column selection - microsoft · column selection general ... general considerations for column...

58

Upload: buikien

Post on 04-May-2018

229 views

Category:

Documents


1 download

TRANSCRIPT

ListofTables..................................................................................................................................................2 ListofFigures.................................................................................................................................................2

ColumnSelection GeneralConsiderationsforColumnSelection......................................................................................... 3-11 YourZebronCapillaryGCColumn......................................................................................................... 12-29

ColumnInstallation Pre-InstallationCheckList...........................................................................................................................30 InstallationToolsandSupplies.....................................................................................................................30 DetailedColumnInstallationInstructions.....................................................................................................31 CapillaryColumnPreparation CriticalColumnInstallationSteps................................................................................................................32 InjectorInstallation DetectorInstallation InstallingtheColumn...................................................................................................................................33 ConditioningandTestingtheCapillaryColumn TroubleshootingInstallationProblems........................................................................................................34 HintsandTips ProtectingtheColumn.................................................................................................................................34 Liners............................................................................................................................................................35 GuardColumns...................................................................................................................................... 36-37 ColumnBakeOut.........................................................................................................................................36 PhaseRatio(ß)....................................................................................................................................... 37-38 ShorteningRunTimes............................................................................................................................ 39-40 CarrierGasSelectionandFlowOptimization..............................................................................................41 TemperatureProgramming...........................................................................................................................42 CheckingforLeaks......................................................................................................................................42 InjectionTechniques.....................................................................................................................................43 GasFlowSettings........................................................................................................................................44 CalculatingSplitRatioandColumnFlowRate............................................................................................44 ColumnDeadTimesandMarkers................................................................................................................45 SampleCapacity..........................................................................................................................................46 SolventRinsingofZebron™CapillaryColumns...........................................................................................47 ChemicalCompatibility................................................................................................................................48 “BakingOut”theColumn.............................................................................................................................48 ColumnStorage...........................................................................................................................................48

TaBLeOFCOnTenTS

Appendices References............................................................................................................................................................49 Glossary ........................................................................................................................................................ 50-51 equations........................................................................................................................................................ 52-54

ListofTablesTable1: UsesandTrendsbyColumnLength.......................................................................................................4Table2: UsesandTrendsbyColumnID..............................................................................................................6Table3: UsesandTrendsbyColumnFilmThickness..........................................................................................8Table4: PhasePolarity.......................................................................................................................................11Table5: PhaseRatio(ß)Values...........................................................................................................................38Table6: InjectionModesandSelectedSpecifications.......................................................................................43Table7: GasesUsedwithCommonDetectors..................................................................................................43Table8: TypicalHeadpressures(forcolumnpurging).........................................................................................44Table9:expansionVolumesofCommonSolvents............................................................................................44Table10:SplitlessHoldTimes.............................................................................................................................45Table11:RecommendedDeadVolumeTimeMarkers........................................................................................45Table12:RecommendedMethaneRetentionTimes...........................................................................................46Table13:approximateSampleCapacity(maxforsinglecomponent)................................................................46Table14:PhaseCompatibilitywithRinsingSolvents..........................................................................................47Table15:RinsingConditions................................................................................................................................47

ListofFiguresFigure1:ProperandImproperCutCapillaryend................................................................................................31Figure2:CuttingFusedSilicaTubing..................................................................................................................31Figure3:ColumnHanging..................................................................................................................................32Figure4:MeasureInjectionPortDistance...........................................................................................................32Figure5:Z-GuardConnection.............................................................................................................................36Figure6:GuardianColumn.................................................................................................................................36Figure7:PhaseRatio..........................................................................................................................................38Figure8&9:ButaneIsomerSeparations............................................................................................................39Figure10,11,&12:PaHSeparations..................................................................................................................40Figure13:CarrierGasSelectionandVelocityOptimizationPlots........................................................................41Figure14:InletPressurevs.Velocity.....................................................................................................................42Figure15:DeadVolumePeakShapeTest............................................................................................................46

Todefineacapillarycolumn,fourparametersmustbespecified:�. LENGTH: Lengthisdirectlyrelatedtooverallefficiencyofthecolumnandtooverallanalysistime.

Therelationbetweenlengthandresolutionisasquarerootrelation,whileanalysistimeisdirectlyrelatedtocolumnlength.

�. INTERNAL dIAmETER:Columninternaldiameterhasamajorimpactoncolumnefficiency(andthusonresolution)andonthesamplecapacityofthecolumn.Itcanalsodictatelimitationsontheinjectionanddetectiontechniquesusedandviceversa.Smaller(InternalDiameter)giveshigherk,butlowercapacity.

�. FILm THICKNESS: Filmthicknessdeterminessoluteretentionandthussoluteelutiontempera-

tures.Itwillalsoplayanimportantroleinthesamplecapacityofthecolumn.Thinfilmsarefasterwithhigherresolution,butofferlowercapacity.

4. PHASE: Thestationaryphaseisthemostinfluentialcolumnparameter.Itnotonlydeterminesthefinalresolutionobtained(itdeterminestherelativeretentionofthesolutes),butduetoitsspecificcharacteristics,itwillinfluencevirtuallyeverycolumnselectionparameter.

Othercriterialikeinstrumentavailability,feasibility,budgetconsiderations,etc.canalsoimposelimitationsoncolumnselection.experience,literaturedataandyourPhenomenexTechnicalRepresentativeareinvalu-abletoolstoguideyouthroughthelabyrinthofcolumnselection.

General Considerations for Column Selection

4

I. Length

A. Influence of length on resolution. Increasingthelengthwillincreaseresolutioninasquarerootrelation.Dueto

disadvantagesofverylongcolumns,increasingresolutionbyincreasingthelengthislimited.

B. Influence of length on sample capacity. Longcolumnshaveahighersamplecapacity(squarerootrelation).C. Influence of length on analysis time. Inordertoincreaseresolutionorsamplecapacitybyincreasingthelength,the

totalanalysistimewillalsoincrease.Decreasinganalysistimebyincreasingcarriergasvelocitywillcausethecolumnefficiencytodecrease.

General GuidelinesThelengthofthecolumnshouldbechosenprimarilytoobtainanadequateefficiency. • Shortcolumnsforsamplescreening. • Longercolumnswhenbetterseparationisneeded. • Longcolumnsforcomplexsamplesorcloselyelutingpeaks.

STARTING AdVICE: Length �0 meter

Table1:UsesandTrendsbyColumnLength

�5 m Applications Chromatographic Trends �05 m Applications as Length Increases Rapidanalysis Increasedretentiontimes Lowboilers Highefficiencyseparations Increasedefficiency Morecomplexmixtures Screening Greaterresolution Lessactivesamples Simplemixtures Programmedtemperatureanalysis Highmolecularweightcompounds Morechemicallyactivecomponents

�5 m

L ~ tR

�05 m

General Considerations for Column Selection (continued)

√ L ~ R

√ L ~ SC

5

II. Internal diameter (Id)Thenewdevelopmentsofcapillarycolumntechnology,andspecificallyincolumnID,aretowardinternalsmallerdiameters.Thesedevelopmentsincreasecapillarycolumnapplicability.

A. Influence of internal diameter on resolution. Thesmallertheinternaldiameter,thehighertheefficiency. Therelationbetweenefficiencyandresolutionisasquarerootrelation.Theevolutionofever-

smallerdiametersresultsinextremelyhighefficiencycolumns,ideallysuitedforhighspeedanaly-sisandhighdetectionsensitivity.notethattheinfluenceofinternaldiameteronefficiencyismostimportantwithlargeβvalues(thinfilmcolumns).

B. Influence of internal diameter on sample capacity. narrow-borecolumnshavelowsamplecapacity.

Wide-borecolumnshavehighsamplecapacity. Oneofthedrawbacksofcapillarycolumnscomparedtopackedcolumns

wasreducedsamplecapacity.ThedevelopmentofwideboreFSOT(0.53mmID)gaveanextradimensiontocapillarychromatography.Thewide-borecolumnscombinethegeneraladvantagesofcapillarieswiththehighsamplecapacityofpackedcolumns.Itisnotwithoutreasonthesearereferredtoas“thepackedcolumnalternative”.evenasmallincreaseofinternaldiameter(frome.g.,0.25to0.32mm)resultsinasignificantincreaseinsamplecapacity.

C. lnfluence of internal diameter on analysis time. asageneralrule,thesmallertheinternaldiameter,theshortertheanalysistimewillbeforagiven

resolution.

1. Wide-borecolumnsarelessefficient(lesstheoreticalplates/length).alongercolumnisneededtoobtainthesamecolumnefficiencyandL~tR.

2. Theinternaldiameterdeterminestheoptimalvelocity(uopt)ofyourcolumn.narrow-borecolumnshavehighoptimalvelocitiesandthelossinefficiencyatvelocitieshigherthanuoptisminimal(seeFigure11,p.40).

SC ~ r�

General Considerations for Column Selection (continued)

d. Other factors to take into consideration when selecting the internal diameter. Id (mm) Instrument Selection / Constraints 0.10 Highoperatingpressuresareneeded. Mightrequiresystemmodifications. easilyoverloaded,requiresskilledtechnicians. 0.18 Similaroperatingparameterstothe0.25mmID. Increasedefficiencyallowsforshorterruntimes. Goodfirststepwhenlookingtousenarrowborecolumns. Suitedforusewithmassspectrometers. 0.20 Smalllincreaseinefficiencyvs.0.25mmIDcolumns. Suitedformassspectrometers. 0.25 Mostpopulardimension. On-columninjectionpossible. Suitedformassspectrometricdetection. 0.32 easytoworkwith;goodcompromisebetweenresolutionandstability. Routineon-columninjection. Compatiblewithnewermassspectrometers. 0.53 Canbeinstalledinanadaptedpackedgaschromatograph. easyon-columninjection. Goodforusewithdirtyorhighlevelsamples.*Smallercolumnsyieldhigherdetectionsensitivitybutlowersamplecapacity.

STARTING AdVICE: 0.�5 mm Internal diameter Column

Table2:UsesandTrendsbyColumnID 0.�0 mm Applications Chromatographic Trends 0.5� mm Applications as Id Increases

Complexsamples Increasedsamplecapacity LesscomplexsamplesHighresolutionanalysis Decreasedresolvingpower Samplecomponentswithwide Lowerefficiency rangeofconcentrationsLowsampleconcentrations Lowerdetectability HighsampleconcentrationsCanuseonlycapillary Loweroptimalcarriergasvelocities Suitablewitheitherpackedorcolumninlet capillarycolumninlets

General Considerations for Column Selection (continued)

0.�0 mm 0.5� mm

III. Film Thickness

A. Influence of film thickness on resolution (see equation) �. Influence on capacity factor (k).

Theretentionofthesolutebythestationaryphaselargelydependsonthetemperature(KD~T)andontheβvalue.Forlowksolutes(volatilecomponents),retentioncanbeincreasedthroughtheβvalue(higherfilmthickness).notethatthegaininresolutionthroughincreasingthecapacityfactorislimited.

�. Influence on efficiency (see equation).Twogeneralrulescanbeapplied:

Thickfilmsarelessefficient.Forthickfilmcolumns(lowβvalue),theresistancetomass transferintheliquidphase(CL)cannolongerbeignored.

non-polarthickfilmcolumnshaveahigherefficiencythanpolarthickfilmcolumns.Thediffu-sivityintheliquidphase(DL)isdeterminedbythenatureofthesolute,thetemperatureandthenatureofthephase.Ingeneral,themorepolarthestationaryphase,themoreDLwilldecrease.Verythickfilmcoatingswithgoodefficiencycanbemadefornon-polarcolumns.Themaximalfilmthicknessofpolarcolumnsisrestrainedduetotheoverwhelminglossinefficiency.

B. Influence on sample capacity.Thickfilmcolumnshavegreatersamplecapacitythanthinfilmcolumns.C. Influence on analysis time.Thethickerthefilm,thelongertheretentiontimeofthesoluteswillbe.Forhighlyvolatilecomponents,thickfilmcolumnsareanecessity.Lessvolatilecomponentsmayrequireverythinfilms(0.1µm)toenablethemtoelutefromthecolumn.

k = = and ~ RKd

β Kd�df

rk

k+�

df ~ SC

df ~ k

General Considerations for Column Selection (continued)

df ~ �/N and √N ~ R

d. Other factors to take into consideration. • Foranalyseswherenormallysubambienttemperaturesarerequired,athickfilmcolumnmay allowtheanalysttoworkatambientoventemperatures.However,theboilingpointrangeofthe samplecomponentsshouldnotbetoowide,otherwisethosewiththehighestboilingpointwill notelutefromthecolumn,evenatmaximaloperatingtemperatures. •athickfilmcoatingwillresultinamoreinertcolumn.Thisisespeciallyimportantifthesolute componentshavereactivefunctionalgroups. •Thickfilmshaveahigherbleedandlowermaximaloperatingtemperatures.Thismakesthem lesssuitedtouseincombinationwithmassspectrometricdetectionwhenhighoven temperaturesarerequired.

General Guidelines Thinfilmcolumnsfortheanalysisofhighboilingcompounds. Mediumfilmcolumnsfor: •soluteswithwideboilingpointrange. •mediumboilingcompounds. Thickfilmcolumnsforvolatilecompounds.

STARTING AdVICE: Thin Film: 0.�0 µm medium Film: 0.�5 µm Thick Film: �.0 µm

Table3:UsesandTrendsbyColumnFilmThickness

0.�0 µm Applications Chromatographic Trends 5.0 µm Applications as Film Thickness Increases

Rapidanalysis Increasedretentiontimes Lowboilers,e.g.,gases,solvents, purgeables(BP<25°C)Highefficiencyseparations Increasedresolution UsedmorewithwideIDcolumns (forlowboilingcompounds)HighMWcompounds Uppertemperaturelimitdecreases MorechemicallyactivecomponentsLesschemicallyactive Bleedincreases componentsMSapplications Morenarrowboilingpointrangefor analytes

0.�0 µm

General Considerations for Column Selection (continued)

5.0 µm

IV. The Right Phase

A. Influence of the stationary phase on resolution. �. Stationary phase determines selectivity.

Resolutionbetweentwocomponentsismainlydeterminedbytheselectivity(α)ofthestationaryphase.Thisselectivitydependsonthenatureofthecomponents,onthenatureofthestationaryphaseandonthetemperature.

Selectivityisbasedondifferencesininteractionbetweenanalytesandthestationaryphase.Inter-

activeforcesinclude: • Dispersiveforces • Dipole(permanentorinduced)interactions

• acid-baseinteractions• non-polarphasesofferprimarilydispersiveinteractions,andseparationbetweencomponents willbebasedonboilingpoint• Morepolarphases(withdifferentchemicalgroups)willhavemorepossiblewaysofinteraction. Separationisnotonlybasedsolelyonboilingpoint,butalsoduetointeractionsbetween functionalgroups.Retentionwilloccuraccordingtorelativechemicalfunctionality

�. Intrinsic phase characteristics determine the achievable efficiency. Greaterefficiencywillleadtogreaterresolution,providedthatselectivityisavailable.non-polar stationaryphaseswillprovidethehighestefficienciesduetoabetterdiffusivityandahigher coatingefficiency.

B. Influence of stationary phase on sample capacity.Thesamplecapacityforagivensolutealsodependsonthesortofinteractionswhichoccur,andthusonthenatureofthestationaryphaseandofthesolute(i.e.,onanon-polarphase,verypolarcompo-nentswillshoweasyoverloading).

General Considerations for Column Selection (continued)

R ~ α - �α

�0

C. Influence of stationary phase on analysis time. Toobtainacertainresolution,theanalysistimecanbedecreasedwithahigherselectivityandeffi-ciency.asgaschromatographyisbasedonvolatility,makesuretotakethetemperaturerangeofyourcolumnintoconsideration.

d. Other factors to take into consideration when selecting the stationary phase.

�. Non-polar phases offer several advantages: •inertnessandlowbleed:usefulforMSdetection •user-friendlycolumns •widetemperaturerange •moreresistanttotracesofoxygenandwater •widerangeoffilmthicknesses inthecarriergas

�. Only immobilized phases are solvent resistant. �. Gas chromatography is based on volatility. The maximum operating temperature of the

column should be sufficiently high to elute all components.

General Considerations for Column Selection (continued)

��

General Considerations for Column Selection (continued)

TableTable4:PhasePolarity

ZB-1

ZB-1ms

ZB-5

ZB-XLB

ZB-MR-1

ZB-MR-2

ZB-624

ZB-35

ZB-1701

ZB-1701P

ZB-50

ZB-WAX

ZB-FFAP

ZB-5ms

ZB-5MSi

ZB-1HT Inferno

ZB-5HT Inferno

ZB-WAXPLUS

5

LOW-POLARITY MEDIUM-POLARITY HIGH-POLARITY

8 9 11 1513 52 57 5818 19 24

STARTING AdVICE: Non-Polar Phase ZB-5ms or Polar Phase ZB-WAXpluS

��

ZB-1Alternative to any 100 % Dimethylpolysiloxane Phase:

REPLACES

*Thicker films (≥1.0 µm df) are rated to 340/360 °C (Isothermal / TPGC)

Temperature Limits: -�0 to ��0/��0 °C (Isothermal / TPGC)* • Lowpolaritycolumn• Usedfor“fingerprinting”androutinequalitycontrolanalyses(e.g.,citrusoils)• equivalenttoUSPPhaseG2

DB-1

HP-1

MET

-1HP

-101

HP-P

ONA

Rtx-

1Rt

x-1

F&F

Rtx-

1PON

ASP

B-1

CP-S

il 5

CBBP

100

7-1

OV-1

SE-3

0AT

-1Ul

tra 1

DB-1

EVD

XDB

-288

7

ZB-� Applications:

Amines Oxygenates and GRO Drugs of abuse Pesticides

Ethanol PCBs Essential oils Semi-volatiles

Gases (refinery) Simulated distillation Hydrocarbons Sulfur compounds (light)

MTBE Solvent impurities Natural gas odorants Mercaptans

Polarity

Bleed

Temperature Limits

Stability

Low High

Column Profile

��

ZB-1msAlternative to Any MS-Certified 100 % Dimethylpolysiloxane Phase:

REPLACES

Temperature Limits: -�0 to ��0/��0 °C (Isothermal / TPGC) • Loweredbleed(MSCertified)especiallysuitedtohighsensitivityGC/MS• extremelyinertforactivecompoundssuchasdrugsorpesticides• Improvedsignal-to-noiseratioforbettersensitivityandmassspectralintegrity• IdenticalselectivitytotheZB-1• availablewithGuardianIntegratedGuardColumns• equivalenttoUSPPhaseG2

DB-1

ms

HP-1

ms

Rtx-

1MS

VF-1

ms

SolG

el-1

ms

CP-S

il 5

CB m

s

Equi

ty-1

MDN

-1AT

-1m

sColumn Profile

Low High

Polarity

Bleed

Temperature Limits

Stability

ZB-�ms Applications:

Amines Polychlorinated biphenyls (EPA Method 1668)

Pesticides

Acids Drugs of abuse

Diesel Fuel Flavors & fragrances

�4

ZB-1HT Inferno™

Alternative to Any 100 % Dimethylpolysiloxane High-Temperature Phase:

* 0.53 mm ID columns are rated to 400 °C max operational temperature

Temperature Limits: -�0 to 400/4�0 °C (Isothermal / TPGC)* • Firstnon-metal100%dimethylpolysiloxanephasestableto430°C• Individuallytestedforlowbleed,MScertified• Ruggedhightemperature,polyimidecoated,fusedsilicatubing• Providestrueboilingpointseparationforhydrocarbondistillationmethods• Lowactivity,providesgoodpeakshapeforacidicandbasicsamples• Providesrobustcolumnperformanceforhightemperaturebakeouts

ZB-�HT InfernoApplications:

High boiling petroleum products High molecular weight waxes Motor oils

Simulated distillation methods Polymers/plastics

Long-chained hydrocarbons Diesel fuel

DB-1

HT

MXT

-1 S

imDi

stPe

troco

l 288

7CP

-Sim

Dist

REPLACES

Column Profile

Polarity

Bleed

Temperature Limits

Stability

Low High

�00� R&d �00 Award Recipient

�5

ZB-5Alternative to Any 5 %-Phenyl-95 %-Dimethylpolysiloxane Phase:

*Thicker films (≥1.0 µm df) are rated to 340/360 °C (Isothermal / TPGC)

Temperature Limits: -�0 to ��0/��0 °C (Isothermal / TPGC)* • Versatilelowpolaritycolumn• Lowbleed(MSCertified)especiallysuitedtohighsensitivityworkusingGC/MS• extremelyinertforactivecompoundssuchasdrugsorpesticides• Resilienttodirtysamples-longcolumnlife• Greatcolumnforunknownsamples• equivalenttoUSPPhaseG27

DB-5

HP

-5HP

-PAS

-5HP

-5 Tr

ace

An

alys

isRt

x-5

SPB-

5M

DN-5

CP-S

il 8

CB00

7-5

OV-5

SE-5

4AT

-5Eq

uity

-5EC

-5Ul

tra 2

BP5

BPX5

HP-H

P-10

1

ZB-5 Applications:

Alkaloids Residual solvents Drugs PCBs/aroclors

FAMEs Essential oils/flavors Halo-hydrocarbons Phenols

Semi-volatiles Pesticides/herbicides Dioxins

REPLACES

Column Profile

Polarity

Bleed

Temperature Limits

Stability

Low High

��

ZB-5msAlternative to Any MS-Certified 5 %-Phenyl-Arylene-95 %-Dimethylpolysiloxane Phase:

Temperature Limits: -�0 to ��5/�50 °C (Isothermal / TPGC) • aryleneMatrixTechnology(aMT)• Fullyconditionedwithin35minutes• Highresponseforacidsandbases=Verylowactivity• enhancedresolutionofPolyaromanticHydrocarbons(PaHs)andothermulti-ringaromaticcompounds• TheperfectchoiceforePamethods525,610,625,8100,and8270• equivalenttoUSPPhaseG27

DB-5

ms

DB-5

.625

DB-5

ms

EVDX

VF

-5m

sCP

-Sil

8 CB

MS

ZB-5ms Applications:

Alkaloids Essential oils/flavors Pesticides/herbicides Amines

FAMEs Semi-volatiles PCBs/aroclors Acids

Phenols Drugs Solvent impurities Dioxins

Residual solvents Halo-hydrocarbons EPA methods

REPLACES

Column Profile

Polarity

Bleed

Temperature Limits

Stability

Low High

��

ZB-5mSiAlternative to Any 5 %-Phenyl- 95 %-Dimethylpolysiloxane Phase:

REPLACES

Temperature Limits: -�0 to ��0/��0 °C (Isothermal / TPGC) •Lowbleedandhighlyinert5%phenylcolumn•Improvedpeakshapeforacidic/basiccompounds•MaximumsensitivityfromMScertifiedbleedlevels•Reproduciblecolumn-to-columnperformanceinsuredbyindustryleadingQCspecifications•Highphasestabilityandhightemperaturelimits•TraditionalbondingchemistryprovidesthesameselectivityastheZB-5columns

Rtx-

5ms

MDN

-5S

HP-5

ms

Rtx-

5Am

ine

HP-5

msi

Rxi-5

ms

DB-5

ZB-5mSi Applications:

Drugs of abuse FAMEs Pesticides Nitrosamines Phenols EPA methods

Column Profile

Polarity

Bleed

Temperature Limits

Stability

Low High

��

ZB-5HT Inferno™

Alternative to Any 5 %-Phenyl-95 %-Dimethylpolysiloxane High-Temperature Phase:

REPLACES

* 0.53 mm ID columns are rated to 400 °C max operational temperature

Temperature Limits: -�0 to 400/4�0 °C (Isothermal / TPGC)* • Firstnon-metal5%-phenyl95%-dimethylopolysiloxanephasestableto430°C• Individuallytestedforlowbleed,MScertified• Ruggedhightemperature,polyimidecoated,fusedsilicatubing• Lowactivity,providesgoodpeakshapeforacidicandbasicsamples• Providesrobustcolumnperformanceforhightemperaturebakeouts

DB-5

HTHT

-5VF

-5HT

St

x-5H

TXT

I-5HT

ZB-5HT InfernoApplications:

High boiling petroleum products Polymers/plastics Diesel fuel

Simulated distillation methods High molecular weight waxes Motor oils

Long-chained hydrocarbons Triglycerides Surfactants

Column Profile

Polarity

Bleed

Temperature Limits

Stability

Low High

�00� R&d �00 Award Recipient

��

ZB-35Alternative to Any 35 %-Phenyl-65 %-Dimethylpolysiloxane Phase:

REPLACES

Temperature Limits: 50 to �40/��0 °C (Isothermal / TPGC) • Intermediatepolaritycolumnwithtemperaturelimitsupto360°C-allowshighmolecularweightanalysis• excellentinertnesstominimizeanalyteadsorption,improveefficiency,andreproducibility• Morerugged(longercolumnlife)thanotherpolarphases• excellentfortraceanalysiswithbleed-sensitivedetectors(MS,FID,eCD,nPD)• equivalenttoUSPPhaseG42

DB-3

5ms

HP-3

5Rt

x-35

SPB-

35M

DN-3

5BP

X 35

AT-3

500

7-11

OV-1

1Su

p-He

rbSP

B-60

8BP

X608

Rtx-

35M

SDB

-35

HP-3

5ms

EC-3

5

ZB-�5 Applications:

Aroclors Pesticides Semi-volatiles Steroids

Amines Pharmaceuticals Drugs of abuse EPA methods 508, 608, 8081, 8141, 8151

Column Profile

Polarity

Bleed

Temperature Limits

Stability

Low High

�0

ZB-50Alternative to Any 50 %-Phenyl-50 %-Dimethylpolysiloxane Phase:

REPLACES

Temperature Limits: 40 to ��0/�40 °C (Isothermal / TPGC) • Highpolaritycolumnwithtemperaturelimitsupto340°Callowshigh-temperaturebake-outto removecontaminants•excellentinertnesstominimizeanalyteadsorption,improveefficiency,andreproducibility•Morerugged(longercolumnlife)thanotherpolarphases•excellentfortraceanalysiswithbleed-sensitivedetectors•Greatfordrugscreeningandenvironmentalcompounds •equivalenttoUSPPhaseG3

DB-1

7HP

-50+

Rtx-

50DB

-17h

tSP

B-50

SP-2

250

CP-S

il 24

CB

BPX5

0AT

-50

007-

17DB

-17m

sDB

-17

EVDX

SPB-

17

ZB-50 Applications:

Antidepressants Pesticides/herbicides Cholesterols

Drugs of abuse Steroids Triglycerides

Glycols Aroclors EPA methods 508, 608, 8081, 8141, 8151

Column Profile

Polarity

Bleed

Temperature Limits

Stability

Low High

��

ZB-624Alternative to Any 6 %-Cyanopropylphenyl-94 %-Dimethylpolysiloxane Phase:

REPLACES

Temperature Limits: -�0 to ��0 °C • Formulatedforlowbleed• excellentforUSePaMethods501.3,502.2,503.1,524.2,601,602,8010,8015,8020,8240,8260,8021• Specificallydesignedfortheseparationofvolatileorganiccompounds(VOCs)• Increasedtemperaturelimitspeedsruntimesandre-equilibration• Widelyusedphasetoseparatevolatileorganicflavorandfragranceadditivesand residualsolventsinindustrialorpharmaceuticalproducts(OVIs)• equivalenttoUSPPhaseG43

DB-6

24HP

-VOC

Rtx-

624

BP 6

24AT

-624

007-

624

007-

502

CP-S

elec

t 624

CB

DB-V

RXRt

x-VM

SRt

x-13

01DB

-130

1CP

-130

1SP

B-13

01SP

B-62

4

ZB-��4 Applications:

Volitile organic compounds (VOCs) Residual solvents EPA methods 524, 624, 8260

Column Profile

Polarity

Bleed

Temperature Limits

Stability

Low High

��

ZB-1701Alternative to Any 14 %-Cyanopropylphenyl-86 %-Dimethylpolysiloxane Phase:

REPLACES

Temperature Limits: -�0 to ��0/�00 °C (Isothermal/TPGC)*

• Fastrunandre-equilibrationtimesforenhancedsamplethroughputandproductivity• Providesalternateselectivitytophenylphaseswithsimilarpolarity• equivalenttoUSPPhaseG46

DB-1

701

Rtx-

1701

SPB-

1701

CP-S

il 19

CB

OV-1

701

007-

1701

AT-1

701

BP10

Equi

ty 1

701

Rtx-

VMS

*Thicker films (≥1.0 µm df) are rated to 260/280 °C (Isothermal / TPGC)

ZB-��0� Applications:

Pharmaceutical Esters PAHs Solvents

Alcohols Drugs Steroids

Phenols PCBs TMS sugars

Tranquilizers Aromatic hydrocarbons Amines

intermediates

Column Profile

Polarity

Bleed

Temperature Limits

Stability

Low High

��

ZB-1701PAlternative to Any 14 %-Cyanopropylphenyl-86 %-Dimethylpolysiloxane Phase:

REPLACES

Temperature Limits: -�0 to ��0/�00 °C (Isothermal/TPGC)*

• SpeciallytestedtoensureresponseofDDT,endrin,endrinaldehyde,andendrinKetone• Fastrunandre-equilibrationtimesforenhancedsamplethroughputandproductivity• equivalenttoUSPPhaseG46

DB-1

701P

*Thicker films (≥1.0 µm df) are rated to 260/280 °C (Isothermal / TPGC)

ZB-��0�P Applications:

Organochlorine pesticides

Organophosphorous pesticides

Nitrogen containing pesticides

Aroclors

Column Profile

Polarity

Bleed

Temperature Limits

Stability

Low High

�4

ZB-WAXAlternative to Any Polyethylene Glycol Phase:

REPLACES

Temperature Limits: 40 to �50/��0 °C (Isothermal/TPGC)

• Lowbleed,(MSCertified)• Highlystable,longlifetime• Lowactivityforamines• Bonded,solventrinsible• excellentchromatographyofpolarcomplexmixtures• Widelyusedforprofilingand“fingerprinting”• CloseequivalenttoUSPPhaseG16

HP-IN

NOW

axRt

x-W

AXCP

-Wax

57

CB00

7-CW

EC-W

axSt

abilw

ax-D

BSo

lGel

-WAX

FAM

EWAX

DB-W

AXet

rM

et-W

axOm

egaw

axBP

20

ZB-WAX Applications:

Alcohols OVIs Aldehydes Pharmaceuticals

Aromatics Solvents Essential oils Styrene

Flavors/fragrances Xylenes Glycols Basic compounds

Column Profile

Polarity

Bleed

Temperature Limits

Stability

Low High

�5

ZB-WAXplusAlternative to Any Polyethylene Glycol Phase:

REPLACES

Temperature Limits: �0 to �50/��0 °C (Isothermal/TPGC)*

• 100%aqueousstable• extremelyinertforacidiccompounds• enhancedselectivityforlowboilingsolvents• Highretentionofalcoholsandotherchlorinatedsolvents• Increasedefficiencyat20°C• Bondedandsolventrinsible• equivalenttoUSPPhaseG16

DB-W

AXSu

pelc

owax

-10

Carb

owax

-20M

PEG

20M

AT-W

AXPe

rmab

ond

CW 2

0MHP

-20M

CP-W

AX 5

2 CB

CAM

Stab

ilwax

AT-A

quaW

ax B

P20

BP 2

0

ZB-WAXPluS Applications:

Alcoholic beverages Glycols Alcohols Pharmaceuticals

OVIs Aldehydes Solvents Aromatic

Styrene Essential oils Xylene isomers Flavors/fragrances

Acids (free)

*Thicker films (≥1.0 µm df) are rated to 230/240 °C (Isothermal / TPGC)

Column Profile

Polarity

Bleed

Temperature Limits

Stability

Low High

��

ZB-FFAPAlternative to Any Nitroterephthalic Acid Modified Polyethylene Glycol:

REPLACES

Temperature Limits: 40 to �50/��0 °C (Isothermal/TPGC)

• Highpolaritycolumn• especiallysuitedfororganicacids,freefattyacids,andalcohols• excellentthermalandchemicalstability• BondedFFaPPhase• ReplacesOV-351• CloseequivalenttoUSPPhaseG35

DB-F

FAP

HP-F

FAP

BP21

Nuko

l CP

-WAX

58

CB00

7-FF

APSt

abilw

ax-D

APE

-FFA

PAT

-100

0CP

-FFA

P-CB

SPB-

1000

EC-1

000

ZB-FFAP Applications:

Acrylates Ketones Alcohols Volatile free acids

Aldehydes Organic acids Free fatty acids Phenols

Column Profile

Polarity

Bleed

Temperature Limits

Stability

Low High

��

ZB-XLBAlternative to Any 5 %-Phenyl- 95 %-Dimethylpolysiloxane Phase:

SimiLAR To

Temperature Limits: �0 to �40/��0 °C (Isothermal / TPGC) •Uniquelowpolaritysi-arylenecolumn•engineeredspecificallyforusewithbleedsensitivedetectorssuchasMS•Providesalternateselectivitytostandard5-typephases•Oftenusedforconfirmationofpesticides,PCBs,orotherenvironmentalsamples•Goodtoolforsamplescreeningtoidentifyunknowncontaminants

DB-X

LBRt

x-XL

BRt

x-CL

Pest

icid

esSt

x-CL

Pest

icid

es

ZB-5msi Applications:

Polychlorinated biphenyls (PCBs) Pesticides Herbicides

Column Profile

Polarity

Bleed

Temperature Limits

Stability

Low High

*Thicker films (≥1.0 µm df) are rated to 260/280 °C (Isothermal / TPGC)

��

ZB-mULTiRESiDUE™ (mR)-1

SimiLAR* TO

Temperature Limits: -�0 to ��0/�40 °C (Isothermal/TPGC)

• Proprietaryphasespeciallydesignedfortheseparationofalltypesofpesticides,herbicides,and

insecticides• WhenusedinparallelwiththeZebronMR-2column,providesbaselineresolutionandconfirmationofall

20chlorinatedpesticidesregulatedunderePaMethod8081in<10min• MSCertifiedphaseprovideslowbleedperformanceforpesticideconfirmationbyMS• Lowactivity,decreasedbreakdownofsensitivepesticidessuchasDDT• Providesrobustcolumnperformanceforhightemperaturebakeouts

Rtx-

CLPe

stic

ides

Stx-

CLPe

stic

ides

DB-X

LBRt

x-XL

B

ZB-mULTIRESIdUE (mR)-� Applications:

Organochlorine pesticides Nitrogen containing pesticides

Insecticides Multi-pesticide residue methods

Organophosphorous pesticides

Herbicides Aroclors/PCBs Habacetic acids

*notexactequivalent,selectivitymightbedifferent

Column Profile

Polarity

Bleed

Temperature Limits

Stability

Low High

��

ZB-mULTiRESiDUE™ (mR)-2

SimiLAR* TO

Temperature Limits: -�0 to ��0/�40 °C (Isothermal/TPGC)

• Uniqueproprietarypolymerchemistry-unlikeanyothercolumnonthemarket• Speciallydesignedfortheseparationofalltypesofpesticides,herbicides,andinsecticides• WhenusedinparallelwiththeZebronMR-1column,providesbaselineresolutionandconfirmationofall

20chlorinatedpesticidesregulatedunderePaMethod8081in<10min• MSCertifiedphaseprovideslowbleedperformanceforpesticideconfirmationbyMS• Lowactivity,decreasedbreakdownofsensitivepesticidessuchasDDT•Providesrobustcolumnperformanceforhightemperaturebakeouts

Rtx-

CLPe

stic

ides

2St

x-CL

Pest

icid

es 2

*notexactequivalent,selectivitymightbedifferent

ZB-mULTIRESIdUE (mR)-� Applications:

Organochlorine pesticides Nitrogen containing pesticides

Insecticides Multi-pesticide Residue methods

Organophosphorous pesticides

Herbicides Aroclors/PCBs Habacetic acids

Column Profile

Polarity

Bleed

Temperature Limits

Stability

Low High

�0

Please Note:Remembertowearsafetyglasseswhennearanygassystem,cuttingcapillarytubing,andgenerallyasyouworkaroundthelab.

Column Installation

Pre-InstallationCheckList • Replaceoxygen,moistureandhydrocarbontrapsasnecessary.

• Checkgascylinderpressurestoensurethatanadequatesupplyofcarrier,make-upandfuelgasesis available.Carriergasesshouldbeofthehighestpossible(affordable)purity.Note:Itiscriticalthat oxygenandwater,normallypresentingascylinders,beremovedfromthecarriergasbythe appropriateuseoffiltersandadsorbents.

• ensurethattheinjectionportiscleanandfreeofsampleresidues,septumorcapillarydebris.

• Checkandreplaceasnecessarythecriticalinjectorcomponentssuchasseals,linersandsepta.

• Checkandreplacedetectorsealsasnecessary.

• Carefullyinspectyourcolumnfordamageorbreakage.

InstallationToolsandSupplies • Ceramicwaferorsapphire-tippedpencil

• Magnifier(10-20X)

• Ruler

• Marker(e.g.,correctionfluid)

• Wrenches

• Ferrules

• Vialofinjectionsolvent

• Injectionsyringe

• Supplyofanappropriatenon-retainedcompound(e.g.,methane)

• appropriatecolumntestmixture

• Gasflowmeter

• Supplyofreplacementpartsandaccessories e.g.,septa,liners,ferrules,O-rings

��

Thefollowingisabriefreminderofthegeneralprecautionsrequiredinhandlingandinstallinganyorganic-coatedfusedsilicacapillarycolumn.ConsultyourGCmanualformoredetails.

Fusedsilicacapillarycolumnsbecomebrittleifthepolyimidecoatingappliedduringmanufactureisdamaged.avoidtemperaturesaboverecommendedoperatinglimitsandexcessivebending,twisting,andabrasionofcolumns,whichwilldamagethisprotectivecoating.Remember,evenifthecolumndoesnotbreakimmedi-ately,whentheprotectivecoatingisdamagedthecolumnmaybreakspontaneouslylater.

Thestationaryphase,whichcoatstheinsideofthecolumn,mustalsobeprotected.Theendsofthecolumnwillbesealedorprotectedbyaseptumwhenyoureceivethecolumn.Oncetheendsareopeninprepara-tionforinstallation,thecolumnshouldbeinstalledinachromatographassoonaspracticalandaflowofdry,oxygen-freecarriergasmaintaineduntilthecolumnisremovedandresealed.

allforeignmaterialincludingdebrisfromtheseptaorferrulesmustbekeptoutofthecolumn.

Detailed Column Installation Instructions

scorecapillarywithsmoothedgeofwaferata45°angle

applyforceinadownwarddirection

tubingshouldbreakcleanly

inspectcutwithamagnifyingglass

Figure �:CuttingFusedSilicaTubingFigure �:ProperandImproperCutCapillaryend

ba

Examples of: (a) A Properly Cut Fused Silica Column End

(b) An Improperly Cut End

Correct Incorrect4 X

BAD

GOOD

��

1.Installanutandferrule.Cutacentimeter 1.Installanutandferrule.Cutacentimeter ortwooffanendofthecolumn(Figure2). ortwooffanendofthecolumn(Figure2). ensurecutiscleanandsquare(Figure1).Be ensurecutiscleanandsquare(Figure1).Be suretheferruleistherightsizeandthe suretheferruleistherightsizeandthe taperedendistowardtheend. taperedendisfacingthecorrectdirection.

2.MountthecolumnintheGCovenwithout 2.Inserttheoutletendofthecolumnintothe damagingthecolumncoating.(Figure3) detectorexactlythedistanceprescribedin theinstrumentmanual.3.Insertthecolumnintotheinjectorexactly thecorrectdistancespecifiedinthe 3.Tightentheferrulenutuntilthecolumn instrumentmanual(Figure4).Tightentheferrule resistsmovement.One-quarterturnpast nutuntilthecolumnresistsmovement. finger-tightisaboutright.afterthecolumnis One-quarterturnpastfinger-tight equilibrated,injectadetectableunretained isaboutright. samplesuchasmethanetodeterminedead volumetimeandlineargasvelocity.adjust4.adjusttheheadpressuretoobtaintheflow gaspressuretoobtainpropervaluesforyour ratelistedonthetestchromatogram. analyticalmethod.

5.Checktheinletconnectionsforleaks. 4.Themethanepeakmusthaveidealpeak-shape ortheinstallationisfaulty!

Critical Column Installation Steps

Injector Installation: detector Installation:

Figure 4:MeasureproperinjectionportdistanceFigure �:Hangcolumnwithoutdamagingpolyimidecoating

��

Installing the Column

A. Conditioning and Testing the Capillary Column1.Purgethecolumnwithcarriergasforapproximately15minutes.Furtherconditioningmaybe desirable.2.Inserttheoutletendofthecolumnintothedetectorexactly the distance prescribedinthe instrumentmanual.Useallpurposecorrectionfluidtomarktheexact insertiondistance.3.Setgas-flowratestoinstrumentspecifications.Warning! Some detectors may be damaged by heating without proper gas flow.4.Checkthesystemforleaks.Itispreferabletouseathermal-conductivity-typeleakdetector.Donot usesoapsorliquid-basedleakdetectorswithcapillarycolumns.Never heat the column without checking thoroughly for leaks first. 5.Setinjectoranddetectortemperatures.Turnthedetectoronwhensteadystatetemperaturesare achieved.6.Increasetheoventemperaturetothemaximumcontinuousoperatingtemperatureforthecolumn. Warning! do not exceed the maximum operating temperature of the column.Maintainthat temperatureuntilaflatbaselineisobserved.Ifthistakesmorethananhour,itcouldindicatea problem.7.Injectadetectableunretainedsamplesuchasmethane(seeTables11and12)todeterminedead volumetimeandlineargasvelocity.adjustgaspressuretoobtainpropervaluesforyour analyticalmethod.8.Setoventostartingtemperature.Injectanothersampleofadetectableunretainedsubstance.Re setthecarriergasvelocitytodesiredvalue.9.ChecktheperformanceoftheGCandthecolumnbyinjectingaknownsampleorperformancetest mix.Ifallpeakstail,itcouldindicateloosefittings,impropercolumninstallation,orbrokenliner. SeetheSectiononTroubleshooting Installation Problems on page 34.

10.Calibratetheinstrument.11.Injectasample,ensuringthatthevaporizedsamplevolumedoesnotexceedtheinletsleeve’sbuffervolume(seeTables6and9).12.Forshort-termstandbyoperationoftheGCinstrument,continuecarriergasflowat100-200°C. Long-termstandbyconditionsrequirethatthecolumnberemovedfromtheinstrument,flame- sealedorend-cappedwithsepta,andstoredawayfromlightinitsoriginalbox.

�4

Troubleshooting Installation problems

Protecting the ColumnItisimportanttoprotectthecolumnandinstrumentcomponentsfromexposuretodirtysamples.non-volatileorhighmolecularweightcomponentscancontaminatethestationaryphase,causingpeakresolutionandquantitativeaccuracytosignificantlydegrade.Ifpossible,filteryoursamplespriortoinjectionandusepacking(glasswoolorsilanizedfusedsilica)intheinletsleevetoremovesampleresiduebeforeitcanenterthecolumn.Refertoyourinstrumentmanualforspecificinstructionsonpackingtheinletsleeve.

Poorcolumnlifetimeisusuallycausedbynon-volatileorcausticcontaminantsinthesampledamagingthefirst4-6in.ofthecolumn.Cuttingoffthedamagedportionwillusuallyrestorethecolumnperformance,butovertimeperformancewilldegradetoapointwherethecolumncannolongerbeused.Ifyouareexperiencingrapiddegradationofcolumnperformance,thereareseveralsimplewaystohelpprotectyourcolumnandincreaselifetime.

PleasecontactaPhenomenexTechnicalRepresentativeforstepstoimprovecolumnlifetime.

Hints and Tips

Moreoftenthannot,GCcolumnproblemsaretraceabletosomethingimproperlydoneduringinstallation.Foramorecompletetreatmentofthesubject,seeourFREEguidebook,“GCTroubleshooting”.

�5

LinersThelineristhefirstlineofdefenseforthecolumnandthestylechosencanmakeabigdifferenceinhowmuchcontaminationgetsontothecolumn.Theeasiestthingtodoistoaddasmallamountofsilanizedglasswooltoaliner,whichtrapsthenon-volatilecompoundsandpreventsthemfromenteringthecolumn.Glasswoolwillalsohelpcatchpiecesofseptathatresultafterrepeatedinjections.

Caution: glass wool can also add activity for acids, bases, and pesticides. Activity is the result of free silanol (-OH) groups on the surface of the glass wool that form even after it has been deactivated. Crushing the glass wool can lead to increased activity, so it is recommended to purchase pre-packed liners, rather than try to pack your own.

Herearesomelinersthatareavailablepre-packedwithglasswoolorprovideadditionalcolumnprotection:

Hints and Tips (continued)

Description GC Model No.

Dimensions IDxLxOD (mm)

Material*(deactivated)

Quartz Wool(Y / N) Mfr. No. Part No. Unit

Split/Splitless

5880/5890/6890 4 x 78.5 x 6.3 B (y) Y 092002 AG0-7515 5/pk

092219 AG0-7582 25/pk

Split/Splitless, Recessed Gooseneck Liner

5880/5890/6890 1.5 x 78.5 x 6.3 B (y) N 5183-46915183-4692

AG0-4661AG0-4662

5/pk25/pk

Cup Splitter/Split Liner

5880/5890/6890 4 x 78.5 x 6.3 B (n) N 5183-4699 AG0-4647 5/pk

5183-4700 AG0-4648 25/pk

Cup Splitter/Split Liner

Autosystem 3.5 x 100 x 5 B (n) N 0330-5181 AG0-4663 5/pk

Split/Splitless Single Taper/Gooseneck Liner

5880/5890/6890 4 x 78.5 x 6.3 B (y) Y 5183-46935183-4694

AG0-4657AG0-4658

5/pk25/pk

* B = Borosilicate; Deactivated = Yes (y) or No (n)

Guard Columns – Standard GuardsZ-Guardcolumnsare5or10mpiecesofdeactivatedtubingthatareconnectedtoananalyticalcolumnusingaglasspress-fitconnector(Figure5).Thetubingactslikeatrapfornon-volatileresiduesthatwouldotherwisedamagethestationaryphaseofyouranalyticalcolumn.SincethereisnostationaryphaseintheZ-Guard,cuttingthecolumndoesnotsignificantlyaffectretentiontimesorchromatographicseparation.additionalZ-Guardsmaybeattachedasnecessary,aslongastheanalyticalcolumnisstillprovidinggoodseparation.

Sinceguardcolumnscanalsobeasourceofactivity,eachZ-GuardisindividuallyQCtestedtoensureitiscompletelydeactivated.Thisaddedlevelofqualityensuresthatyouwillgetthebestperformancepossibleoutofyourcolumn.

��

Figure 5:Z-Guardconnectionusingpress-fitunion

Guardian™ Integrated Guard ColumnsGuardiancolumnshavethe5mor10mguardbuiltdirectlyintotheanalyticalcolumninonecontinuouslengthoftubing(Figure6).Unliketraditionalguardcolumns,thereisnomechanicalconnectionbetweentheguardandtheanalyticalcolumn.eachGuardiancolumnundergoesaspecialdeactivationandQC-testingprocedurethatensuresgoodperformanceforacids,bases,andothersensitivecompounds.The result: all the benefits of a guard column without the possibility of leaks or activity resulting from a faulty connection.

TheGuardiansystemistheidealsolutiontoalltheproblemsassociatedwithtraditionalguardcolumns!

Figure6.RepresentationofaGuardiancolumn

Hints and Tips (continued)

Column Bake OutTheeasiestwaytoreducecolumncontaminationistoaddashort,hightemperaturebakeoutattheendofthestandardGCmethod.Thisbakeouthelpsremovehighboilingcontaminantsthatwouldotherwiseremaininthecolumnandcausedamage.Ifaddingabakeoutsignificantlyincreasesthemethodruntime,aseparatehightemperaturecleaningprogramcanberunafterevery10injectionsorso.

Thetemperatureusedforbakeouthasadirectimpactontheamountofcontaminantsremoved.Usingcolumnswithhigheruppertemperaturelimitswillincreasetheabilitytoremoveunwantedcontaminants.Forexample,theZebronZB-530meterx0.25mmx0.25μmcolumncansustaintemperatureprogramsupto370ºC,whichis20ºChigherthantheZB-5mscolumnofsimilardimension.Checktheuppertemperaturelimitofthecolumncurrentlyused.Ifahightemperaturebakeoutcouldimprovecolumnlife,considerusingaphasewithincreasedthermalstability.

��

Hints and Tips (continued)

applythisthoughtprocesstothecolumnphasechosenwhendevelopingamethod.Forexample,manypesticideapplicationsaredoneonpolarphasessuchasaZebronZB-1701(14%-cyanopropylphenyl-86%-dimethylpolysiloxane),whichhasanuppertemperaturelimitof300ºC.Insomecases,thesesamemethodscanbedoneonalternatephasessuchastheZebronZB-35(35%-phenyl–65%-dimethylpolysiloxane),whichhasanuppertemperaturelimitof360ºC.

Considerations when Optimizing a GC method: Phase Ratio (β)Whenchangingcolumndimensions,itisimportanttoconsidertheaffectitwillhaveontheretentioncharacteristicsofthecolumn.TheDistributionConstant(K)describestheconcentrationofcompoundainthestationaryvs.thecarriergasmobilephase(equation1).Sinceacompoundisonlymovingwhenithasenteredthecarriergas,changesinthisratioshifttheequilibriumandcanaffectcolumnretentionandselectivityifconditionsdonotchange.

Equation �:K=[am]

=kβ[as]

am=ConcentrationofthesoluteintheMobilePhaseas=ConcentrationofthesoluteintheStationaryPhase

k=capacityfactorβ=PhaseRatio

When looking to optimize column dimensions, it is important to consider phase ratio (β) to ensure thatselectivitywill remain thesame.Phaseratio foragivencolumn iscalculatedusingequation2;smallerβvalues result ingreater retention.Chromatographically thismeans thatwhenusingcolumnsof thesameID,thecolumnwithathickerfilmwillhavegreaterretentionforagivenanalyte.Table5liststheβvaluesforcommonIDsandfilmthicknesses.

Equation �:β=ID

4xdƒ

ID=InternalDiameter(µm)dƒ=FilmThickness(µm)

��

WhenusingcolumnsoftwodifferentIDs,thesamefilmthicknessdoesnottranslatetothesameretentioncharacteristics.Figure5demonstratesthephaseratioofa0.25µmfilmthicknessona0.53mmanda0.25mmIDcolumn.

Figure �:Phaseratioofa0.25µmfilmthicknessoncolumnsofdifferinginternaldiameters

Hints and Tips (continued)

Film Thicknessdƒ (µm)

Column Diameter (mm)

0.10 0.18 0.20 0.25 0.32 0.53

0.10 250 450 500 625 800 1325

0.18 139 250 278 347 444 736

0.25 100 180 200 250 320 530

0.33 — — 151 — — —

0.50 — 90 100 125 160 265

1.00 — — 50 63 80 133

1.50 — — — 42 53 88

3.00 — — — 21 27 44

5.00 — — — 13 16 27

Table5:Phaseratio(β)valueforcommoncolumns

IncreasingRetention

Incr

easi

ngR

eten

tion

kStationary Phase kMobile Phase kStationary Phase kMobile Phase

β=250 β=530 0.25mmID 0.53mmID 0.25µmdƒ 0.25µmdƒ

Using Phase Ratio to our Advantage:Theoptimumphaseratiodependsonthegoaloftheseparation.Ifanalyteretentionislow,acolumnwithalowβcanbeusedtoincreaseretention.Ifcolumnprovidesgoodretention,βcanbereducedtoincreasecolumnefficiencyanddecreaseruntime.

Let’susetheseparationoflighthydrocarbonimpuritiesfoundinbutaneasanexample.OnacolumnwithahighβsuchastheZebronZB-160meterx0.32mmx0.25µm(β=360)theisomersco-eluteduetothelackofinteractionwiththestationaryphase(Figure8).ByusingacolumnwithalowerBetasuchastheZebronZB-160meterx0.32mmx3.00µm(β=27),weareabletoachieveseparation(Figure9).

��

0 1 2

2

1

3

4

3 4 5 6 7 min

15426

Figure �:ButaneIsomerseparationon60meterx0.32mmx0.25µm(β=360)

ap

pID

154

26

Figure �:ButaneIsomerseparationon60meterx0.32mmx3.00µm(β=27)

ap

pID

148

21

Analytes:

1.ethane2.Propane3.Isobutane4.Butane

Analytes:

1.ethane2.Propane3.Isobutane4.Butane

Shortening Run Times:TheincreaseinefficiencyofferedbynarrowboreGCcolumnsoftenimprovesseparationenoughtoallowthesameseparationtobedoneinmuchlesstime.Figure10showstheseparationof17priorityPolyaromaticHydrocarboncontaminantsusingastandard30meterx0.25mmx0.25µmcolumn(β=250).Bychoosingacolumnwithsimilarphaseratio,butsmallerIDthemethodcanbeshortenedbyover50%whilestillmeetingresolutionrequirementsforkeyanalytes(Figures11&12).

40

Figure �0:SeparationofPaHsonZB-5ms30meterx0.25mmx0.25µm(β=250)

ap

pID

160

17

Analytes: (forfigures8-10)

1.naphthalene 10.Benz[a]anthracene2.2-Methylnaphthalene 11.Chrysene3.acenaphthalene 12.Benzo[b]fluoranthene4.acenaphthene 13.Benzo[k]fluoranthene5.Fluorene 14.Benzo[a]pyrene 6.Phenanthrene 15.Indeno[1,2,3-cd]pyrene7.anthracene 16.Dibenz[a,h]anthracene8.Fluoranthene 17.Benzo[g,h,i]perylene9.Pyrene

PhaseratioisacriticalstepinoptimizingGCseparation.Ifyouwouldlikemoreinformationonhowitcanbeusedtoimproveyourchromatography,pleasecontactyourPhenomenexTechnicalConsultant.

Figure ��:SeparationofPaHsonZB-5ms10meterx0.10mmx0.10µm(β=250)

ap

pID

158

06Hints and Tips (continued)

Figure ��:SeparationofPaHsonZB-5ms20meterx0.18mmx0.18µm(β=250)

ap

pID

155

60

4�

Hints and Tips (continued)

Carrier Gas Selection and Flow OptimizationItisadvisabletousethehighestpuritygaspossible.Ultrahighpurity(99.99%),ultrapurecarrier(99.995%),orevenresearchgrade(99.9999)ispreferredtominimizecriticalimpurities,instrumentdowntimeandtroubleshooting.air,moistureandorganictrapsshouldbeused,butitisbettertostartwiththehighestpuritygasandreducetheloadongaspurifiersasmuchaspossible.

HeliumshouldbeusedforcapillaryGCwheneverpossible;nitrogenshowsinferiorperformanceduetoslowoptimumlinearvelocityandsteepvanDeemterprofile.

Threetypesofgasarecommonlyusedasacarriergas: 1.Hydrogen(H2):Hydrogenwillyieldmaximalnumberoftheoreticalplatesforthinfilmcolumnsand thehighefficiencyislargelyretainedatvelocitieshigherthanuopt.Hydrogenisnotgenerallyrecom- mendedduetoitshazardousnature. 2. Helium(He):Whenhydrogenisnotused,heliumisthebestalternativeforspeedandsensitivity. 3. nitrogen(n2):nitrogenisthelastchoiceforthinfilmcolumns.Forthickfilmcolumns,nitrogen yieldsthehighestnumberoftheoreticalplates.However,theoptimalvelocityisfairlylow(long analysistimes),andthelossinefficiencyathighervelocitiesishigh.Ifresolutionissufficient, hydrogenorheliumaregoodalternatives.

Figure ��:CarrierGasSelectionandVelocityOptimizationPlots

H (u) curves for H(u) curves for H(u) curves for H(u) curves for different gases different column different film different k values lengths thicknesses

Optimal velocities uopt Optimal velocities uopt for low df values: (cm/sec) for high df values: (cm/sec) H2: 40 H2: 25 He: 25 He: 15 n2: 10 n2: 7

CarrierGas Length FilmThickness RetentionFactorAnalytes: (forfigures8-10)

1.naphthalene 10.Benz[a]anthracene2.2-Methylnaphthalene 11.Chrysene3.acenaphthalene 12.Benzo[b]fluoranthene4.acenaphthene 13.Benzo[k]fluoranthene5.Fluorene 14.Benzo[a]pyrene 6.Phenanthrene 15.Indeno[1,2,3-cd]pyrene7.anthracene 16.Dibenz[a,h]anthracene8.Fluoranthene 17.Benzo[g,h,i]perylene9.Pyrene

Figure ��:SeparationofPaHsonZB-5ms20meterx0.18mmx0.18µm(β=250)

4�

Hints and Tips (continued)

Figure �4:InletPressurevs.Velocity

Thevelocitydiagramsbelowshowtherelationbetweeninletpressureandvelocityfordifferentinternaldiametersandlengths,measuredforhydrogenat120°Cisothermalandsplitlessinjection(approximatevalues).

Temperature ProgrammingTherearenostrictrulestodeterminetheoptimaloventemperatureofyouranalysis.Suggestionscanbefoundinliteraturedataandinthisguidebook.experienceandtrialanderrorareusuallythemostvaluabletools.

General considerations: 1.IsothermalTemperature:forseparationofcomponentswithslightlydifferingboilingpoints. 2.Temperatureprogramming(singleormultistep):forseparationofsampleswithwideboiling pointrange.

Checking for Leaks Useathermoconductivitydetectortocheckforleaks.ItishighlysensitivetoH2,Heanditwon’tcontaminatetheinstrumentorcolumn.Liquidleakindicatorsarenotrecommendedforcapillarycolumnsbecausethereisalwaystheriskofdrawingtheliquidintothecolumnorcolumnfittingsandcontaminatingthesystem.

Note:IfgraphitizedVespelferrulesarebeingused,leakagecanoccuraftertheinitialheatingphaseduetoferruleshrinkageand/ordeformation.Besurethatthefittingisre-tightenedafterthisinitialheatingphasethencarefullycheckedforleaks.Betteryet,alsopre-conditionvespel-containingferrulesinanovenat250°Cforatleast4hourspriortouse.

4�

Hints and Tips (continued)

Injection Techniques

Table6:InjectionModesandSelectedSpecification

Table7:GasesusedwithCommonDetectors

detector Carrier Gas Fuel Gas make-up GaseCD n2,ar/5%CH4 none n2,ar/5%CH4

eCD H2 none ar/5%CH4

eLCD,Hall He,H2 H2 noneFID He,H2,n2 air+H2 n2,He,H2

FPD n2,He air+H2 SameascarrierHID He none HenPD He,n2,H2, air+H2 HePID He,H2,n2 none n2,HeTCD He,H2 none Sameascarrier

Parameter Split Splitless direct On-Column

ColumnID(mm) 0.10-0.53 0.18-0.53 0.53 0.18-0.53*

InjectionTemp(°C) High250-300

Moderate200-250

Moderate200-250

Low(15°Cbelowbpofsolvent)

VentorPurge Continuous afterinitialtime none none

TypicalSampleSize(µL) 1-2 2-4 2-4 1-4

ConcentrationRange(ppm)

10-1000 0.01-100 0.1-100 0.01-100

* Special needles required

44

Hints and Tips (continued)

Table9:expansionVolumesofCommonSolvents

Injection Volume (µL) H�O (µl) CS2 (µL) CH�Cl� (µL) Hexane (µL) 0.1 142 42 40 20 0.5 710 212 200 98 1.0 1420 423 401 195 2.0 2840 846 802 390 3.0 4260 1270 1200 585 4.0 5680 1690 1600 780 5.0 7100 2120 2000 975

Calculating Split Ratio and Column Flow Rate:

Split Ratio=splitventflow(mL/min)+columnflow(mL/min)/columnflow(mL/min)

Flow(mL/min)=(π)columnradius(cm)2columnlength(cm)/deadvolumetime(min)

Average Linear Velocity u(cm/sec)=columnlength(cm)/retentiontimeofnon-retainedpeak(sec)

Column Length (m) Id (mm) Column Head Pressure (psig)

15 0.25 6

30 0.25 12

60 0.25 24

Gas Flow Settings Table8:TypicalHeadpressures(forHelium)

45

Sample and solvent expansion volume = nRT / P

Where: n = numberofmolesofsolventandsample,calculatedas: volume(mL)xdensity(g/mL)/MW(g/mole) T= absolutetemperatureoftheinjector(°K) P= columnheadpressure(atm)+1atm R= Universalgasconstant

Volume of inlet sleeve = πr�L

Where: r = radius(cm) L= length(cm)

Hints and Tips (continued)

Table10:SplitlessHoldTimes

Column Hold Time (min) Column Flow Sample Transfer Id (mm) Rate (mL/min) Time (min) He H� He H�

0.25 1.0 0.71.4 1.20.6 0.32 0.75 1.22.4 0.70.4 0.53 0.50 2.65.2 0.30.2

1. From a disposable lighter2. Place 1-2 drops in an autosampler vial and tightly cap. Shake and inject 1-2 μL from the headspace of the vial. Do not inject any liquid.

3. Use a column temperature above 55 ºC.4. Use a column temperature above 95 ºC.

Column dead Times and markers

Table11:RecommendedDeadVolumeTimeMarkers

detector Type marker CompoundeCD Methylenechloride2,3,DichlorodifluoromethaneFID Methane,Butane1

nPD acetonitrile2,4

PIDeLCD VinylchlorideTCD,MS Methane,Butane1,air

4�

Table12:RecommendedMethaneRetentionTimes

Length (m) H� (sec) He (sec) N� (sec)15 38 75 15030 75 150 300

60 150 300 600

examinetheshapeofthedead Volume Peak or Solvent Peak.acorrectcolumninstallationwillyieldasharpnarrowsymmetricalpeak.anytailingordistortioninpeakshapeindicatesafaultyinstallation.

Figure �5:DeadVolumePeakShapeTest

Ifthepeakisbroadand/ortailing,checkthefollowingpotentialproblemareas:

• Impropercolumnpositioning/insertionintoinletordetector • Grosscontaminationofthesplittersleeve • Chippedorcrackedsplittersleever • Impropersweepingofcolumnendbymakeupgas • Damagedorcrushedcolumnend • Obstructedcolumn

Sample Capacity

Table13:TypicalSampleCapacity(maxforsinglecomponent)

Id (mm) df (µm) Capacity (ng) 0.18 0.18 20-75 0.25 0.25 50-125 0.32 0.50 100-250 0.53 1.0 500-1,000

Note: Capacityrepresentsmaximumloadingpercomponent.Samplecapacityincreaseswithfilmthickness.

Hints and Tips(continued)

Tailing peak indicatesimproper installation

Symmetrical peak indicatesproper installation

methane with FId / TCd. Calculateaveragelinearvelocitybyinjecting25-100µLof1%methaneinn2gasblend.Measuretheretentiontimeofthemethanepeakandcalculatethefollowing:

Average Linear Velocity (u) = L/tO

4�

Hints and Tips (continued)

Solvent Rinsing of Zebron Capillary ColumnsSelecttherinsesolventfromtheTablebelow.

Table14:PhaseCompatibilitywithRinsingSolvents

Table15:RinsingConditions

Column Id (mm) Rinse Solvent Volume (mL) Pressure (psig) 0.25 5 40 0.32 5 40 0.53 10 20

Important:Rinsefromthebacktothefrontofthecolumntoavoidpushinginletcontaminantsfurtherintothecolumn.

Phase Water methanol CH�Cl� CHCl� Acetone Hexane

ZB-1

ZB-1ms

ZB-1HTInferno

ZB-5

ZB-5ms

ZB-5HTInferno

ZB-624

ZB-35

ZB-1701

ZB-1701P

ZB-50

ZB-WaXplus aVOID

ZB-WaX aVOID

ZB-FFaP aVOID

MR-1

MR-2

OK

4�

Chemical CompatibilityImportant! WaterandorganicsolventssuchasthoselistedinthetableabovewillnotdamageZebroncolumnstationaryphases.However,inorganicacidsandbasesshouldbecompletelyavoidedorrapiddegradationandpermanentdamagetothestationaryphasewillresult.Intheeventchemicaldamageisincurred,theremovalof0.5-2mofcapillaryoffthefrontendwilloftenrestorecolumnperformance.

“Baking Out” the ColumnColumncontaminationanddegradationinanalyticalperformancecanoccurifthehighestboilersarenotelutedwitheveryrun.Thefinaloventemperatureneedstobesethighenoughtoensureelutionofthesecompounds,butnotsohighastocausethermaldamage.Thiscanbedoneeitherisothermally,ormorecommonly,viaagradientorballisticincreaseuntilthelastcomponentselutefromthecolumn.

NEVER exceed the upper temperature limits of the column.Severedegradationandlossofsta-tionaryphase,aswellaspermanentdamagetothetubingsurface,mayresult.Chromatographicallythismaymanifestitselfinexcessivecolumnbleed,peaktailing,decreasedresolution,shortenedruntimes,reducedcolumnlifetimesorevencolumnfailure.Topreventaccidentaloverheatingandthermaldamagetothecolumn,settheoven’smaximumtemperatureatorslightlybelowthecolumn’suppertemperaturelimit.

extractedsamplesoftencauseabuildupofcontaminantsthatrequireamoreconcerted“bakingout”,althoughthistechniqueshouldbeusedcarefullyandsparingly.DO NOT exceed more than 15 min-utes at the upper isothermal temperature limit specified for the column.Bakingoutacontami-natedcolumnmaycausesomesampleresiduestobeconvertedtoinsolublematerialsthatcannolongerberemoved,evenbysolventrinsing.Thecolumnmaybeirreversiblydamagedasaresult.Thebestwaytoguardagainstcolumncontaminationanddegradedanalyticalperformanceistointroduceonlysamplesthathavefirstbeenthoroughlyandcarefullyextractedandfiltered.Beforebakingouttoremovecontaminants,trysolventrinsingthecolumnfirst.

Column StorageImportant! Thecolumnmaybeleftintheinstrumentforshort-termstorage.ensureaflowofcarriergasthroughthecolumnat100-200°C.Forlong-termstorage,disconnectfromtheGCandcaporsealthecapillaryends.Oxygenandmoisturecandegradeorirreversiblydamagethecolumn,especiallycyanopropyl-basedphases.Wax(polyethyleneglycol)andcyanopropyl-basedphasesarealsosus-ceptibletoUV-induceddegradationandshouldbeshieldedfromlight(fluorescentorsunlight).Storethecolumnintheoriginalbox.Uponreinstallation,cutcolumnendstoensurethatseptumfragmentsorotherdebrishavenotbeenleftinthecolumn.

Hints and Tips (continued)

4�

References

Baugh,P.,Gas Chromatography: A Practical Approach,Oxford,1994. Blau,K.,andHalket,J.M.eds.,High Resolution Gas Chromatography,3rdedition,Hewlett-Packard,

1989. Braithwaite,a.,andSmith,F.J.,Chromatographic methods,5thedition,Chapman&Hall,1996. Fowlis,l.,Gas Chromatography,2ndedition,JohnWileyandSons,1995. Grant,D.W.,Capillary GC,JohnWileyandSons,1996. Grob,K.,Split and Splitless Injection in GC,3rdedition,Huthig,1993. Grob,K.,On-Column Injection In Capillary Gas Chromatography,2ndedition,Huthig,1991. Grob,R.L.,Chromatographic Analysis of the Environment,MarcelDekker,1983. Grob,R.L.,modern Practice of Gas Chromatography,3rdedition,JohnWileyandSons,1995. ThisbookisavailablefromPhenomenex,Part No. AA0-4455. Hill,H.H.,ed.,detectors for Capillary Chromatography,JohnWileyandSons,1992. Hyver,K.J.,andSandra,P.eds.,High Resolution Gas Chromatography,3rdedition,Hewlett-Packard,

1989. Ioffe,B.V.andVitenberg,a.G.,Head-Space Analysis and Related methods In Gas Chromatography,

JohnWileyandSons,1984. Jennings,W.,etal.,Analytical Gas Chromatography,2ndedition,academicPress,1997. Jennings,W.G.,andRapp,a.,Sample Preparation for Gas Chromatographic Analysis,Huthig,1983. Katz,e.,Quantitative Analysis Using Chromatographic Techniques,JohnWileyandSons,1987. Kitson,G.G.,Larsen,B.S.,andMcewen,C.n.,Gas Chromatography and mass Spectrometry. A

Practical Guide,academicPress,1996. Mcnair,H.M.andMiller,J.M.,Basic Gas Chromatography,1997. ThisbookisavailablefromPhenomenex,Part No. AA0-4454. Poole,C.F.,andPoole,S.K.,Chromatography Today,elsevierSciencePublishing,1991. Robards,K.,etal.,Principles and Practice of modern Chromatographic methods,academicPress,

1995. Rood,D.,A Practical Guide to the Care, maintenance, and Troubleshooting of Capillary Gas Chromatographic Systems,2ndedition,Huthig,1995. Schomburg,G., Gas Chromatography,VCH,1990. Scott,R.P.W.,Introduction to Analytical Gas Chromatography,2ndedition,MarcelDekker,1997. Scott,R.P.W.,Techniques and Practices of Chromatography,MarcelDekker,1995. Sonchik,S.M.,J. Chrom. Sci.,17,277,1979. Unger,K.K.,Packings and Stationary Phases In Chromatographic Techniques,Chrom.Sci.Series,

Vol.47,MarcelDekker,1990.

Top Recommendations

50

Adsorption mode:Chromatographyinwhichthestationaryphaseisasolid.Separationoccursthroughmechanismsofadsorptionandresorption.Band broadening:extracolumnbandbroadeningisduetoalossinefficiencythroughthechromatographicsystem.allpartsofachromatographicsystemcancausebandbroadening.Baseline:Detectionofthemobilephase(i.e.carriergas).Baseline:anysignalnotresultingformanalytes.Baseline noise:Lowlevel,highfrequencysignalssuperimposedonthebaselinesignal,duetocolumnbleed,impuritiesininjectoranddetector,etc.Bleed:Decompositionandvaporizationofthestationaryphase.Mostapparentwhenusingthecolumnnearitsmaximalallowableoperatingtemperature.Capacity:SeeSamplecapacity.Capacity factor:anumberwhichindicatestherelativetimeasolutespendsintheliquidphasewithregardtothetimeitspendsinthemobilephase.Capillary columns:narrow(from0.050to0.530mminternaldiameter),long(from10to100m)chromatographiccolumns,offeringhighefficiencies.CGC:CapillarygaschromatographyChemical bonded:Termwhichindicatesachemicalreactionofthestationaryphasewiththecapillarywall,renderingthecolumnsolvent-resistant.See“Immobilized”.Christmas tree effect:aChristmastree-likeshapeofasolutepeakduetouneventemperaturedistributionintheGCsystem.Coating efficiency (CE):expressesthepercentageofthemeasuredefficiencyovertheefficiencytheoreticallypossible.Coelution:Thesimultaneouselutionoftwocomponents.Crosslinked:Interlinkingofthestationaryphasetoobtainastableandsolvent-resistantfilm.See“Immobilized”.dead volume:Thevolumeofacapillarycolumn.Theretentiontimeofanunretainedsolute(tM)isusedtoconvertcarriergasflowintocarriergasvelocity.distribution constant(Kd): KDdescribestheequilibriumbetweentheconcentrationofasoluteinthestationaryphaseandinthemobilephase.

Glossary

ECd:electronCaptureDetection.Effective plate number:Thenumberofeffectiveplates.Efficiency:atermindicatingtheabilityofthecolumntoeluteacomponentinanarrowchromatographicpeak.Columnefficiencyisdescribedby‘n’and‘H’;seeequations.Elution:Thetransferofacomponentthroughthecolumn.FId:FlameIonizationDetection.Film thickness:Thethicknessofthestationaryphasecoatedontothecolumnwall.FSOT:FusedSilicaOpenTubular.FTIR:FourierTransformInfra-Redspectroscopicdetection.Fused silica:Syntheticpolymerofsilicondioxide.Duetoitshighpurity,fusedsilicahasreplacedglassasmaterialforcapillarycolumns.Golay equation:Chromatographicequation,describingthecolumnefficiencyincapillarygaschromatography.Height equivalent to a theoretical plate (H):Thelengthofthecolumnoccupiedbyonetheoreticalplate.ThesmallerH,thehighertheplatenumberforagivenlength.Seeequation.Immobilized:Theimmobilizationofthephaseduetocross-linkingand/orchemicalbonding.Inertness:Theabsenceofactivegroupsinthecolumnwhichwouldreactwithpolarsolutes,resultingintailingpeaks.Liquid phase:Thestationeryphase,coatedontoacolumnwhichisinaliquidstateatoperatingtemperatures.mAOT:MaximalallowableOperatingTemperatureofthecolumn.mcReynolds constants:aclassifyingsystemforthepolarityandselectivityofstationaryphases.mobile phase:Themediumusedtocarrythesolutesthroughthecolumn.IncapillaryGCthreegasesareappliedasmobilephase:hydrogen,heliumandnitrogen.Non-polar:Theabsenceofpolargroupsinthestationaryphase.On column injection:Injectiontechniqueincapillarygaschromatography.Thesampleisinjecteddirectlyintothecolumn.

5�

Overloading:exceedingthesamplecapacityforasoluteonagivencolumn,resultinginasymmetricalpeakshapesandvariableretentiontimes.Phase ratio:numberwhichindicatestheratiobetweenthemobilephase(columnradius)andthestationaryphase(filmthickness).PLOT:PorousLayerOpenTubular:anadsorbentsuchasaluminiumoxideisdepositedontheinnercolumnwall,increasingthecontactsurface.Polar:Thepresenceofpolargroupsinthestationaryphase.Polarity:Stationaryphasesareoftenclassifiedaccordingtotheirdegreeofpolarity,indicatingthewaysofinteractioninachromatographicseparation.Polyimide:Theouterpolymercoatingoffusedsilicatubinggivingitstrengthandflexibility.Resolution:ameasureoftheabilityofacolumntoseparatetwocomponents.Seeequation.Retention:Interactionbetweenstationaryphaseandsolutewillretainthesoluteinthecolumn.Thedegreeoftheinteractionswilldeterminethestrengthoftheretention.Retention time:Thetimeneededforasolutetoelutefromthecolumn,startingfromtheinjection.Totalretentiontimeisthesumofthetimethesolutespendsinthemobilephaseandthetimeitspendsintheliquidphase (to=adjustedretentiontime).Sample capacity:Maximumsamplesizeofacompoundwhichcanbeintroducedontoacapillarycolumncoatedwithaparticularstationaryphasewithoutdisturbingthechromatographicperformanceofthecolumn.Seeequation.SCOT:SupportCoatedOpenTubularcolumns:Capillarycolumnswheretheliquidstationaryphaseiscoatedontoafinesolidsupport.Selectivity:Thedegreebywhichthestationaryphasedifferentiatessolutes.SeparationinCGCisbasedondifferentselectivitiesforcomponentspresentinasample.Selectivity factor:anumberdescribingtheselectivityofthestationaryphasefortwochemicals,relativetoeachother.aselectivityfactorgreaterthanoneisrequiredto

achieveseparation.Seeequation.Solid State Injection:InjectiontechniqueinCGCwherethesolventisvaporizedpriortoinjectionintothecolumn.Solutes:Thecomponentspresentinasample.Split-splitless injection:InjectiontechniqueinCGCwherethesampleisinjectedintoaheatedchamber,vaporizedandthencarriedbythemobilephaseintothecolumn.aftervaporization,thesamplecanbepartiallyvented(splitmode)ornot(splitlessmode).Stabilized:anuncrosslinkablephasecanbedissolvedfromthecolumnwhenrinsedwithasolvent.Toavoidbreakdownofthefilm,astabilizingagentisadded.Stationary phase:Polymerwhichiscoatedontotheinnercolumnwalltoprovidetheselectivityforseparation.Tailing:Thetail-likeshapeofachromatographicpeak,causedbyactivesitesinthecolumn.TCd:ThermalConductivityDetection.Theoretical plate:Therepresentationofaunitofefficiencyofacolumn.TPGC:TemperatureProgrammedGasChromatography.Trennzahl:Theresolutionbetweentwoconsecutivemembersofthee-paraffinhomologousseries.Seeequation.van deemter equation:Thebasicequationdescribingtherateofbandbroadeningofacolumningaschromatography.ThisequationwasadaptedtocapillaryGCbyGolay(see“Golayequation”).WCOT:WallCoatedOpenTubularcolumns:Capillarycolumnswherethestationaryphaseiscoatedontothecolumnwallasasmoothuniformfilm.

Phenomenexfor useful information

on capillary gas chromatography

Glossary

5�

�. Resolution (R)

• Graphically:

R=

• Chromatographically:

R=

• Trennzahl (TZ):

TZ=-1

�. Efficiency (N and H)

• N = number of theoretical plates

n=5.54 =16 n=

• H = height equivalent to a theoretical plate

Golayequation:

H=B/u+CGu+DLu

u=L/tO

H=+u+u

////

//

//

////

tm (to)

H(u) diagram (Golay plot)

LH

(1+6k+11K)2r2

24(1+k)2DG

2kdf2

3(1+k)2DL

////

//

//

////

tm (to)

u(cm/s)

Equations

√n4

α − 1α

kk+1( )()

2∆tR

Wb1+Wb2

∆tR

Wh1+Wh2

()tR

Wh

2()tR

Wb

2

2DG

u

5�

Equations (continued)

�. Effective plate number 4. Coating efficiency

neff=16 Ce%=()100

5. Selectivity factor (α) �. Capacity factor (Retention Factor)

α= k==

�. distribution constant �. Phase ratio

�. Sample capacity �0. minimal analysis time for a two component mixture

��. Split Ratio=splitventflow+columnflow/columnflow(mL/min)

��. Flow(mL/min)=(π)(columnradius(cm)2(columnlength(cm)/deadvolumetime(min)

��. Average Linear Velocity u(cm/sec)=columnlength(cm)/retentiontimeofnon-retained peak(sec)

�4. Sample and solvent expansion volume = nRT/P Where:n =numberofmolesofsolventandsample,calculatedas:

volume(mL)xdensity(g/mL)/MW(g/mole)T=absolutetemperatureoftheinjector(°K)

P=columnheadpressure(atm)+1atm R =Universalgasconstant

�5. Volume of inlet sleeve = πr�L Where: r=radius(cm) L=length(cm) ��. Average Linear Velocity (u)= L/tO

tR’2

tR’1

tR’=tR-tO

tR2>tR1

()tR’Wb

2

KD=k•β

2dfKd

r

SC~r2(1+k) √LH

~r2(1+)√LH

tR-tO

tO

tR’tO

r2df

β =

nexp

ntheor

α(α-1)

(1+k)3

k2tne=16()()(R2)Hu

2

54

List of symbols and abbreviations

α = Selectivityfactor

Β = Longitudinaldiffusionterm

β = Phaseratio

Ce = Coatingefficiency

CG = Resistancetomasstransferinthegasphase

CL = Resistancetomasstransferintheliquidphase

df = Filmthickness

DG = Diffusioncoefficientinthegasphase

DL = Diffusioncoefficientintheliquidphase

H = Heightequivalenttoatheoreticalplate

k = Capacityfactor

KD = Distributionconstant

L = Columnlength

Equations (continued)

u = averagelineargasvelocity

u = Lineargasvelocity

n = numberoftheoreticalplates

n = effectiveplatenumber

R = Resolution

r = Columnradius

SC = Samplecapacity

tO = Retentiontimeofunretainedsolute

tR = Retentiontimeofthesolute

tR’ = adjustedretentiontimeofthesolute

wb = Peakwidthatbase

wh = Peakwidthathalfheight

/

55

NOTE:

Whileeveryattempthasbeenmadetoensuretheaccuracyoftheinformation

containedinthisguide,Phenomenexassumesnoresponsibilityforitsuse.

Wewelcomeanyadditionsorcorrectionsforincorporationintofutureeditions.

Zebron,Inferno,MultiResidue,andengineeredSelfCross-linking(eSC)aretrademarksofPhenomenex,Inc.©2007PhenomenxInc.allrightsreserved.

5�

mail:

tel.:fax:

email:

mail:

tel.:fax:

email:

www.phenomenex.comPhenomenex products are available worldwide. For the distributor in your country, contact Phenomenex USA, International Department by telephone, fax or email: [email protected].

New ZealandP O Box 31-601Milford 0741North Shore CityNew Zealand

[email protected]

IrelandQueens Avenue,Hurdsfield Ind. Est.,Macclesfield, Cheshire SK10 2BN, UK

01 247 5405+44 [email protected]

DenmarkGydevang 39-413450 AllerødDenmark

4824 80484810 [email protected]

United KingdomQueens Avenue,Hurdsfield Ind. Est.,Macclesfield, Cheshire SK10 2BN, UK

[email protected]

FranceParc des Grillons, Bat.360 route de Sartrouville78232 Le Pecq CedexFrance

01 30 09 21 1001 30 09 21 [email protected]

USA411 Madrid Ave.Torrance, CA90501-1430USA

(310) 212-0555(310) [email protected]

AustriaZeppelinstr. 563741 AschaffenburgGermany

[email protected]

ItalyVia Serenari, 51/D40013 Castel Maggiore (BO)Italy

051 736176051 [email protected]

Canada411 Madrid Ave.Torrance, CA90501-1430USA

(800) 543-3681(310) [email protected]

Puerto Rico273 Sierra Morena,Suite #104San Juan,Puerto Rico 00926

(800) 541-HPLC(310) [email protected]

GermanyZeppelinstr. 563741 AschaffenburgGermany

[email protected]

AustraliaPO Box 4084Lane Cove, NSW 2066Australia

[email protected]

5549

_L