comparative study of analytical expressions for the …...one stage model ramberg-osgood up to 0.2%...

33
Real, E., Arrayago, I., Mirambell, E. and Westeel, R. Comparative study of analytical expressions for the modelling of stainless steel behaviour Fourth International Experts Seminar Ascot, UK 6-7 December 2012

Upload: others

Post on 29-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Real, E., Arrayago, I., Mirambell, E. and Westeel, R.

    Comparative study of analytical expressions for the modelling of

    stainless steel behaviour

    Fourth International Experts Seminar Ascot, UK 6-7 December 2012

  • 2/22 1. INTRODUCTION

    • Stainless steel: nonlinear stress-strain behaviour described by analytical material models. •Different material models based on Ramberg-Osgood expression: •Material models use parameters (E0, s0.2, n,…) fitting experimental tests.

    •Parameter obtainment: - Experimental data - Standards - tables - expressions

    Different values: for different material models Standards: tables and analytical expressions for different stainless steel grades

    n

    2.00

    002.0E

    s

    ss

  • Research significance:

    obtain the main parameters for each material model

    compare different material models, determine best approach

    The aim of this paper is

    1.- to present a program which provides (from the experimental data): the mechanical properties the nonlinear coefficients which better fit different material models

    2.- to analyze the differences between current material models to: determine the most appropriate approach suggest some expressions for the material parameters

    3/22 1. INTRODUCTION

  • 4/22 2. EXISTING MATERIAL MODELS

    Material Models Definition Parameters

    One stage model Ramberg-Osgood up to 0.2% proof stress E0, s0.2, n

    Two stage models

    Mirambell -Real up to ultimate strain E0, s0.2, n, su, *

    pu, m

    Rasmussen up to ultimate strain E0, s0.2, pu

    Gardner up to 1% strain E0, s0.2, n0-0.2, s1.0,

    *p1.0, n0.2-1.0

    Three stage models

    Quach up to ultimate strain E0, s0.2, n0-0.2

    Hradil et al. up to ultimate strain E0, s0.2, n0-0.2, s1.0,

    *p1.0, n0.2-1.0, su, *

    pu, n1.0-u

  • 5/22 2. EXISTING MATERIAL MODELS

    EN 1993-1-4, Annex C

    01.0

    2.0ln

    20lnn

    s

    su

    2.05.31ms

    s

    200 GPa for austenitic and austenitic-ferritic excluding 1.4539, 1.4529, 1.4547 (195 GPa)

    220 GPa for ferritic

    E0

    σ 0.2 and σu

    n

    Table 2.1

    or Table 4.1

    m

    for

    for

    2.0

    m

    2.0u

    2.0u

    2.0

    2.0

    n

    2.00

    E

    002.0E

    ss

    ss

    ss

    s

    ss

    2.0ss

    2.0ss

  • 6/22 3. TEST DATA

    42 stainless steel stress-strain curves

    Austenitic grades:

    1.4301 (12 coupons) 1.4541 (5 coupons)

    1.4435 (5 coupons) 1.4307 (2 coupons)

    Ferritic grades:

    1.4003 (3 coupons) 1.4509 (6 coupons)

    1.4016 (6 coupons) 1.4521 (3 coupons)

    All coupons were annealed and tested in rolling direction

    Stress

    Strain

  • 7/22 4. DEVELOPED PROGRAM

    Material properties:

    E0, σ0.2, σu, εu, etc.

    Optimized nonlinear parameters n, m

    Office Excel sheet with automatic processes (VBA module)

    From any experimental stress-strain curve

    through

  • ÍNDICE

    Representative value of E0 : importance of the selected set of points

    Initial experimental data dispersion

    0

    5

    10

    15

    20

    25

    0,0E+00 5,0E-05 1,0E-04 1,5E-04

    s (MPa)

    0

    5

    10

    15

    20

    25

    0,0E+00 5,0E-05 1,0E-04 1,5E-04

    s (MPa)

    0

    5

    10

    15

    20

    25

    0,0E+00 5,0E-05 1,0E-04 1,5E-04

    s (MPa)

    0

    5

    10

    15

    20

    25

    0,0E+00 5,0E-05 1,0E-04 1,5E-04

    s (MPa)

    0

    5

    10

    15

    20

    25

    0,0E+00 5,0E-05 1,0E-04 1,5E-04

    s (MPa)

    0

    5

    10

    15

    20

    25

    0,0E+00 5,0E-05 1,0E-04 1,5E-04

    s (MPa)

    0

    5

    10

    15

    20

    25

    0,0E+00 5,0E-05 1,0E-04 1,5E-04

    s (MPa)

    0

    5

    10

    15

    20

    25

    0,0E+00 5,0E-05 1,0E-04 1,5E-04

    s (MPa)

    0

    5

    10

    15

    20

    25

    0,0E+00 5,0E-05 1,0E-04 1,5E-04

    s (MPa)

    0

    5

    10

    15

    20

    25

    0,0E+00 5,0E-05 1,0E-04 1,5E-04

    s (MPa)

    Importance and effect of the considered last point

    0

    100

    200

    300

    0,0E+00 1,0E-03 2,0E-03 3,0E-03

    s (MPa)

    0

    100

    200

    300

    0,0E+00 1,0E-03 2,0E-03 3,0E-03

    s (MPa)

    0

    100

    200

    300

    0,0E+00 1,0E-03 2,0E-03 3,0E-03

    s (MPa)

    Nonlinear branch

    Considered first point

    8/22 4. DEVELOPED PROGRAM

    Material parameter obtainment:

    - Young’s modulus determination: linear regression

  • ÍNDICE

    Pequeño ajuste

    9/22 4. DEVELOPED PROGRAM

    Material parameter obtainment:

    - Young’s modulus determination

    - Simple calculation of the proof stresses

    From E0 σ0.01 , σ0.2 , σ1.0 …

    E0

    E0

    σ0.2

  • 10/22 4. DEVELOPED PROGRAM

    Material parameter obtainment

    Nonlinear parameter optimization:

    Least square adjustment: minimizing the error between curves

    Error definition

    250

    252

    254

    256

    258

    260

    262

    264

    266

    268

    270

    0.0018 0.00185 0.0019 0.00195 0.002Strain (mm/mm)

    Str

    ess (

    MP

    a)

    Analytical

    modelExperimental

    e(common)

    P(σ)

    Pmodel(σ)

    P(σ’) nearest to P(σ)

    Analytical model Experimental curve

    e(considered)

    Ai

    2

    0.1

    ki

    2

    kimAki

    2

    01.0

    )()(·minCe

    s

    ssssError definition:

  • Error definition

    250

    252

    254

    256

    258

    260

    262

    264

    266

    268

    270

    0.0018 0.00185 0.0019 0.00195 0.002Strain (mm/mm)

    Str

    ess (

    MP

    a)

    Analytical

    modelExperimental

    10/22 4. DEVELOPED PROGRAM

    Material parameter obtainment

    Nonlinear parameter optimization:

    e(common)

    P(σ)

    Pmodel(σ)

    P(σ’) nearest to P(σ)

    e(considered)

    Analytical model Experimental curve

    Ai

    2

    0.1

    ki

    2

    kimAki

    2

    01.0

    )()(·minCe

    s

    ssssError definition:

    Least square adjustment: minimizing the error between curves

  • 11/22 4. DEVELOPED PROGRAM

    Program output:

    1.4509 - Test: material parameters

    s0.01 245 MPa

    E0 206 880 MPa s0.05 303 MPa

    s0.1 320 MPa

    u 17.6% s0.2 331 MPa

    s1.0 352 MPa

    s10 452 MPa

    Initial stress-strain data:

    0

    100

    200

    300

    400

    0.000 0.002 0.004 0.006

    Stre

    ss (

    MP

    a)

    Strain (mm/mm)

    Ferritic 1.4509: experimental data

  • 12/22 4. DEVELOPED PROGRAM

    Program output:

    1.4509 - Modelling: nonlinear parameters

    Ramberg-Osgood Mirambell-Real Rasmussen Gardner Hradil et al.

    n 14.39 n 14.62 n 14.43 n0-0.2 14.36 n0-0.2 14.38 m 1.75 m 1.73 n0.2-1.0 1.45 n0.2-1.0 1.32 n1.0-u 4.43

    E0.2 10 891 E0.2 10 729 E0.2 10 864 E0.2 10 914 E0.2 10 894 E1.0 2 126

    Optimized for

    strains up to 0.2%

    Optimized for

    strains up to 5%

    Optimized for

    strains up to 1%

  • 13/22 4. DEVELOPED PROGRAM

    Program output:

    0.0

    50.0

    100.0

    150.0

    200.0

    250.0

    300.0

    350.0

    400.0

    0.0E+00 2.0E-03 4.0E-03 6.0E-03 8.0E-03 1.0E-02

    s (MPa)

    Material model comparison Ferritic grade 1.4509

    Test (corrected)

    Ramberg-Osgood

    Mirambell-Real

    Rasmussen

    EN 1993-1-4

    Gardner

    Three-stage

  • 13/22 4. DEVELOPED PROGRAM

    Program output:

    325.0

    350.0

    375.0

    400.0

    425.0

    0.0E+00 1.0E-02 2.0E-02 3.0E-02 4.0E-02 5.0E-02

    s (

    MPa

    )

    Material model comparison Ferritic grade 1.4509

    Test (corrected)

    Ramberg-Osgood

    Mirambell-Real

    Rasmussen

    EN 1993-1-4

    Gardner

    Three-stage

  • 14/22 5. ANALYSIS OF RESULTS

    Considering Rasmussen model : needs only 3 parameters ε=f(σ) expression is similar to EN 1993-1-4, Annex C Good agreement to experimental data for strains up to 1%

    Nonlinear parameters from different material models are very similar

  • 14/22 5. ANALYSIS OF RESULTS

    Nonlinear parameters fitted from Rasmussen material model are considered

    Analysis: - accuracy of the classical expression for n - applicability of σ0.2/σu expressions to ferritic stainless steels - accuracy of the original expression for m

    Considering Rasmussen model: needs only 3 parameters ε=f(σ) expression is similar to EN 1993-1-4, Annex C Good agreement to experimental data for strains up to 1%

    Nonlinear parameters from different material models are very similar

  • 15/22 5. ANALYSIS OF RESULTS

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

    Str

    ess

    (M

    Pa)

    Strain (mm/mm)

    Nonlinear parameter n definition

    Experimental

  • 15/22 5. ANALYSIS OF RESULTS

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

    Str

    ess

    (M

    Pa)

    Strain (mm/mm)

    Nonlinear parameter n definition classical expression

    Experimental

    σ0,2

    σ0,01

    01.0

    2.0ln

    20lnn

    s

    s

  • 15/22 5. ANALYSIS OF RESULTS

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

    Str

    ess

    (M

    Pa)

    Strain (mm/mm)

    Nonlinear parameter n definition classical expression

    Experimental

    n=10 (original expression)

    01.0

    2.0ln

    20lnn

    s

    s

  • 15/22 5. ANALYSIS OF RESULTS

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

    Str

    ess

    (M

    Pa)

    Strain (mm/mm)

    Nonlinear parameter n definition new proposal

    Experimental

    σ0,05

    σ0,2

    05.0

    2.0ln

    4lnn

    s

    s

  • 15/22 5. ANALYSIS OF RESULTS

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

    Str

    ess

    (M

    Pa)

    Strain (mm/mm)

    Nonlinear parameter n definition new proposal

    Experimental

    n=10.7 (new proposal)

    05.0

    2.0ln

    4lnn

    s

    s

  • 16/22 5. ANALYSIS OF RESULTS

    56789

    101112131415

    No

    nli

    ne

    ar

    pa

    ram

    ete

    r n

    Optimized

    Originalexpression

    Proposal

    5

    8

    10

    13

    15

    18

    20

    23

    25

    No

    nli

    ne

    ar

    pa

    ram

    ete

    r n

    Distribution of nonlinear parameter n A

    ust

    en

    itic

    s Fe

    rrit

    ics

  • 17/22 5. ANALYSIS OF RESULTS

    0.25

    0.50

    0.75

    1.00

    σ0.2/σu

    0.25

    0.50

    0.75

    1.00

    1.25

    1.50

    1.75

    σ0.2/σu

    Experimental

    Original expression foraustenitics

    Original expression forall alloys

    Distribution of σ0.2/σu parameter A

    ust

    en

    itic

    s Fe

    rrit

    ics

    )5n(0375.01

    E1852.0

    E1852.0

    0

    2.0

    0

    2.0

    u

    2.0 s

    s

    s

    s

    for austenitic

    and duplex

    for all alloys

  • 18/22 5. ANALYSIS OF RESULTS

    y = 144.67x + 0.4587

    0.60

    0.65

    0.70

    0.75

    0.80

    0.0014 0.0015 0.0016 0.0017 0.0018 0.0019 0.0020

    σ0.2/σu

    σ0.2/E0

    Experimental ferritic

    Distribution of σ0.2/σu parameter for Ferritic Stainless Steels

    )5n·(0375.01

    E1852.0

    0

    2.0

    u

    2.0

    s

    s

    s

    0

    2.0

    u

    2.0

    E14546.0

    s

    s

    s

    Original expression Proposal linear expression

  • 18/22 5. ANALYSIS OF RESULTS

    )5n·(0375.01

    E1852.0

    0

    2.0

    u

    2.0

    s

    s

    s

    0

    2.0

    u

    2.0

    E14546.0

    s

    s

    s

    Original expression Proposal linear expression

    0.25

    0.50

    0.75

    1.00

    1.25

    1.50

    1.75

    σ0.2/σu Experimental

    Original expressionfor austenitics

    Original expressionfor all alloys

    Proposal

    Distribution of σ0.2/σu parameter for Ferritic Stainless Steels

  • 19/22 5. ANALYSIS OF RESULTS

    Nonlinear parameter m

    u

    2.05.31ms

    s

    Original expression:

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

    Stre

    ss (

    MP

    a)

    Strain (mm/mm)

    m=3.5 (original expression)

    m=1.71 (experimental value)

    Experimental

  • 19/22 5. ANALYSIS OF RESULTS

    Nonlinear parameter m

    New proposals:

    u

    2.03.21ms

    s

    u

    2.01ms

    s

    Austenitics Ferritics

    u

    2.05.31ms

    s

    Original expression:

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

    Stre

    ss (

    MP

    a)

    Strain (mm/mm)

    m=3.5 (original expression)

    m=1.71 (experimental value)

    Experimental

  • 20/22 5. ANALYSIS OF RESULTS

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    No

    nli

    ne

    ar

    pa

    ram

    ete

    r m

    1.50

    1.75

    2.00

    2.25

    2.50

    2.75

    3.00

    No

    nli

    ne

    ar

    pa

    ram

    ete

    r m

    Optimized

    Original expression

    Proposal

    Au

    ste

    nit

    ics

    Ferr

    itic

    s Distribution of nonlinear parameter m

  • 21/22 6. CONCLUSIONS

    • Parameters proposed in EN 1993-1-4 are not accurate enough. • Optimized nonlinear parameters: similar results for all analyzed material models. new expressions for determining n and m are proposed. • New linear approximation for σ0.2 /σu for ferritic stainless steels is also proposed.

    05.0

    2.0ln

    4lnn

    s

    s

    u

    2.03.21ms

    s

    u

    2.01ms

    sfor austenitics for ferritics

    0

    2.0

    0

    2.0

    u

    2.0

    E14546.0

    E1852.0

    s

    s

    s

    sfor austenitics

    for ferritics

  • New proposals obtained from a limited number of test data.

    22/22 7. FUTURE WORK

    Further research in order to: adjust the new proposals extend their applicability to cold-formed stainless steel

  • Real, E., Arrayago, I., Mirambell, E. and Westeel, R.

    Fourth International Experts Seminar Ascot, UK 6-7 December 2012

    Comparative study of analytical expressions for the modelling of

    stainless steel behavior

  • 01.0

    2.0ln

    20lnn

    s

    s

    05.0

    2.0ln

    4lnn

    s

    s

    u

    2.05.31ms

    s

    u

    2.03.21ms

    s

    u

    2.01ms

    s

    0

    2.0

    0

    2.0

    u

    2.0

    E14546.0

    E1852.0

    s

    s

    s

    s

    EN 1993-1-4, Annex C Proposal

    for austenitic and duplex

    stainless steels

    )5n(0375.01

    E1852.0

    E1852.0

    0

    2.0

    0

    2.0

    u

    2.0 s

    s

    s

    s

    for all alloys

    for austenitics

    for ferritics

    for austenitics for ferritics

    for

    for

    2.0

    m

    2.0u

    2.0u

    2.0

    2.0

    n

    2.00

    E

    002.0E

    ss

    ss

    ss

    s

    ss

    2.0ss

    2.0ss