common!corestatestandards!mathematics!5:!...

18
Common Core State Standards Mathematics 5: Purposeful Pedagogy and Discourse October 15, 2012 Dr. Linda K. Griffith, University of Central Arkansas This session will discuss the Purposeful Pedagogy and Discourse Model that is the centerpiece of new Arkansas mathematics professional development and how to support teachers as they implement the Common Core Mathematics standards. Topics covered: The instructional model defined by the article Purposeful Pedagogy and Discourse Model A vision for what mathematics instruction looks like when it supports the Common Core Mathematics standards How planning for mathematics instruction needs to change in light of the Common Core Creating a mathematics professional development plan for your school; awareness of PD resources that are available

Upload: others

Post on 25-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Common!CoreStateStandards!Mathematics!5:! …commoncore.aetn.org/mathematics/ccss-mathematics-5/CCSS... · 2013-02-07 · 38 PARCC Model Content Frameworks for Mathematics Version

   

Common  Core  State  Standards  Mathematics  5:  Purposeful  Pedagogy  and  Discourse

October  15,  2012  Dr.  Linda  K.  Griffith,  University  of  Central  Arkansas  

 

This  session  will  discuss  the  Purposeful  Pedagogy  and  Discourse  Model  that  is  the  centerpiece  of  new  Arkansas  mathematics  professional  development  and  how  to  support  teachers  as  they  implement  the  Common  Core  Mathematics  standards.  

Topics  covered:  

• The  instructional  model  defined  by  the  article  Purposeful  Pedagogy  and  Discourse  Model  

• A  vision  for  what  mathematics  instruction  looks  like  when  it  supports  the  Common  Core  Mathematics  standards  

• How  planning  for  mathematics  instruction  needs  to  change  in  light  of  the  Common  Core  

• Creating  a  mathematics  professional  development  plan  for  your  school;  awareness  of  PD  resources  that  are  available  

 

Page 2: Common!CoreStateStandards!Mathematics!5:! …commoncore.aetn.org/mathematics/ccss-mathematics-5/CCSS... · 2013-02-07 · 38 PARCC Model Content Frameworks for Mathematics Version

38 PARCC Model Content Frameworks for Mathematics Version 2.0—August 31, 2012 (revised)

Key: Major Clusters; Supporting Clusters; Additional Clusters

Examples of Linking Supporting Clusters to the Major Work of the Grade Know that there are numbers that are not rational, and approximate them by rational numbers:

Work with the number system in this grade (8.NS.1–2) is intimately related to work with radicals (8.EE.2), and both of these may be connected to the Pythagorean theorem (8.G, second cluster) as well as to volume problems (8.G.9), e.g., in which a cube has known volume but unknown edge lengths.

Use functions to model relationships between quantities: The work in this cluster involves functions for modeling linear relationships and rate of change/initial value, which supports work with proportional relationships and setting up linear equations.

Investigate patterns of association in bivariate data: Looking for patterns in scatterplots and using linear models to describe data are directly connected to the work in the Expressions and Equations clusters. Together, these represent a connection to the Standard for Mathematical Practice, MP.4: Model with mathematics.

The Number System

Know that there are numbers that are not rational, and approximate them by rational numbers.. Expressions and Equations

Work with radicals and integer exponents..

Understand the connections between proportional relationships, lines and linear equations..

Analyze and solve linear equations and pairs of simultaneous linear equations..

Functions

Define, evaluate and compare functions..

Use functions to model relationships between quantities..

Geometry

Understand congruence and similarity using physical models, transparencies or geometry software..

Understand and apply the Pythagorean Theorem..

Solve real-world and mathematical problems involving volume of cylinders, cones and spheres.. Statistics and Probability

Investigate patterns of association in bivariate data..

Page 3: Common!CoreStateStandards!Mathematics!5:! …commoncore.aetn.org/mathematics/ccss-mathematics-5/CCSS... · 2013-02-07 · 38 PARCC Model Content Frameworks for Mathematics Version

Written  by  Linda  Jaslow  in  collaboration  with  Aimee  L.  Evans  

Purposeful  Pedagogy  and  Discourse  Instructional  Model:  Student  Thinking  Matters  Most    In  studying  the  Common  Core  State  Standards  for  Mathematics  (CCSSM),  and  in  particular  the  Standards  for  Mathematical  Practice   (SMP),   it  becomes  clear  that  what  we  do   in  the  classroom  will  change  both  from   the   perspective   of   the   teacher   and   the   student.     The   teacher   will   need   a   deep   and   connected  understanding  of  the  mathematics  content  and,  during  instruction,  will  need  to  provide  experiences  that  allow   the   students   to   construct   meaning   for   themselves   through   carefully   crafted   tasks   and  conversations.      Students  will  need  to  reason,  communicate,  generalize  and  challenge  the  mathematical  thinking  of  themselves  and  others.    Student  thinking  matters  most.    The   purposeful   pedagogy   and   discourse   instructional   model   that   we   are   using   in   the   Arkansas   CCSS  Mathematics  Professional  Development  Project,  is  based  on  the  research  of  four  sets  of  researchers:    

• Jacobs,  Lamb,  and  Philipp  on  professional  noticing  and  professional  responding;  • Smith,  Stein,  Hughes,  and  Engle  on  orchestrating  productive  mathematical  discussions;  • Ball,  Hill,  and  Thames  on  types  of  teacher  mathematical  knowledge;  • Levi  and  Behrend  (Teacher  Development  Group)  on  Purposeful  Pedagogy  Model  for  Cognitively  

Guided  Instruction.    This  model   is   intended   to   support   teachers   to   deliver   strong  mathematical   content   using   critical   best  classroom  practices  as  well  as  to  develop  a  learning  environment  where  their  students  regularly  use  the  8  Standards  for  Mathematical  Practice.    Assessing  Students,  Professional  Noticing,  and  Teacher  Mathematical  Knowledge  At  the  core  of  our  model   is  assessing  students  (TDG-­‐CGI  model),  which  refers  to  taking  a  close   look  at  student  understanding.    While  assessing  students,  we  apply  the  concept  of  professional  noticing  (Jacobs  et  al.).        Professional  noticing  is  comprised  of  3  teacher  skills:    

• Attending  to  children’s  strategies,  • Interpreting  children’s  understanding,  and  • Deciding  on  how  to  respond  on  the  basis  of  children’s  understanding.  

 In  order  to  assess  a  students’  understanding,  we  must  look  at  the  details  of  their  thinking  (what  did  they  do)  and   then  mathematically   interpret   these  details.    While   this  may  seem  trivial,   students’   strategies  are  complex  and  many  deep  mathematical  operations  and  properties  are  embedded   implicitly   in  their  work.     It   takes   time   to   identify   the   important   details   in   students’   thinking   and   then   mathematically  interpret   the   relationships  and  properties  of  operations   that  are  embedded.    The  ability   to  notice  will  help  the  teacher  identify  the  mathematics  available  for  exploration  during  the  lesson(s)  to  follow.  Since  student  thinking  matters  most,  in  the  Arkansas  professional  development  courses    the  beginning  of  most  classes  will   involve   just  making   sense  of   and  deepening  our  understanding  of   the  details   of   students’  strategies  and  the  mathematical  ideas  embedded  in  their  strategies.        The   deeper   and  more   connected   a   teacher’s   mathematical   knowledge   is,   the   easier   it   is   to   see   and  interpret  the  details  of  student  thinking.    Teaching  mathematics  requires  a  variety  of  types  of  knowledge  as  shown  in  Figure  1.      

Page 4: Common!CoreStateStandards!Mathematics!5:! …commoncore.aetn.org/mathematics/ccss-mathematics-5/CCSS... · 2013-02-07 · 38 PARCC Model Content Frameworks for Mathematics Version

Written  by  Linda  Jaslow  in  collaboration  with  Aimee  L.  Evans  

One   type   of   teacher  mathematical   knowledge   is  specialized   content  knowledge   –   the  mathematics   behind   the  mathematics.     For   example,  it   is   not  enough   to   know  we  can   divide   fractions   by  inverting   the  second   fraction  and   multiplying.     A   teacher  must   understand   the  mathematics  that  allows  that  strategy   to   work.     Teachers  must   also   understand   how  

children   will   approach   various   problems,   how   their   thinking   develops,   and   how   students’   thinking   is  different  than  adults’  thinking.    This  knowledge  is  called  knowledge  of  content  and  students.    All  of  this  comes   together   to   create   the  critical  part  of  professional  noticing,   identifying   the  details  of   children’s  thinking  and  mathematically  interpreting  the  details,  which  allows  us  to  assess  students’  thinking,  which  of  course  matters  above  all  else.    Exercising  Professional  Noticing  A   fourth  grade   student   solved   the   following  problem:    Kathy   is  making  ____  cupcakes.     She  put  ____  cups  of  frosting  on  each  cupcake.    How  many  cans  of  frosting  will  she  need  to  make  her  cupcakes?    Two  sets  of  numbers:  (36,  ¼)    (36,  ¾)      

 What   did   this   student   do?    What  big  mathematical  ideas  are   embedded   in   her  strategy?     Take   a   few  minutes  to  follow  her  trail  of  thinking.     How   would   you  mathematically   notate   her  reasoning?    See  Figure  2.      What  is  it  that  teachers  have  to   know   to   be   able   to  understand   the  mathematics  of   this   students   thinking?     It  is   not   enough   to   know   the  properties   of   operations,  teachers   need   to   have   a  deeper   understanding   of  

Figure  1:  Domain  map  for  mathematics  knowledge  (Hill  &  Ball)  

 

Figure  2:  Student  work  on  36  x  1/4  

Page 5: Common!CoreStateStandards!Mathematics!5:! …commoncore.aetn.org/mathematics/ccss-mathematics-5/CCSS... · 2013-02-07 · 38 PARCC Model Content Frameworks for Mathematics Version

Written  by  Linda  Jaslow  in  collaboration  with  Aimee  L.  Evans  

these   properties   and   be   able   to   interpret   this   important  mathematics   embedded   in   student   informal  strategies.    To   solve   the   problem  using   the   first   set   of   numbers,   the   student   first   transformed   the   problem  with  commutative   property   36   x  ¼   =  ¼   x   36.   She   then   solved   by   first   finding   that  ½   of   36   =   18,   and   then  finding  that  ½  x  18  =  9.    What  mathematics  allows  for  this  sequence  of  thinking?    36  x  ¼  =  ¼  x  36                   Commutative  property      ¼  x  36  =  (½  x  ½)  x  36         Decomposing  (½  x  ½)  x  36  =  ½  x  (½  x  36)     Associative  Property    The   student   then  used   the   relationship  between  ¼  and  ¾   to   solve   the  problem  with   the  other   set  of  numbers.      Professional  Responding,  Purposeful  Pedagogy,  and  Orchestrating  Classroom  Discourse  Critical  instructional  decisions  are  based  on  the  mathematical  interpretation  of  students  understanding.    With  specialized  content  knowledge  and  knowledge  of  content  and  students   in  place,  we  are  ready  to  focus   on   our   mathematical   practice.   The   Purposeful   Pedagogy   Model   (TDG;   Cognitively   Guided  Instruction)   and  Orchestrating  Classroom  Discourse   (Stein   et   al.)   come   together   to   give  us   a   vision  of  such  practice  centered  around  the  all  important  student  thinking.        The  Purposeful  Pedagogy  Model  has  three  components:  assess  students,  set  a  learning  goal,  and  design  instruction.        Elements   for   the   design   of   the   instruction   are   defined   by   the   Orchestrating   Classroom   Discourse  research.    Orchestrating  Classroom  Discourse  outlines  5  practices  for  doing  so:  

1. Anticipating  likely  student  responses  to  cognitively  demanding  mathematical  tasks;  2. Monitoring  students’  responses  to  the  tasks  during  the  explore  phase;  3. Selecting   particular   students   to   present   their  mathematical   responses   during   the   discuss-­‐and-­‐

summarize  phase;  4. Purposefully  sequencing  the  student  responses  that  will  be  displayed;    5. Helping   the   class  make  mathematical   connections   between   different   students’   responses   and  

between  students’  responses  and  the  key  ideas.      We   will   use   the   details   of   student   understanding   to   set   learning   goals   for   our   students,   design  instruction,   and  orchestrate   classroom  discourse.     In   doing   so,  we  are   engaging   in   the   comprehensive  practice  of  professional   responding.     This   is   best   understood  by   taking   a   look   at   a   classroom  vignette  from  Kindergarten.    The   students   in   this   class   have   been   solving   problems   that   begin  with   10   and   add   some  more.     The  teacher  has  elected  to  present  this  problem  by  beginning  with  an  amount  other  than  10  and  then  adding  on   10   to   see   how   students   will   respond.     Before   reading   the   classroom   exchange   and   the   teacher’s  

Page 6: Common!CoreStateStandards!Mathematics!5:! …commoncore.aetn.org/mathematics/ccss-mathematics-5/CCSS... · 2013-02-07 · 38 PARCC Model Content Frameworks for Mathematics Version

Written  by  Linda  Jaslow  in  collaboration  with  Aimee  L.  Evans  

professional  responding,   look  at  the  student  work  from  a  kindergarten  class  for  the  following  problem  and   answer   these   questions   for   yourself:     Zayeqwain   had   6   pennies.     He   gets   10  more.     How  many  pennies  does  he  have  now?    

• What  did  the  students  do?      • What  is  the  mathematics  embedded  in  their  strategies?  • How  are  the  strategies  alike  and  different?  • Why  do  you  think  the  teacher  would  have  selected  these  two  students  to  share?  • What  conversation  do  you  think  the  teacher  would  like  to  have?  

Pretty                                                                   Moniqua                      Classroom  Vignette  The  classroom  teacher,  Mrs.   J  asked  the  two  students  to  share  their  solutions  with  the  class  and  then  engaged  the  class  in  a  discussion  around  their  strategies.    Pretty:     There  are  10  [pennies],  (then  she  counted  on)  11,  12,  13,  14,  15,  16.  Moniqua:   There  are  6,  (then  counted)  7,  8,  9,  10,  11,  12,  13,  14,  15,  16.    And  look  I  came  up  with  2  

number  sentences  (excitedly)    6  +  10  =  16  and  10  +  6  =  16.    See  I  can  do  it  two  ways!  

Mrs.  J:     Look  at  these  two  strategies.    Are  they  alike  or  different?  Sandia  :   They  are  alike.    They  both  counted  up.  Mrs.  J.:     I  can  see  that  they  both  used  a  counting  up  strategy.    What  do  the  rest  of  you  think?  Theo:   No,  they  are  not  alike.    They  started  counting  from  a  different  number.  Moniqua  started  

counting  from  6  and  Pretty  started  counting  from  10.  Mrs.  J.:   (pointing  at  Moniqua’s  number  sentences)  So,  which  one  of  Moniqua’s  number  sentences  

go  with  the  problem?  Class:     6  +  10  =  16.  Mrs.  J.:     Why?  Claudette:   Because  Zayeqwain  has  6  pennies  and  then  he  gets  10  more.  Mrs.  J.:     Do  any  of  these  number  sentences  represent  Pretty’s  strategy?  Claudette:   10  +  6  =  16.  

Page 7: Common!CoreStateStandards!Mathematics!5:! …commoncore.aetn.org/mathematics/ccss-mathematics-5/CCSS... · 2013-02-07 · 38 PARCC Model Content Frameworks for Mathematics Version

Written  by  Linda  Jaslow  in  collaboration  with  Aimee  L.  Evans  

Mrs.  J.:     Why?  Maria:     Because  she  started  with  10  first  and  then  added  her  6  seconds.  Mrs.  J.:     Is  that  okay  to  do?      Class:     Yes.    No.  (mixed  answers)  Mrs.  J.:     Will  they  both  get  the  same  answer?  Cecilia:     I  just  counted  it  on  my  fingers.    They  are  both  16.  (The  class  is  surprised.)  Mrs.  J.:     Really?    Do  you  think  this  was  just  an  accident,  or  do  you  think  this  will  always  happen?  Cecilia:     It  won’t  always  happen,  just  on  this  problem.    Mrs.   J  decided   to   stop  after   this  exchange  and   let  her   students’   ideas  percolate.    About  a  week   later,  when  she  posed  a  similar  problem  (4  +  10),  five  additional  students  switched  the  order  of  the  numbers  to   solve   the   problem   and   counted   on   from   10   instead   of   4,   utilizing   the   commutative   property   of  addition.     After   further   discussion,  many   of   the   students   were   beginning   to   think   that   this  might   be  something  that  would  always  work.    How  is  this  episode  related  to  the  purposeful  pedagogy  and  discourse  instructional  model?    The  teacher  posed  a  problem  to  her  class  and  allowed  the  students  to  solve  the  problem  the  way  that  made  sense  to  them.    She  identified  student  work  that  had  the  potential  to  help  her  students  discover  and  make  sense  of  an  important  mathematics  concept.    Specifically,  when  Pretty  counted  on  from  the  larger  number,  the  teacher  understood  Pretty’s  strategy  was  based  on  the  commutative  property.    The  teacher  also  noticed  Moniqua’s  number  sentences,  6  +  10  =  16  and  10  +  6  =  16.  Based  on  her  analysis  and  observation,  she  made   an   instructional   decision   to   use   this   as   an   opportunity   to   have   class   discussion   about   the  commutative  property  and  how  number  sentences  relate  to  the  structure  of  the  problem.    As  opposed  to  telling  the  students  that  this  was  a  “turn  around  fact”  or  to  “just  count  on  from  the  larger  number,”  she  put  the  students   in  the  position  to  consider  these  complex   ideas  for  themselves  by  facilitating  the  dialogue  to  help  them  make  meaning  connected  to  their  existing  thinking.        While   this   type   of   exchange   requires   the   classroom   teacher   to   think   very   purposefully   about  instructional  decisions  and  to  think  deeply  about  the  mathematics  embedded  in  students’  solutions,  the  effort   is  worthwhile.    The  evidence  comes  from  Cognitively  Guided   Instruction,  an   instructional  model  that  emphasizes  these  very  practices.  Visits  to  CGI  classrooms   in  Arkansas  will   reveal  that  children  are  thinking  more  deeply  and  flexibly  about  mathematics.    They  are  not  simply  solving  problems  that  have  no  meaning   to   them;   they   are   becoming   young  mathematicians   capable   of   explaining   their   thinking,  which  matters  most,  and  grappling  with  and  making  sense  of  the  complexity  of  the  mathematics.    How  do  we  now  take  the  information  we  have  about  students’  thinking  and  professionally  respond  in  a  way   that   is   based   on   students’   understanding   and   designed   to   facilitate   children’s   thinking   along   a  learning  trajectory?    We  must  select  or  design  appropriate  mathematical  tasks  or  problems.    Mathematical   tasks   should   be   selected   that   will   facilitate   children’s   development.     Once   we   have  identified  the  task,  we  should  consider  the  following  questions:  

• What  do  we  anticipate  students  will  do  with  the  task?      • Will  this  task  provide  the  experiences  needed  to  further  students’  development?      • Which   of   the   strategies   we   expect   are   likely   to   help   the   most   in   making   sense   of   the  

mathematics  in  the  goals  we  have  set  for  them?        

Page 8: Common!CoreStateStandards!Mathematics!5:! …commoncore.aetn.org/mathematics/ccss-mathematics-5/CCSS... · 2013-02-07 · 38 PARCC Model Content Frameworks for Mathematics Version

Written  by  Linda  Jaslow  in  collaboration  with  Aimee  L.  Evans  

The  next  stage  is  to  pose  the  task  or  problem  and  allow  the  students  to  solve  the  problem  in  a  way  that  makes   the  most   sense   to   them.    Our   job   is   to  monitor   students   to   identify  what   students   are   doing,  guide  them  as  they  work,  and  decide  which  students’  papers  should  be  shared.      Back  to  Teacher  Mathematical  Knowledge  Once  we  have   identified   the  best   student  strategies   to  meet   the   learning  goals,  we  need   to  decide   in  which  order  to  share  students’  strategies  and  what  mathematical  connections  should  be  the  focus  of  the  classroom   discussion.     Again,   the   teacher’s   mathematical   knowledge,   specifically   her   knowledge   of  content  and  teaching  (Hill  &  Ball,  Figure  1),  will  be  critical  in  making  decisions  by  being  able  to  envision  how   the  mathematics   available   through   the   students’   strategies   connect   to   one   another   and   to   the  mathematics  concepts  that  are  desired.        At   this   juncture,   the   teacher’s   knowledge   of   the  mathematics  meets   the   need   to   design   or   plan   the  discourse   to   take   students   deeper   into   the   mathematics.     This   involves   both   the   sequencing   of   the  presentation  and  also  the  selection  and  phrasing  of  the  questions  posed  during  the  discourse.    There  are  likely  multiple  productive  paths,  but  there  are  certainly  some  unproductive  or  problematic  paths  as  well,  and  the  teacher  will  need  to  choose  well.    Student  thinking  matters  most.    Seeing  It  All  Together  The  research  of  these  four  sets  of  researchers  come  together  to  create  the  instructional  model  that  we  are  using   in  the  courses  for  the  Arkansas  CCSS  Mathematics  Professional  Development  Project.    While  this  model,   being   a   blend  of   the  work  of   so  many  different   projects,  may   seem  complex   at   first,   it   is  perhaps  more  straight  forward  when  viewed  using  the  graphic  organizer  below.    The  key  ideas  that  hold  the  model   together   are   the   importance  of   noticing   the  details   of   student   thinking,   interpreting   those  details,   and   using   that   information   to   design   instruction   comprised   of   discourse   around   student  strategies  aimed  at  a  specific  mathematical  goal.  In  other  words,  what  details  do  we  see  in  our  children’s  work,   how   do   we   interpret   their   thinking,   and   where   mathematically   do   we   go   from   there?     In  maintaining   this   focus   throughout   the   professional   development   courses,   it   is   our   hope   to   support  teachers   in   their   journey  toward  achieving  mathematical  proficiency   for   their  students  as  described   in  the  CCSSM.    And  always  remember,  student  thinking  matters  most.  

REFERENCES:

Hill, H., Ball, D. L., & Schilling, S. (2008). Unpacking “pedagogical content knowledge”: Conceptualizing and measuring teachers’ topic-specific knowledge of students. Journal for Research in Mathematics Education, 39 (4), 372-400.

Jacobs, V. R., Lamb, L. L. C. & Philipp, R. A. (2010). Professional noticing of children’s mathematical thinking. Journal for Research in Mathematics Education, 41 (2), 169-202.

Jacobs, V. R. & Philipp, R. A. (2010). Supporting Children’s Problem Solving. Teaching Children Mathematics, 17 (2), 99-105.

Smith, M. S., Hughes, E. K., Engle, R. A., & Stein, M. K. (2009). Orchestrating Discussions. Mathematics Teaching in the Middle School, 14 (9), 549-556.

Stein, M. K., Engle, R. A., Smith, M. S. & Hughes, E. K. (2008). Orchestrating productive mathematical discussions: Five practices for helping teachers move beyond show and tell. Mathematical Thinking and Learning, 10 (4), 313-340.

Thames, M. H. & Ball, D. L. (2010). What math knowledge does teaching require? Teaching Children Mathematics, 17 (4), 221-229.

Page 9: Common!CoreStateStandards!Mathematics!5:! …commoncore.aetn.org/mathematics/ccss-mathematics-5/CCSS... · 2013-02-07 · 38 PARCC Model Content Frameworks for Mathematics Version

Written  by  Linda  Jaslow  in  collaboration  with  Aimee  L.  Evans  

Arkansas  CCSSM  Professional  Development  Purposeful  Pedagogy  and  Discourse  Instructional  Model    

 

Page 10: Common!CoreStateStandards!Mathematics!5:! …commoncore.aetn.org/mathematics/ccss-mathematics-5/CCSS... · 2013-02-07 · 38 PARCC Model Content Frameworks for Mathematics Version

 Angeles  uses  ___  of  a  bag  of  beads  to  make  a  necklace.    If  she  makes  ___  necklaces,  how  many  bags  of  beads  will  she  need?  

(1/3,  12)        (1/3,  24)        (1/3,  36)        (2/3,  12)        (2/3,  36)    

Page 11: Common!CoreStateStandards!Mathematics!5:! …commoncore.aetn.org/mathematics/ccss-mathematics-5/CCSS... · 2013-02-07 · 38 PARCC Model Content Frameworks for Mathematics Version
Page 12: Common!CoreStateStandards!Mathematics!5:! …commoncore.aetn.org/mathematics/ccss-mathematics-5/CCSS... · 2013-02-07 · 38 PARCC Model Content Frameworks for Mathematics Version

Planning  Sheet  –  Mrs.  Kasnicka  –  Multiple  Grouping  (Multiplication)         p.1    

1. Sort  student  work  to  determine  what  mathematics  students  brought  to  bear  on  the  problem  and  what  mathematics  is  available  for  instruction  through  a  discussion.    Sort  by…strategy,  representation  used,  level  (correct/complete,  productive  failure),  missing  elements.  

2. Determine  where  most  of  the  class  appears  to  be  in  terms  of  the  mathematics  they  understand  and  the  mathematics  they  are  ready  to  learn.  

3. Select/create  a  learning  goal  or  goals  that  will  address  where  your  class  is.    In  doing  so,  think  about  how  to  support  students  that  might  be  working  below  the  rest  of  the  class  so  the  discussion  helps  them  as  well.  

4. Select  student  papers  that  can  be  used  as  the  basis  for  a  discussion/lesson  directed  at  the  learning  goal(s).    Determine  in  what  order  to  use  the  student  work.    Determine  if  the  student  will  present  the  work  (P)  or  if  you  will  allow  the  class  to  interpret  it  (I).  

5. Develop  questions  to  pose  about  the  work,  either  to  the  student  it  belongs  to  (O)  or  to  the  class  (C).    

Selected  Work   Learning  Goal(s)   Questions  to  Pose  

 Guillermo    Drawing  of  4  rectangles,  with  3  sections  in  each  numbered  1-­‐12.        

(Focus  attention  on  students  who  are  still  struggling  with  making  sense  of  the  problem  context)    Use  a  direct  modeling  strategy  to  make  sense  of  the  problem  and  to  find  “12  sets  of  1/3”  

(I)  What  did  Guillermo  do?  (C)  How  did  he  represent  a  necklace  (1/3  bag  of  beads)?  (C)  How  did  he  represent  a  bag  of  beads?  (C)  What  do  the  numbers  1-­‐12  in  his  picture  show?  (C)  How  can  we  write  an  equation  to  show  his  thinking?  

 Blake    Drawing  of  8  rectangles,  shaded  in  groups  of  2/3  (incomplete  drawing),  showing  3  sets  of  2/3.    

 Interpret  Blake’s  incomplete  picture  to  try  to  relate  3  groups  of  2/3  =  2  in  a  multiplicative  way  to  12  groups  of  2/3  =  8.  

(I)  What  did  Blake  do?  (C)  What  does  the  picture  with  the  two  rectangles,  red  shading,  arrow  at  the  top  and  numeral  3  represent?  (C)  How  did  he  represent  a  bag  of  beads?  (C)  Where  is  a  necklace  in  his  picture?  (C)  How  can  we  write  an  equation  to  show  his  thinking?  (C)  How  can  this  help  us  solve  the  problem?  

   

Page 13: Common!CoreStateStandards!Mathematics!5:! …commoncore.aetn.org/mathematics/ccss-mathematics-5/CCSS... · 2013-02-07 · 38 PARCC Model Content Frameworks for Mathematics Version

 Planning  Sheet  –  Mrs.  Kasnicka  –  Multiple  Grouping  (Multiplication)         p.2      

Selected  Work   Learning  Goal(s)   Questions  to  Pose  

 Angeles    Table  labeled  B  (beads)  and  N  (necklaces)  with  entries  beginning  with  (2,  3)  and  counting  by  that  “chunk”        

 Relate  Angeles’  table  to  Blake’s  picture  and  determine  how  Angeles  extended  her  table  to  answer  the  question  (multiplicative  relationship).    Connect  table  to  the  number  sentences.  

(I)  Compare  Angeles’  work  to  Blake’s  (and  Guillermo’s).    What  connections  do  you  see?  (C)  What  does  the  first  row  in  Angeles’  table  show?    What  is  the  2?    What  is  the  3?  (C)  How  is  “2  bags  makes  3  necklaces  shown  in  the  table?    In  the  picture?    In  the  number  sentences?  (C)  What  do  the  other  rows  in  the  table  represent?    How  did  Angeles  know  what  to  put  there?  

 Cristina    Pair  of  number  sentences  3  x  2/3  =  2  and  9  x  2/3  =  6  with  a  total  of  8  circled    

 Relate  Cristina’s  number  sentences  to  Angeles’  table  and  Blake’s  drawing.    Relate  Cristina’  number  sentences  to  each  other.  

(I)  What  did  Cristina  do?  (C)  How  could  Cristina’s  equations  be  used  to  solve  the  problem?  (C)  How  do  Cristina’s  equations  relate  to  Angeles’  and  Blake’s  work?  (C)  How  do  Cristina’s  number  sentences  relate  to  each  other?  

   

Page 14: Common!CoreStateStandards!Mathematics!5:! …commoncore.aetn.org/mathematics/ccss-mathematics-5/CCSS... · 2013-02-07 · 38 PARCC Model Content Frameworks for Mathematics Version

Student  Work  for  the  Lesson    Angeles  uses  ___  of  a  bag  of  beads  to  make  a  necklace  for  her  store.    If  she  makes  ___  necklaces,  how  many  bags  of  beads  will  she  need?  (1/3;  12)          (1/3;  24)          (1/3;  36)          (2/3;  12)          (2/3;  36)    

       Guillermo                                    Blake      

                                           Angeles       Cristina    

Page 15: Common!CoreStateStandards!Mathematics!5:! …commoncore.aetn.org/mathematics/ccss-mathematics-5/CCSS... · 2013-02-07 · 38 PARCC Model Content Frameworks for Mathematics Version

!

!

Page 16: Common!CoreStateStandards!Mathematics!5:! …commoncore.aetn.org/mathematics/ccss-mathematics-5/CCSS... · 2013-02-07 · 38 PARCC Model Content Frameworks for Mathematics Version

VOLUME  9,  ISSUE  2   PAGE  19    

How  Might  Future  Mathematics  Instructional  Materials  Look?  

 Submitted  by  Dr.  Linda  K.  Griffith    University  of  Central  Arkansas    

As  I  have  led  professional  development  sessions  in  recent  months,  one  question  has  been  asked  of  me  repeatedly,  “What  instructional  materials  do  you  recommend?”    The  only  response  I’ve  had  has  been  to  refer   the  questioner  to  the  Arkansas   Ideas  Common  Core  website  and  to  the  statewide  strategic  plan,  where  under  the  curriculum  section  there  is  a  document  that  describes  a  two-­‐tiered  approach  to  evaluating  instructional  materials  in  light  of  Common  Core  State  Standards  for  Mathematics  Content  and  the  Standards   for  Mathematical  Practice.     I  continue  to  give  this  response,  but   I  have  begun  to  wonder,  how  will  the  next  generation  of  instructional  materials  look?    

I   think   almost   every   set   of   instructional   materials   contains   good   “problems”   and/or   “tasks”.     The  issue,   pervasive   in   all   of   the   materials,   is   they   take   the   good   problem   or   mathematical   task   and  provide   all   the   information   needed   to   solve   the   problem   or   complete   the   task,   provide   all   the  mathematical   structure   needed   to   solve   the   problem   or   complete   the   task,   and   finally   break   the  problem  or  task  down  into  a  step  by  step  procedure.    Now  the  problem  or  task  is  no  longer  a  problem  or  interesting  task  but  an  exercise  in  following  the  steps  provided  to  get  to  an  answer  or  outcome.  I  have  found  this  to  be  the  case  in  even  the  best  resources  I  have  used  in  the  past.    

There  is  a  TED  video  by  Dan  Meyer  entitled  The  Math  Curriculum  Needs  a  Makeover  that  does  a  great  job   of   illustrating   the   point   I   am   trying   to   make.       This   video   can   be   found   at   the   URL:  http://www.ted.com/talks/dan_meyer_math_curriculum_makeover.html      

I  encourage  all  of  us  in  the  mathematics  education  community  in  Arkansas  and  especially  those  of  us  that  are  in  leadership  positions  to  consider  how  instructional  materials  will  really  need  to  look  if  we  are   to   implement   both   the   Common   Core   State   Standards   for   Mathematical   Content   and   the  Standards  for  Mathematical  Practice.    I  do  not  yet  have  a  clear  vision  but  I  have  begun  to  have  a  few  interesting   ideas.     Student   materials   will   look   very   different   from   teacher   materials.     The   student  materials   will   just   be   visuals   and   short   problem   statements   and   the   visual   may   include   graphics,  pictures,  videos,  etc.    Teacher  materials  will  need  to  answer  three  important  questions:    

1. What  might  students  do  with  this  problem  or  task?  This  should  include  a  variety  or  approaches.  2. What  mathematics  does  this  problem  or  task  have  potential   to  reveal?  A  good  problem  or  task  

will  not  focus  on  a  single  standard  but  multiple  standards  that  are  coherent  and  share  a  common  focus.  

3. How  can  a  teacher  orchestrate  classroom  discourse  to  reveal  the  important  mathematical   ideas  from  this  problem  or  task?    This  might  include  the  kind  of  student  work  that  would  be  productive  to  share  or  the  kind  of  common  errors  that  need  to  be  shared  with  a  discussion  about  why  that  approach  did  not  result  in  a  successful  solution  to  the  problem  or  completion  of  the  task.    

     (continued  on  next  page)  

Page 17: Common!CoreStateStandards!Mathematics!5:! …commoncore.aetn.org/mathematics/ccss-mathematics-5/CCSS... · 2013-02-07 · 38 PARCC Model Content Frameworks for Mathematics Version

PAGE  20    Newsletter  

 (Leadership  Corner  continued  from  previous  page)  

In  order   for  the  teacher  materials   to   include  the  answers  to  these  three  questions,   the  problem  or  task  will  need  to  be  carefully  field-­‐tested  and  the  result  of  the  field  tests  used  to  formulate  answers  to  these  three  questions.    

There  will  still  be  a  need  for  practice  or  exercises,  but  the  order  will  just  need  to  be  reversed.    Right  now   we   see   the   examples   of   how   to   complete   the   exercises,   then   the   practice   exercises   for   the  students   and   then   in   the   problems   that   use   the   procedure   that   students   have   been   practicing.     I  propose  that  the  problems  or  task  that  lead  to  the  students  developing  the  procedures  need  to  come  first  and  then  they  can  do  the  practice  exercises   to   increase  their  effectiveness  and  efficiency  with  the  procedures  that  have  created,  that  is  allow  students  to  develop  fluency  with  the  procedures.    

I  encourage  each  of  you  to  watch  the  video  recommended  in  this  article  and  find  a  problem  or  task  in  your  instructional  materials  that  you  can  pare  down  to  its  essence.    Pose  the  problem  or  present  the  task  to  your  class  after  first  thinking  about  the  three  questions  listed  earlier  in  the  article.    

After  you  have  completed  this  process,  reflect  on  what  you  have  learned.    I  hope  that  many  of  us  that  are   instructional  facilitators  or  professional  development  providers  will  begin  to  think  about  how  to  use  professional  learning  communities  and  embedded  professional  develop  to  support  efforts  to  help  teachers  find  good  problems  and/or  task  and  use  these  to  foster  the  kind  of  mathematics  education  experiences  that  will  make  the  implementation  of  the  Common  Core  State  Standards  for  Mathematics  Content  and  the  Standards  for  Mathematical  Practice  a  reality.  §    AAML  would  like  to  invite  all  ACTM  members  to  consider  joining  AAML.    This  organization  hopes  to  serve  all  members  of  ACTM  who  are  providing  leadership  in  mathematics  education  in  Arkansas.    This  includes  teacher  leaders  as  well  as  those  in  more  formal  leadership  positions.  

   

 

ARKANSAS  ASSOCIATION  OF  MATHEMATICS  LEADERS  (AAML)  MEMBERSHIP  FORM  2010-­‐2011  

                 Name                      Job  Title                      Home          .          address  

     Home  phone  

 

                   Email  

             Cell  phone  

 

               School              .            District  

       Work  phone  

 

               School        .                Name  

                         School      .                  Address  

 

       

Check  the  organizations  to  which  you  currently  belong:  

_________   Arkansas  Council  of  Teachers  of  Mathematics  (ACTM)  

    _________   National  Council  of  Teachers  of  Mathematics  (NCTM)  

       _________   National  Council  of  Supervisors  of  Mathematics  (NCSM)  

 

Please  mail  this  form  with  a  $15.00  check  for  annual  dues  made  out  to  AAML  to:  Tim  Brister,  AAML  President,  Harding  University,  Box  12254,  Searcy,  AR  72149  [Online  registration  for  ACTM  and  AAML  available  at  http://www.actm.net/]  

Page 18: Common!CoreStateStandards!Mathematics!5:! …commoncore.aetn.org/mathematics/ccss-mathematics-5/CCSS... · 2013-02-07 · 38 PARCC Model Content Frameworks for Mathematics Version

PAGE  22    Newsletter  

 

What  is  Our  Goal?      Dr.  Linda  K.  Griffith,  University  of  Central  Arkansas    Recently  my  friend,  Tim  Brister  (President  AAML),  sent  me  a   link  to  a  video  of  Phil  Daro,  one  of  the  writers  of   the  Common  Core  State  Standards   for  Mathematics,  who  has   spent  a  great  deal  of   time  studying  the  Trends  in  International  Mathematics  and  Science  Studies  (TIMSS)  videos.    The  URL  that  will  take  you  to  the  video  is:  http://vimeo.com/30924981.    I  learned  a  great  deal  from  watching  this  video  multiple  times  and  would  like  to  share  some  of  what  I  learned  with  you  and  encourage  you  to  watch  the  video  for  yourself.    

Based  on  his  observations,  Daro  proposes  that   the  difference   in   Japanese  and  American  teachers   is  not   their   pedagogical   abilities   nor   their   content   knowledge,   but   their   goals.     He   says   that   he   has  realized   from  hours  of  watching   the  TIMSS   videos   that  when  American   teachers   look  at   a  problem  their  goal  is  for  their  students  to  get  the  correct  answer  to  the  problem.    While  the  goal  of  Japanese  teachers  is  to  help  their  students  learn  some  mathematics  as  they  work  on  the  problem.    

He  begins  by  saying  he  has  often  been  asked  what  is  one  thing  we  could  change  that  would  make  a  difference   in  mathematics  education.    He  goes  on  to  say  that   it  would  not  be  a  magic  pill  but   if  we  could   get  American   teachers   to   change   their   goal   by   asking,   “What   is   the  mathematics   kids   are   to  learn  from  working  this  problem?”  This  would  replace  what  they  currently  ask,  “How  an  I   teach  my  kids  to  get  the  answer  to  today’s  problem?”      

He  makes   the   point   that   getting   the   answer   to   a   problem   is   one   consideration   but   there   are   two  others:    making  sense  of  the  problem  situation  and  making  sense  of  the  mathematics  you  can  learn  from  working  on  the  problem.    Much  of  what  he  says  in  this  video  helped  me  to  really  see  the  reasons  for  and  importance  of  the  eight  Standards  for  Mathematical  Practice  that  are  an  integral  part  of  the  Common  Core  State  Standards  for  Mathematics.    

He  makes  an  excellent  point  about   the   importance  of   sharing  approaches   to  problems   that  did  not  work.    He  says  it   is  often  easier  to  get  to  the  mathematics  through  thinking  about  why  an  approach  did   not   work.     In   some   of   the   work   that   has   been   done   for   the   Arkansas   statewide   professional  development  plan   for   implementation  of  Common  Core  State  Standards   for  Mathematics,   the  term  “productive  failure”  has  been  used.    This  is  another  way  to  say  that  not  only  are  the  approaches  that  produce  correct  answers  important  but  understanding  why  an  approach  fails  is  of  at  least  equal  value.    

He  gives  several  examples  of  answer  getting-­‐techniques–  procedures  that  yield  correct  answers,  but  mask  or  hide  the  true  mathematics.    His  examples  include:    the  butterfly  method  for  adding  fractions,  setting  up  proportions  and  cross-­‐multiplying,  FOIL,  and  canceling.    It  is  well  worth  the  17  minutes  that  it  takes  to  watch  this  video  to  hear  what  he  has  to  say  about  these  commonly  used  procedures  and  think  about  the  ramifications.    

He  concludes  by  agreeing  that  the  mathematics  curriculum  in  the  United  States  has  been  a  mile-­‐wide  and  an  inch-­‐deep,  but  he  says  we  (teachers)  have  contributed  to  this  problem  by  incorporating  these  answer   getting   techniques   into   the   curriculum   in   addition   to   or   in   place   of   the   important  mathematics.        

I  hope  you  will  take  the  time  to  watch  this  video  and  reflect  on  what  Daro  is  proposing  and  how  this  is  related  to  the  implementation  of  the  Common  Core  State  Standards  for  Mathematics  in  Arkansas.  §