compatible finite element discretizations of geometric systemsobokhove/smleeds2013.pdf ·...

37
Compatible Schemes Onno Bokhove Introduction Non- Autonomous Systems NCP time flux Spatial NCP? Conclusion Compatible Finite Element Discretizations of Geometric Systems Onno Bokhove School of Mathematics, University of Leeds with Elena Gagarina, Vijaya Ambati & Shavarsh Nurijanyan (Twente) School of Mathematics, Leeds 2013

Upload: others

Post on 30-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Compatible Finite Element Discretizations ofGeometric Systems

Onno Bokhove

School of Mathematics, University of Leedswith Elena Gagarina, Vijaya Ambati & Shavarsh Nurijanyan (Twente)

School of Mathematics, Leeds 2013

Page 2: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

1 Introduction

2 Non-Autonomous Systems

3 NCP time flux

4 Spatial NCP?

5 Conclusion

Page 3: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

1. Introduction

Numerical modelling of nonlinear waves and currents is oftenadequately done using conservative, Hamiltonian fluiddynamics, even in the presence of some forcing and damping.In the modelling of two laboratory experiments,non-autonomous Hamiltonian/variational systems emerge:

investigation of freak waves in wave tanks withwave-makers [used for testing model offshore structures]

wave-sloshing validations in a table-top Hele-Shaw cellwith linear momentum damping.

The question is how we can derive stable time integrators?

Page 4: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

2. Non-Autonomous Hamiltonian Systems

Simulation (2D) of waves in MARIN’s

wave tank:

Workings of wave-maker

Page 5: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Hele-Shaw Wave Tank

Simulation of damped, sloshing waves: initial conditions inmodel & experiment.

Page 6: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Maths of MARIN’s Wave Tank

Mathematical formulation via Miles’ variational principle:

0 = δ

∫ T

0L[φ, h, t]dt (1)

= δ

∫ T

0

∫ L

xw (t)φs∂th −

1

2g(h + b − H)2

−∫ b+h

b

1

2|∇φ|2dzdx −

∫ b+h

b

dxwdt

φwdzdt (2)

with potential φ = φ(x , z , t) such that velocity(u,w)T = ∇φ = (∂xφ, ∂zφ)T

free-surface φs(x , t) ≡ φ(x , z = h + b, t) at ∂Ds , depth h

specified wave-maker piston xw (t) with φw ≡ φ(xw , z , t).

non-autonomous due to piston wave-maker.

Page 7: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

FEM of MARIN’s Wave Tank

FEM formulation of Miles’ variational principle.

FEM test/basis functions ϕj(x , z , t), ϕk(x , t) with i , j inD, k , l at free surface ∂Ds & m at wave maker.

Substitute φh(x , z , t) = φj(t)ϕj(x , z , t),hh(x , t) = hk(t)ϕk(x , t) in VP

0 = δ

∫ T

0L[φj , hj , t]dt (3)

= δ

∫ T

0φkMkl

dhldt− φkDkl

dhldt− . . .

−1

2g(hk + bk − H)Mkl(hl + bl − H)

−1

2φiAijφj − wm(t)φmdt. (4)

Mkl ,Dkl ,Aij wm depend on {hk(t), t}: mesh movement.

Page 8: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Maths of Hele Shaw Wave Tank

Substitution potential flow Ansatz (u, w) = (∂xφ, ∂zφ)into 2D Navier-Stokes eqns gives damped water waves:

0 = δ∫ T

0

(∫ L0

(φs∂th − 1

2g(h − H0)2)dx

−∫ L

0

∫ γh0

12 |∇φ|

2dzdx

)e3νt/l2dt (5)

Use experiment to validate linear momentum damping.

Tilt tank till at rest: then drop it to create a linear tilt ofthe free surface“at rest”.

Non-autonomous due to damping/integrating factor.

Page 9: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

FEM of Hele Shaw Wave Tank

Substitution potential flow Ansatz (u, w) = (∂xφ, ∂zφ)into 2D Navier-Stokes eqns gives damped water waves:

0 = δ

∫ T

0L[φj , hj , t]dt (6)

= δ

∫ T

0

(φkMkl

dhldt

−1

2g(hk − H)Mkl(hl − H)

−1

2φiAij(hk)φj

)e3νt/l2dt. (7)

Explicit time dependence in e3νt/l2 due to damping.

Page 10: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Damped Water Waves: Model vs. Data

Measure free surface & calculate potential energy P(t):

Page 11: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Non-Autonomous Variational/Hamiltonian System

Both discretizations are succinctly summarized as:

0 = δ

∫ T

0

(pTM

dq

dt− 1

2pTAp

−1

2qTMq − pTDq − w(t)Tp

)f (t)dt (8)

MARIN’s tank: f (t) = 1,A = A(q, t),M = M(q, t),D = D(q, t),w(t) 6= 0.

Hele-Shaw tank: w(t) = D = 0, f (t) = exp (3νt/l2).

Page 12: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Non-Autonomous Variational/Hamiltonian System

Note: Newton’s equations for coupled linear oscillators inlimit A(q) = S (constant) & f (t) = 1,w(t) = 0:

0 =

∫ T

0

(pTM

dq

dt− 1

2pTSp − 1

2qTMq

)dt

⇐⇒ Mdq

dt= Sp =

∂H

∂p,

Mdp

dt= −Mq = −∂H

∂q(9)

for Hamiltonian

H =1

2(pTSp + qTMq). (10)

Page 13: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Damped nonlinear oscillator

Toy example

0 = δ

∫ T

0

(pdq

dt− H(p, q)

)eγtdt

δ(peγt) :dq

dt= p =

∂H

∂p

δq :dp

dt+ γp = −(q + q3) = −∂H

∂q(11)

with energy/Hamiltonian H = H(p, q) = 12p

2 + 12q

2 + 14q

4.

Note the integrating factor s.t.:

d(peγt)

dt= −(q + q3)eγt . (12)

Page 14: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Damped nonlinear oscillator

Dynamics becomes linear in long-time limit. Thetransformation

q = Qe−γt/2 p = Pe−γt/2 (13)

shows from

0 = δ

∫ T

0PdQ

dt− Hdt

that for t →∞dH

dt= 0 with (14)

H =1

2P2 +

1

2γPQ +

1

2Q2 +

1

4Q4e−γt

= (1

2p2 +

1

2γpq +

1

2q2 +

1

4q4)eγt .

Page 15: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Non-Conservative Products

Goal: to derive stable variational time integrators with timediscontinuous FEM

Finite elements in time.

ph = pjϕj(t) and qh = qjϕj(t) expanded in piecewisecontinuous fashion, e.g.:

What to do with derivatives pTMdq/dt at the jumps?

No staggered C-grid in t: crux lies in choice numerical flux!

Page 16: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Non-Conservative Products

Consider p dqdt or g(u)dudt 6=

dQ(u)dt with u = u(p, q).

Dal Maso, LeFloch and Murat (1995) define

g(u)du

dt= lim

ε→0g(uε)

duε

dt(15)

Introduce a Lipschitz continuous path φ : [0, 1]→ < withφ(0) = uL and φ(1) = uR with limits uL, uR at td :

Moreover, jump depends on path φ(τ):

g(uε)duε

dt→ Cδ(t − td) with C =

∫ 1

0g(φ)τ

dτ(τ)dτ

bokhoveo
Sticky Note
regularization
bokhoveo
Sticky Note
C=Q(ur)-Q(uL) when ...
Page 17: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Non-Conservative Products

DLM assume a fixed family of paths with:(i) φ(0; uL, uR) = uL, φ(1; uL, uR) = uR ,(ii) φ(0; uL, uL) = uL,(iii) |dφdτ (τ ; uL, uR)| ≤ K |uL − uR |Theorem by DLM: There is a unique real-valued boundedBorel measure µ on ]a, b[ such that: if u is discontinuousat a position td ∈]a, b[ then

µ({td}) =

∫ 1

0g(φ)(τ ; ul , uR)

dτ(τ ; uL, uR)dτ. (16)

µ is the nonconservative product of g(u) by du/dt.

DGFEM in 3D & 4D: Rhebergen et al (2008ab, 2009)

Idea is to explore NCP for p dqdt –term in VP.

bokhoveo
Sticky Note
SWE with topo!
Page 18: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Non-Conservative Products: VP

Choice of path: open question.

We generally chose a linear path:

φ(τ ; uL, uR) = uL + τ(uR − uL). (17)

Partition time in time slabs [tn, tn+1]

Using DLM-theorem, variational principle becomes

0 = δ

N−1∑n=0

∫ tn+1

tn

(ph

dqhdt− H(ph, qh, t)

)eγtdt

+N∑

n=−1

∫ 1

0φp(τ ; pL, pR)

dφqdτ

(τ ; qL, qR)dτ (18)

Page 19: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Non-Conservative Products: VP

Using DLM-theorem, discrete variational principle

0 = δ

N−1∑n=0

∫ tn+1

tn

(ph

dqhdt− H(ph, qh, t)

)eγtdt

+N∑

n=−1

∫ 1

0φp(τ ; pL, pR)

dφqdτ

(τ ; qL, qR)dτ

For quadratic & linear paths (γ = 0):φp = pL + 2a1τ + 3a2τ

2 & φq = qL + τ(qR − qL) s.t.:∫ 1

0φp(τ ; pL, pR)

dφqdτ

(τ ; qL, qR)dτ = (αpL+βpR)(qR−qL)

with 0 ≤ α, β ≤ 1, i.e., jump in q× weighted mean in p.

Page 20: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Non-Conservative Products: Symplectic Euler

Recap:

0 = δ

N−1∑n=0

∫ tn+1

tn

(ph

dqhdt− H(ph, qh, t)

)eγtdt

+N∑

n=−1

(αpL + βpR)(qR − qL)eγt∗

(19)

Symplectic Euler (SE) for piecewise constant basisfunctions: phe

γt = pn+1eγtn+1, qh = qn & α = 1, β = 0:

Lh(ph, qh) =N−1∑n=0

−∆tnH(pn+1, qn)eγtn+1

+N∑

n=−1

(qn+1 − qn)pn+1eγtn+1

(20)

Page 21: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Non-Conservative Products: Symplectic Euler

Symplectic Euler (SE) for toy model:

δqn : pn+1 = e−γ∆tnpn −∆tn(qn + (qn)3)

δ(pn+1eγtn+1

) : qn+1 = qn + ∆tnpn+1.

Compare SE w. forward/backward Euler & midpoint:

pn+1 = pn −∆tn(qn + (qn)3)−∆tnγpn FE

pn+1 = pn −∆tn(qn + (qn)3)−∆tnγpn+1 BE

pn+1 = pn −∆tn(qn + (qn)3)− ∆tn2γ(pn + pn+1) MP

Page 22: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Non-Conservative Products: Symplectic Euler

Comparison (blue: SE, red: SE-FE, black: SE-BE):

Page 23: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

NCP: Hele Shaw Wave Tank revisited

Measure free surfaces:

Page 24: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

NCP: Hele Shaw Wave Tank revisited

Simulations vs. measurements (damped potential flow):

Page 25: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

NCP: Hele Shaw Wave Tank revisited

SE vs. SE-BE(implications correct numerical damping for inertial ranges?):

0 5 10 15 202.6

2.7

t

Em

od(t

)

0 5 10 15 202.6

2.7

2.8

t

Em

od(t

)

Page 26: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

NCP: Stormer-Verlet

Stormer-Verlet (SV) for piecewise linear basis functionswith α = 1, β = 0 and ζ ∈ [−1, 1]:

ph = pn+1L

(1− ζ)

2+ pn+1

R

(1 + ζ)

2

qh = qn+1/2(1 + ζ)− qnζ. (21)

Page 27: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

NCP: Stormer-Verlet

Discrete Lagrangian (γ = 0):

Lh(ph, qh) =N∑

n=−1

(qn+1 + qn − 2qn+1/2)pn+1R

N−1∑n=0

(pn+1L + pn+1

R )(qn+1/2 − qn)

−∆tn2

(H(pn+1

L , qn+1/2) + H(pn+1R , qn+1/2)

)Stormer-Verlet with pn+1

L = pnR continuous & q is DG:

δpn+1L : qn+1/2 = qn + ∆tpn+1

L /2

δqn+1/2 : pn+1R = pn+1

L − ∆t

2

(qn+1/2 + (qn+1/2)3

)δpn+1

R : qn+1 = qn+1/2 + ∆tpn+1R /2

Page 28: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

NCP: Stormer-Verlet Simulations

Driven wave focusing in MARIN’s wave tank.

Entire wave tank MARIN with false vertical wall instead ofbeach.

Comparison with measured data MARIN:

Page 29: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

NCP: midpoint rule

Midpoint (MP): for piecewise linear basis functions withα = 1, β = 0 and ζ ∈ [−1, 1]:

pheγt =

(pn+1/2(1− ζ)/2 + pnζ

)eγt

n+1/2,

qh = qn+1/2(1 + ζ)− qnζ. (22)

pn+1/2 =1

2(pn+1 + pn) qn+1/2 =

1

2(qn+1 + qn).

Page 30: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

NCP: midpoint rule

Discrete Lagrangian

Lh(ph, qh) =N−1∑n=0

2pn+1/2(qn+1/2 − qn)eγtn+1/2

−∆tnH(pn+1/2, qn+1/2)eγtn+1/2

+N∑

n=−1

(qn+1 + qn − 2qn+1/2)pn+1eγtn+1

Modified midpoint scheme:

pn+1eγtn+1

= pneγtn −∆tn

∂H(pn+1/2, qn+1/2)eγtn+1/2

∂qn+1/2

qn+1 = qn + ∆t∂H(pn+1/2, qn+1/2)

∂pn+1/2

Page 31: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Spatial NCP & Extended Clebsch variables?

Example “1D/symmetric” shallow water equations:

∂tu − hvq = −∂x(1

2(u2 + v2) + gh

)∂tv + u∂xv = 0

∂th + ∂x(hu) = 0 with PV q = ∂xv/h (23)

Variational principle using Clebsch potentials/LCs:

0 = δ

∫ T

0

∫∫−1

2h(u2 + v2) + h(∂tφ+ π1∂ta1 + π2∂ta2)

+hu(∂xφ+ π1∂xa1 + π2∂xa2) + hvπ2 +1

2g(h − H)2dxdydt

Clebsch potentials (φ, a1, π1π2)(x , t) & a2 = A2(x , t) + y :

δu : u = ∂xφ+ π1∂xa1 + π2∂xa2 & δv : v = π2 (24)

Page 32: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Extended Clebsch Variables: Gauge Symmetry

Symmetry in Hamiltonian suggests reduction phase space.

Consider variations of H with constant density δh = 0 &leaving velocity invariant

0 = dG = δ(dφ+ π1da1 + π2da2)

⇐⇒ δφ = −G + π1∂G

∂π1+ π2

∂G

∂π2,

δa1 = − ∂G∂π1

, δa2 = − ∂G∂π2

,

δπ1 =∂G

∂a1, δπ2 =

∂G

∂a2

Page 33: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Extended Clebsch Variables: Gauge Symmetry/PV

Hamilton’s principle under these restricted variations, withG = G (a1, a2, π1, π2, t) arbitrary, becomes (Salmon 1998)

0 =

∫ T

0

∫∫hδ(∂tφ+ π1∂ta1 + π2∂ta2)dxdydt

=

∫ T

0

∫∫h∂G

∂tdxdydt

= −∫ T

0

∫∫G

[h∂(x , y)/∂(π2, a2)]

∂tπ2da2dt.

(25)

Hence, 1D potential vorticity conserved:

Dq

Dt= 0 with q =

1

h

∂(π2, a2)

∂(x , y)=∂xv

h. (26)

Page 34: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

NCP & Gauge Symmetry

Consider DGFEM basis function in space —x : means.

In contrast to Cotter’s approach variables are defined onthe element (rod). Crux lies in choice of numerical flux.

Discrete variational principle follows, α = 1, 2:

0 = δ

N−1∑k=0

∆xk

∫ T

0−1

2h(u2

k + v2k ) + hkvkπ2k

+hk(φk + π1k a1k + π2k a2k) +1

2g(hk − H)2

+N−1∑k=−1

∫ 1

0hu(τ ;φk+1, φk)

dφφdτ

(τ ;φk+1, φk)

+huπα(τ ;φk+1, φk)dφaαdτ

(τ ;φk+1, φk)dτ (27)

Page 35: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

NCP & Challenge

Challenge: find an allowable path for the NCP numericalflux with δhk = 0 such that δuk = 0, with:

hkuk ≡ ∂

∂uk

(∫ 1

0hu(τ ;φk+1, φk)

dφφdτ

(τ ;φk+1, φk)

+huπα(τ ;φk+1, φk)dφaαdτ

(τ ;φk+1, φk)dτ

+

∫ 1

0hu(τ ;φk , φk−1)

dφφdτ

(τ ;φk , φk−1)

+huπα(τ ;φk , φk−1)dφaαdτ

(τ ;φk , φk)dτ

)Why? It means there is a symmetry such that phase spacecan be reduced from h, φ, a1, a2, π1, π2 to h, u, v .

Page 36: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

Conclusion

Established NCP-FEM-derivation of classic symplectictime integrators: SE [DG], SV [C/DG,2nd], MP [-].

But extended derivations to non-autonomous integrators& applied these to driven & damped wave problems

Higher-order & other NCP-DGFEM time integrators underinvestigation for wave problems:

Challenge: NCP-DGFEM in space for variational principleswith Clebsch variables.

Page 37: Compatible Finite Element Discretizations of Geometric Systemsobokhove/smleeds2013.pdf · Compatible Schemes Onno Bokhove Introduction Non-Autonomous Systems NCP time ux Spatial NCP?

CompatibleSchemes

OnnoBokhove

Introduction

Non-AutonomousSystems

NCP time flux

Spatial NCP?

Conclusion

References

www: presentation, movies & eprints?