colorimetric gas sensors

Upload: fm202

Post on 03-Jun-2018

246 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Colorimetric Gas Sensors

    1/50

    Fraunhofer IPM / Slide 1

    Jrgen Wllenstein, Martin Schiel, Carolin Peter, Katrin Schmitt

    Fraunhofer IPM, University of Freiburg

    Colorimetric gas sensors for the detection of ammonia,nitrogen dioxide and carbon monoxide

    + CO =

  • 8/12/2019 Colorimetric Gas Sensors

    2/50

    University of FreiburgDepartment of Microsystem technology

    sensor based RFID labels

    micro machined gas sensor arrays

    gas sensitive materials

    micro optical gas sensors

    sensor systems

    gas measurement lab

    Laboratory for

    Gas Sensors

    Prof. Dr. Jrgen Wllenstein

    WS 11/12 Jrgen Wllenstein / Katrin Schmitt - 2 -

  • 8/12/2019 Colorimetric Gas Sensors

    3/50

    Fraunhofer IPM / IMTEK

    Fraunhofer-Institut fr

    Physikalische Messtechnik IPM

    Heidenhofstrasse 8

    79110 Freiburg

    Thermoelektrische und

    integrierte Sensorsysteme TES

    Gruppe: Integrierte Sensorsysteme ISS

    WS 11/12 Jrgen Wllenstein / Katrin Schmitt - 3 -

  • 8/12/2019 Colorimetric Gas Sensors

    4/50

    gas sensor systems

    WS 11/12 Jrgen Wllenstein / Katrin Schmitt - 4 -

  • 8/12/2019 Colorimetric Gas Sensors

    5/50

    Fraunhofer IPM / Slide 5

    Motivation and Applications

    Selective gas sensors

    No need for clean room processing

    Small and simple set-up

    Ultra low power consumption

    Possibility for wireless readout (RFID)

    Fire detection

    Process monitoring

    Environmental monitoring

    State-of-the-art: Drger Tubes

    Drger

  • 8/12/2019 Colorimetric Gas Sensors

    6/50

    Jrgen Wllenstein / Wintersemester 2009-10 / slide 6www.imtek.de

    State of the art

    Optical fiber, tungsten lamp and spectrometer

    Bromocresol purple (BCP) in silica S. Tao et al., Sens & Act, B115 (2006) 158-163.

    Bulky

    Expensive

    Reflected light form LEDs Methyl red on a silica plate

    T. Nakamoto et al., Sens & Act, B116 (2006) 202-206.

    Integration on flexible substrates difficult

    Lower sensitivity

    Two LEDs

    p-nitrophenylnitrosamine (NPNA) in PVC R.L. Shepherd et al., IEEE Sensors Journal, 6 (2006)

    861-866.

    lower sensitivity

  • 8/12/2019 Colorimetric Gas Sensors

    7/50

    Fraunhofer IPM / Slide 7

    Sensor Principle

  • 8/12/2019 Colorimetric Gas Sensors

    8/50

    Fraunhofer IPM / Slide 8

    Measurement System

    Electronics

    Gas in- and outlet

    Photo diode

    Optical sensor chip inmeasurement chamberLED

    Powersupply

  • 8/12/2019 Colorimetric Gas Sensors

    9/50

    Fraunhofer IPM / Slide 9

    J. Courbat et al. / Sensors and Actuators B160 (2011) 910915

  • 8/12/2019 Colorimetric Gas Sensors

    10/50

    Fraunhofer IPM / Slide 10

    J. Courbat et al. / Sensors and Actuators B 160 (2011) 910915

  • 8/12/2019 Colorimetric Gas Sensors

    11/50

    Fraunhofer IPM / Slide 11

    Ammonia color dye

    pH = 5.2 pH = 6.8

    + NH3

    S

    O

    O O

    CH3

    OH

    Br

    CH3

    OH

    Br

    SO3NH4

    CH3

    O

    Br

    CH3

    OH

    Br

    Example: Bromocresol purple, pH-indicator within a porous polymericmatrixColor change due to a (reversible) reaction with ammonia

  • 8/12/2019 Colorimetric Gas Sensors

    12/50Jrgen Wllenstein / Wintersemester 2009-10 / slide 12www.imtek.de

    Ammonia sensor

    Spectroscopic Gas Measurements

    Measurement over all the spectrum indicates where the maximum

    light absorption occurs.

    Film thickness: 2-5 m.

    Data acquisition: Elmer-Perkin 900 spectrometer.

    Light in the visible range: 200 700 nm, steps of 3 nm.

    Gas cell connected to gas mixing system.

    Available NH3 concentration: 5-1000 ppm.

    1 cm1 cm

  • 8/12/2019 Colorimetric Gas Sensors

    13/50Jrgen Wllenstein / Wintersemester 2009-10 / slide 13www.imtek.de

    Ammonia sensor

    Colorimetric Film Efficiency

    Best results obtained with BPB

    0.0020.100.72PMMA

    0.0190.241.41Ethyl cellulose

    0.0260.502.55Poly(vinyl butyral)

    BCPBCGBPBAbs coef. w () [m-1]

    0.0020.100.72PMMA

    0.0190.241.41Ethyl cellulose

    0.0260.502.55Poly(vinyl butyral)

    BCPBCGBPBAbs coef. w () [m-1]

    Beer-Lambert law: cl

    inout II

    10

    Iin: Incoming light intensity

    Iout: Light intensity after passing through the film

    : absorption coefficient

    l: path length

    c: concentration of the absorbing material

  • 8/12/2019 Colorimetric Gas Sensors

    14/50Jrgen Wllenstein / Wintersemester 2009-10 / slide 14www.imtek.de

    Ammonia sensor

    Selectivity

    Film: BPB in Poly(vinyl butyral) and tributyl phosphate

    Gas carrier: synthetic air, 50%RH

    300 350 400 450 500 550 600 650 70030

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    Wavelength [nm]

    Transmission[%]

    50%RH air

    30% O2in 50%RH air200 ppm Ethylene in 50%RH air

    10500 ppm H2in 50%RH air

    30 ppm NO2in 50%RH air

    200 ppm CO in 50%RH air

    100 ppm NH3in 50%RH air

  • 8/12/2019 Colorimetric Gas Sensors

    15/50Jrgen Wllenstein / Wintersemester 2009-10 / slide 15www.imtek.de

    Film-Coated Waveguide

    Films on microscope slide cut with an angle of 45

    Electronic circuit with feedback loop for keeping the light intensity

    constant

    3 cm3 cm

  • 8/12/2019 Colorimetric Gas Sensors

    16/50

    Fraunhofer IPM / Slide 16

    Ammonia measurements with coated waveguideand LED

    Gas carrier: synthetic air,

    50% RH, 1000 sccm/min

    BPB in PMMA was selected

    due to a good tradeoff

    between sensitivity and

    response/recovery time

    J. Courbat, D. Briand, J. Damon-Lacoste, J. Wllenstein, N.F. de Rooij Evaluation of pH Indicator-Based ColorimetricFilms for Ammonia Detection Using Optical Waveguides, Sensors and Actuators B Chemical, 2009

  • 8/12/2019 Colorimetric Gas Sensors

    17/50

    Market: Smoke detectors

    Optical smoke detectors

    Common fire detectors are based on the scattered light principle

    Partikel detection

    False alarms (moisture, dust, particulate matter,.)

    WS 11/12 Jrgen Wllenstein / Katrin Schmitt - 17 -

  • 8/12/2019 Colorimetric Gas Sensors

    18/50

    Fire detectors, test fires

    CO2 H2O CO H2 NO2 NO HC

    No fire < 500 ppm 25% 1-3 ppm 0,1 1ppm

    10 ppb 10 ppb 1 ppm

    TF 1 4000 ppm

    750 ppm/min

    40 %

    1,5%/ min

    30 ppm

    6 ppm/min

    20 ppm

    3ppm/min

    1 ppm

    200 ppb/min

    TF 2 700 ppm

    25 ppm/min

    28%

    0,4%/min

    30 ppm

    6 ppm/min

    120 ppb

    100ppb/min

    70 ppb

    10 ppb/min

    20 ppm

    5 ppm/min

    TF 3 800 ppm

    40 ppm/min

    28%

    0,4%/min

    100 ppm

    15ppm/min

    25 ppm

    20ppm/min

    40 ppb

    10 ppb/min

    100 ppb

    20ppb/min

    30 40 ppm

    6 ppm/min

    TF 4 1800 ppm

    520 ppm/min

    30%

    2,5%/min

    12 ppm

    4 ppm/min

    3 ppm

    1ppm/min

    3 ppm

    1 ppm/min

    10 ppm

    5 ppm/min

    < 5 ppm

    TF 5 2000 ppm

    750 ppm/min

    30%

    1,5 %/min

    15 ppm

    5 ppm/min

    5 ppm

    1ppm/min

    1 ppm

    0,5 ppm/min

    2 3 ppm

    0,7ppm/min

    < 5 ppm

    TF 6 7000 ppm

    1000

    ppm/min

    5 ppm 2 ppm 2 ppm

    Standard test fires and according gas types and concentrations.

    TF = open wood fire, TF2=smoldering wood, TF3= smoldering wick (cotton), TF4= Polyurethane (foam),

    TF 5 = n-heptane, TF6= ethanol fire.

    Quelle: Siemens

    WS 11/12 Jrgen Wllenstein / Katrin Schmitt - 18 -

  • 8/12/2019 Colorimetric Gas Sensors

    19/50

    Gas sensor based fire detectors

    WS 11/12 Jrgen Wllenstein / Katrin Schmitt - 19 -

    Objective of developments:

    - CO / NO2sensor- Production cost: 1 Euro- Ultra low power consumption- Less than 1 W

    - Lifetime: five years- No cross sensitivities- Small package

    - Market 10 billion Euro

    - Big player: Honeywell, Siemens

    - => one possible solution: Colour dyes

  • 8/12/2019 Colorimetric Gas Sensors

    20/50

    Fraunhofer IPM / Slide 20

    Metalloporphyrins for NO2detection

    Most common natural pigments

    Famous example: hemoglobin (1 kg in human circulatory system)

    Chemical structure: 4 pyrrole rings, connected by methines

    Component of many proteins Use in sensors based on fluorescence-quenching

    Examples:

    Zinc-porphyrin: Iron-porphyrin:

    5,10,15,20-tetraphenylporphyrin-zinc(ZnTPP)

    5,10,15,20-tetraphenyl-21H,23H-porphyriniron(III) chloride (FeTPP)

  • 8/12/2019 Colorimetric Gas Sensors

    21/50

    Fraunhofer IPM / Slide 21

    ZnTPP: Chemical Reaction Principle

    Two-step mechanism causes changes in infrared and visible range

  • 8/12/2019 Colorimetric Gas Sensors

    22/50

    Fraunhofer IPM / Slide 22

    Zinc-porphyrin (ZnTPP)

    Preparation of sensor film:

    Function Material

    Dye ZnTPP

    Polymer PVC

    Plasticizer HexamollDINCH

    Solvent Tetrahydrofuran

  • 8/12/2019 Colorimetric Gas Sensors

    23/50

    Fraunhofer IPM / Slide 23

    ZnTPP: Reaction to 5 ppm NO2Analysis in UV/VIS-Spectrometer

    Change of transmission: Absorption @ 450 nm:

    0 200 400 600 800 1000

    0

    200

    400

    600

    800

    1000

    1200

    c/m-1*ppm

    time / min

  • 8/12/2019 Colorimetric Gas Sensors

    24/50

    Fraunhofer IPM / Slide 24

    ZnTPP: Waveguide-based Measurements

    Reaction to 5 ppm NO2

    Color change from pink to yellow

    Reversible but very long relaxationtime (several days)

  • 8/12/2019 Colorimetric Gas Sensors

    25/50

    Fraunhofer IPM / Slide 25

    ZnTPP: Cross Sensitivity

    Ammonia (100 ppm)

    Ethanol (50 ppm)

    Carbon dioxide (2000 ppm)

    Carbon monoxide (200 ppm)

  • 8/12/2019 Colorimetric Gas Sensors

    26/50

    Fraunhofer IPM / Slide 26

    Iron-porphyrin (FeTPP)

    Preparation of sensor film:

    Function Material

    Dye FeTPPCl

    Polymer PVC

    Plasticizer HexamollDINCH

    Solvent Tetrahydrofuran

  • 8/12/2019 Colorimetric Gas Sensors

    27/50

    Fraunhofer IPM / Slide 27

    Fe-TPP: Reaction to NO2

    Change of transmission

    No observable cross-sensitivity to ethanol, carbon monoxide, carbondioxide, ammonia

    transmission/%@

    51

    5nm

  • 8/12/2019 Colorimetric Gas Sensors

    28/50

    Fraunhofer IPM / Slide 28

    Colour dyes for CO-detectionFirst try: molybdenum blue / palladium

    Bielefelder Rad

    Tianbo Liu, Ekkehard Diemann, Achim Mller: Hydrophilic InorganicMacro-Ions in Solution: Unprecedented Self-Assembly Emerging fromHistorical Blue Waters. In: Journal of Chemical Education, Volume 84Nr. 3, March 2007.

  • 8/12/2019 Colorimetric Gas Sensors

    29/50

    Fraunhofer IPM / Slide 29

    New trendRhodium complexes for CO-detection

    Esteban et.al.:Sensitive and Selective ChromogenicSensing of Carbon Monoxide by UsingBinuclear Rhodium Complexes

    In: Angew. Chem. 2010, 122, 5054 5057

    reversible

    High sensitive to CO

    Very low cross sensitivities (H2O, O2, N2,NO2, SO2)

  • 8/12/2019 Colorimetric Gas Sensors

    30/50

  • 8/12/2019 Colorimetric Gas Sensors

    31/50

    Fraunhofer IPM / Slide 31

    Synthesis

    cis-[Rh2(C6H4PPh2)2(O2CCH3)2](HO2CCH3)2

  • 8/12/2019 Colorimetric Gas Sensors

    32/50

    Fraunhofer IPM / Slide 32

    Color change

  • 8/12/2019 Colorimetric Gas Sensors

    33/50

    Fraunhofer IPM / Slide 33

    Color change due to CO exposure

    100 ppm CO

    air

    air + CO

    UV/VIS transmissionspectra of 1(CH3CO2H)2before and after exposureto 100 ppm CO. The color

    of the sample changesfrom violet to yellow.

  • 8/12/2019 Colorimetric Gas Sensors

    34/50

    Fraunhofer IPM / Slide 34

    Waveguide based CO-measurement

  • 8/12/2019 Colorimetric Gas Sensors

    35/50

    Fraunhofer IPM / Slide 35

    ModificationEPFL: Kay Severin

    In order to increase the sensitivity and stability, we have synthesized thenew complex 2 by substitution of the acetate ligands with trifluoroacetate

    C. Courbat et al, Procedia Engineering 25 (2011) 1329 1332

  • 8/12/2019 Colorimetric Gas Sensors

    36/50

    Fraunhofer IPM / Slide 36

    Spectrophotometric measurement of complex 2 insolution when exposed to air and to CO (1 atm).

    C. Courbat et al, Procedia Engineering 25 (2011) 1329 1332

  • 8/12/2019 Colorimetric Gas Sensors

    37/50

    Fraunhofer IPM / Slide 37

    CO exposure and test fires

    Gas response of the colorimetric film when exposed to CO. The gas carrier was synthetic air with a flow of 500 sccmand humidity background of 30%. (b) Colorimetric sensor exposed to different test fires: Smoldering cotton, n-

    heptane, and smoldering wood. The sensor showed a completely reversibility and a suitable response time for the

    application. As reference, the CO concentration was monitored with a Binos 100 from Rosemount Analytical.

  • 8/12/2019 Colorimetric Gas Sensors

    38/50

    Fraunhofer IPM / Folie 38

    Test fire at SBT facilities

    Fire lab

    6 different standard test fire

    Sensor system on top of the room Reference sensors (CO, CO2, NO,

    NO2, temperature)

  • 8/12/2019 Colorimetric Gas Sensors

    39/50

    Fraunhofer IPM / Folie 39

    Results: 5,10,15,20-Tetraphenyl-21H,23H-porphine iron(III) chloride

    In PVC- NO2Sensor

    Test fire 6 ethanol fire

    Gas concentrations after 10 min:

    CO: 4,68 ppm; CO2: 8110 ppm;

    NO: 1785 ppb; NO2: 695 ppb

    T90 after fresh air inlet: 24 min

  • 8/12/2019 Colorimetric Gas Sensors

    40/50

    Fraunhofer IPM / Folie 40

    Results Rh-complex (Esteban et al)

    Rh/EC-Chip CO - Sensor

    Test fire 2 smouldering wood

    Gas concentration after 10 min:

    CO: 86 ppm

    T90 after fresh air inlet: 4,7 min

  • 8/12/2019 Colorimetric Gas Sensors

    41/50

    Fraunhofer IPM / Slide 41

    ApplicationIntegration on RFID-platform

    Development of an RFID platform

    Credit card size

    Working at 13.56 MHz standard

    ISO 15693

    Direct integration of the read-outelectronics

  • 8/12/2019 Colorimetric Gas Sensors

    42/50

    Fraunhofer IPM / Slide 42

    RFID-Tag with optical ammonia / COsensor

    Sensorchip

    LED

    Photodiodes

    battery

    Melexis 13,56 MHzRFID-Transponder

    Controller

  • 8/12/2019 Colorimetric Gas Sensors

    43/50

    Fraunhofer IPM / Slide 43

    RFID-TagVery first measurements

    Ammonia measurement

    500 ppb, 1 ppm and 5 ppmNH3 in air.

    Detection limit in the

    lower ppb range!

  • 8/12/2019 Colorimetric Gas Sensors

    44/50

    Fraunhofer IPM / Folie 44

    Application:RFID CO sensor system ---- Field tests

    Spitzenclusterprojekt Microtec Sdwest

    Sens-RFID , Goal: Energy self-sufficientCO-sensor for iron making

    Thermoelectric power converter,Colourimetric CO-Sensor,

    Wireless comunication

    Field tests: Thyssen Krupp SteelDuisburg

    Measurement at torpedo ladle withliquid pig iron (600 Tons)

  • 8/12/2019 Colorimetric Gas Sensors

    45/50

    Fraunhofer IPM / Folie 45

    Field tests ---- Impressions

  • 8/12/2019 Colorimetric Gas Sensors

    46/50

    Fraunhofer IPM / Folie 46

    Field tests ---- Measuring results

    0 2 4 6 8 10 12 14 16 18 20 22 24

    0,25

    0,26

    0,27

    0,28

    0,29

    0,30

    0,31

    Ausgangsspannung/

    V

    Zeit / h

    kolorimetrischer Gassensor

    Befllen und leeren der Torpedopfanne

    20 Uhr bis ~ 1.30 Uhr

    24 h measurement at Torpedoladle

    Thermoelectric generatorsupplies enough energy

    Filling in blast furnace

  • 8/12/2019 Colorimetric Gas Sensors

    47/50

    Fraunhofer IPM / Slide 47

    Conclusions

    Color dyes for NO2, CO and NH3detection

    Integration as waveguide-based system

    Detection in the low ppm-range

    Extremely low cross-sensitivities

  • 8/12/2019 Colorimetric Gas Sensors

    48/50

  • 8/12/2019 Colorimetric Gas Sensors

    49/50

  • 8/12/2019 Colorimetric Gas Sensors

    50/50

    Thank you for your attention