp(2N) symmetry

S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991); M. Vojta and S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999); M. Vojta, Phys. Rev. B 66, 104505 (2002).

Neel order

Page 34: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

g

La2CuO4

Neel order

Global phase diagram

VBS order

or

δHole density

Microscopic mean-field theory in the large N limit of a theory

with Sp(2N) symmetry

S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991); M. Vojta and S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999); M. Vojta, Phys. Rev. B 66, 104505 (2002).

Page 35: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Spin excitations in a coupled ladder model

Spin waves

Triplons

“Resonance peak”

• M. Vojta and T. Ulbricht, cond-mat/0402377• G.S. Uhrig, K.P. Schmidt, and M. Grüninger, cond-mat/0402659• M. Vojta and S. Sachdev, unpublished.

Page 36: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

J. M. Tranquada et al., Nature 429, 534 (2004)

xy

Bond operator (S. Sachdev and R.N. Bhatt, Phys. Rev.B 41, 9323 (1990)) theory of coupled-ladder model,

M. Vojta and T. Ulbricht, cond-mat/0402377

Page 37: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

xy

Numerical study of coupled ladder model, G.S. Uhrig, K.P. Schmidt, and M. Grüninger,

cond-mat/0402659J. M. Tranquada et al., Nature 429, 534 (2004)

Page 38: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

C. Implications for STM

Page 39: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Pinning of charge order in a superconductor

[ ] [ ]( )[ ] ( )

[ ] ( )

20 pin

2 20

pin pi1

n* 2

The fields are fluctuating, and we can use the action

with q

i mnf fi i mn

r

S d rd L L

L s

L V r e ee π π

µ

ρ ϕ ϕ

ϕ

τ ϕ ϕ

ϕ ϕ ϕ

ϕ ρ +=

=

= +

= ∂ + +

=

∫∑

∑ ∑imn

QQ

QQ

Pinning leads to modulations at

wavevectors ( ) ( )2 , 2 ,mnp m n f m n

qπ π= =Q

Page 40: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Charge order in a magnetic field

Recompute modulation in theory but in sector with "charge" = number of vortices

sameϕ

The projective transformations of vortices imply that each pinned vortex has a halo charge order modulations:

this can be computed with no additional parameters !

[ ] [ ]( )[ ] ( )

[ ] ( )

20 pin

2 20

pin pi1

n* 2

The fields are fluctuating, and we can use the action

with q

i mnf fi i mn

r

S d rd L L

L s

L V r e ee π π

µ

ρ ϕ ϕ

ϕ

τ ϕ ϕ

ϕ ϕ ϕ

ϕ ρ +=

=

= +

= ∂ + +

=

∫∑

∑ ∑imn

QQ

QQ

Page 41: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

LDOS of Bi2Sr2CaCu2O8+δ at 100 K.M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, and A. Yazdani, Science, 303, 1995 (2004).

Page 42: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Energy integrated LDOS (between 65 and 150 meV) of

strongly underdopedBi2Sr2CaCu2O8+δ at low temperatures,

showing only regions without

superconducting “coherence peaks”

K. McElroy, D.-H. Lee, J. E. Hoffman, K. M Lang, E. W. Hudson, H. Eisaki, S. Uchida, J. Lee, J.C. Davis, cond-mat/0404005.

Page 43: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

Vortex-induced LDOS of Bi2Sr2CaCu2O8+δ integrated from 1meV to 12meV

100Å

b7 pA

0 pA

J. Hoffman E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002).

Page 44: Competing orders: beyond Landau-Ginzburg-Wilson theoryqpt.physics.harvard.edu/talks/grc2004.pdf · Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta

ConclusionsI. Description of the competition between superconductivity and

charge order in term of defects (vortices). Theory naturally excludes “disordered” phase with no order.

II. Vortices carry the quantum numbers of both superconductivity and the square lattice space group (in a projective representation).

III. Pinned vortices are intricately linked to pinned charge order.

IV. Future theory: S=1/2 and S=1 excitations.

ConclusionsI. Description of the competition between superconductivity and

charge order in term of defects (vortices). Theory naturally excludes “disordered” phase with no order.

II. Vortices carry the quantum numbers of both superconductivity and the square lattice space group (in a projective representation).

III. Pinned vortices are intricately linked to pinned charge order.

IV. Future theory: S=1/2 and S=1 excitations.