collectivity from the initial statea. dumitru and j. jalilian-marian, phys. rev. lett., 89:022301,...

27
Collectivity from the initial state: Four-particle correlations in proton-nucleus collisions

Upload: others

Post on 20-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Collectivityfromtheinitialstate:Four-particlecorrelationsinproton-nucleuscollisions

  • AworkinprogresswithMarkMace(StonyBrook/Brookhaven)RajuVenugopalan(Brookhaven)

  • Contents

    •  Background/Motivation

    •  Particleproductioninproton-nucleuscollisions

    •  Beyondthedipole:n-pointcorrelatorsintheMVmodel

    • Results

  • BACKGROUND/MOTIVATION

  • Background1:CollectivityinsmallsystemsV.Khachatryanetal.(CMSCollaboration)JHEP,1009:091,2010.

    V.Khachatryanetal.(CMSCollaboration)Phys.Rev.Lett.,116(17):172302,2016.

    K.Dusling,W.Li,andB.SchenkeNovelcollectivephenomenainhigh-energyproton–protonandproton–nucleuscollisionsInt.J.Mod.Phys.,E25(01):1630002,2016.[arXiv:1509.07939]

  • BackgroundII:Glasma-graphs

    η∆-4

    -20

    24

    φ∆0

    24

    φ∆

    dη∆d

    pair

    N2 dtrgN1

    1.301.351.40

    CMS Preliminary 110≥ = 7 TeV, N spp

  • MotivationI:Four-particlecumulants

    ATLASCollaborationPhys.Lett.B725(2013)60-78.

    CMSCollaborationPhys.Lett.,B724(2013)213–240.

    offlinetrkN

    50 100 150 200

    {4}

    2c

    -0.03

    -0.02

    -0.01

    0.00

    0.01

    0.02

    0.03

    -310×

    bin width of 2offlinetrk N bin width of 5offlinetrk N bin width of 30offlinetrk N

    = 5.02 TeVNNs(a) Data, pPb

    gen-levelchN

    50 100 150 200

    {4}

    2c

    -0.03

    -0.02

    -0.01

    0.00

    0.01

    0.02

    0.03

    -310×

    bin width of 2gen-levelch N bin width of 5gen-levelch N bin width of 30gen-levelch N

    = 5.02 TeVNNs(b) HIJING Gen-level, pPb

  • MotivationII:Thecolordomainmodel

    A.KovnerandM.Lublinsky,Phys.Rev.,D84:094011,2011.A.DumitruandA.V.Giannini,Nucl.Phys.,A933:212–228,2015.A.Dumitru,L.McLerran,andV.Skokov,Phys.Lett.,B743:134–137,2015.A.DumitruandV.Skokov,Phys.Rev.,D91(7):074006,2015.T.Lappi,B.Schenke,S.Schlichting,andR.Venugopalan.JHEP,01:061,2016.

    g2

    Nc

    ⌦Eai (b1)E

    bj (b2)

    ↵=

    1

    (N2c � 1)�ab�ijQ

    2s�(b1 � b2)

    g2

    Nc

    ⌦Eai (b1)E

    bj (b2)

    ↵=

    1

    (N2c � 1)�abQ2s�(b1 � b2)

    ✓�ij + 2A

    âiâj �

    1

    2�ij

    �◆

    •  GaussiancorrelationofE-dieldswillproduceparticlesisotropically

    •  Considersub-classofeventswithaprededinedorientation:

  • PARTICLEPRODUCTIONINPROTON-NUCLEUSCOLLISIONS

  • Thehybridframework•  Considereikonalscatteringofquarkfromadensetarget

    •  Differentialcross-sectionforquarkscatteringonanucleus

    A.DumitruandJ.Jalilian-Marian,Phys.Rev.Lett.,89:022301,2002.J.D.Bjorken,J.B.Kogut,andD.E.Soper,Phys.Rev.,D3:1382,1971.

    dN

    d

    2p

    ' 1⇡B

    p

    Z

    xx̄

    e

    �(x2+x̄2)/2Bp⌧

    1

    N

    c

    Tr⇥W (x)W †(x̄)

    ⇤�e

    ip·(x�x̄)

    p+ � p�

    p? ⇠ ⇤QCD p? ⇠ Qs

    A�

    W [A](x) = P expig

    Zdz

    +A

    �a (z

    +, x)

  • •  DipolecorrelatorisevaluatedintheMVmodelwherebyaveragingoverthecolordieldofthenucleus

    •  resultsin

    Multiple-scatteringintheCGC

    1 2 3 4 5 6

    0.2

    0.4

    0.6

    0.8

    1.0

    x?[GeV]

    Q2s = 1.0 GeV2

    r =p

    2/Q2s

    r = 1/⇤QCD

    g

    2⌦A

    �a

    (x)A�b

    (y)↵= �abL

    xy

    L

    xy

    = �g4µ

    2

    16⇡|x� y|2 ln 1

    ⇤ |x� y|

    D(x, x̄) =

    1

    N

    c

    Tr

    ⇥W (x)W

    †(x̄)

    ⇤= exp(C

    F

    L

    xx̄

    )

    N(x?)

  • •  Singlequarkscattering:

    •  Twoquarkscattering:

    •  Fourquarkscattering:

    Multi-particleproduction

    dN

    d

    2p

    ' 1⇡B

    p

    Z

    xx̄

    e

    �(x2+x̄2)/2Bp⌧

    1

    N

    c

    Tr⇥W (x)W †(x̄)

    ⇤�e

    ip·(x�x̄)

    d

    2N

    d

    2p1d

    2p2

    ' 1(⇡B

    p

    )2

    Z

    xx̄yȳ

    e

    �(x2+x̄2)/2Bpe

    �(y2+ȳ2)/2Bpe

    ip1·(x�x̄)e

    ip2·(y�ȳ)

    ⇥⌧

    1

    N

    c

    Tr⇥W (x)W †(x̄)

    ⇤ 1N

    c

    Tr⇥W (y)W †(ȳ)

    ⇤�

    d

    4N ⇠

    Z ⌦Tr

    ⇥W (w)W †(w̄)

    ⇤Tr

    ⇥W (x)W †(x̄)

    ⇤Tr

    ⇥W (y)W †(ȳ)

    ⇤Tr

    ⇥W (z)W †(z̄)

    ⇤↵

  • BEYONDTHEDIPOLEn-pointcorrelatorsintheMVmodel

  • Multiple-scatteringintheCGC•  Startwiththedipolescatteringmatrix:

    •  Expandoutthelastsliceinrapidity:

    •  Takealltwo-pointfunctions:

    •  Andre-exponentiate:

    W (x) ⌘ P expig

    Zdz

    +A

    �a (z

    +, x)

    �' V (x)

    ⇥1 + igA

    �a (⇠, x)T

    a+ · · ·

    hD(x, x̄)iW

    = exp (C

    F

    L

    xx̄

    )

    hD(x, x̄)iW =1

    Nc

    ⌦Tr

    ⇥W (x)W †(x̄)

    ⇤↵

    �abLxx̄

    ab

    2Tr

    ⇥V (x)V †(x̄)

    hD(x, x̄)iW ' hD(x, x̄)iV + g2⌦A

    �a (x)A

    �b (x̄)

    ↵ 1Nc

    Tr⇥V (x)T aT bV †(x̄)

  • •  AsbeforeexpandoutallWilsonlines:

    •  Fourpointfunction:

    •  Eightpointfunction:

    KovnerandU.A.Wiedemann.Phys.Rev.,D64:114002,2001.H.Fujii..Nucl.Phys.,A709:236–250,2002.J.P.Blaizot,F.Gelis,andR.Venugopalan.Nucl.Phys.,A743:57–91,2004.F.Dominguez,C.Marquet,andB.Wu,Nucl.Phys.,A823:99–119,2009.

    W (x) ⌘ P expig

    Zdz

    +A

    �a (z

    +, x)

    �' V (x)

    ⇥1 + igA

    �a (⇠, x)T

    a+ · · ·

    hDxx̄

    Dyȳ

    iW

    ' ↵xx̄yȳ

    hDxx̄

    Dyȳ

    iV

    + �xyx̄ȳ

    hQxȳyx̄

    iV

    ✓hD

    xx̄

    Dyȳ

    ihQ

    xȳyx̄

    i

    W

    =

    ✓↵xx̄yȳ

    �xyx̄ȳ

    �xyȳx̄

    ↵xȳyx̄

    ◆✓hD

    xx̄

    Dyȳ

    ihQ

    xȳyx̄

    i

    V

    hDww̄

    Dxx̄

    Dyȳ

    Dzz̄

    iW

    ' ↵ww̄xx̄yȳzz̄

    hDww̄

    Dxx̄

    Dyȳ

    Dzz̄

    iV

    +�wxw̄x̄

    hQxw̄wx̄

    Dyȳ

    Dzz̄

    iV

    + �wyw̄ȳ

    hQyw̄wȳ

    Dxx̄

    Dzz̄

    iV

    +�wzw̄z̄

    hQzw̄wz̄

    Dxx̄

    Dyȳ

    iV

    + �xyx̄ȳ

    hQyx̄xȳ

    Dww̄

    Dzz̄

    iV

    +�xzx̄z̄

    hQzx̄xz̄

    Dww̄

    Dyȳ

    iV

    + �yzȳz̄

    hQzȳyz̄

    Dww̄

    Dxx̄

    iV

  • CorrelatorofeightWilsonlines

    1 5 10 15 20 24

    1

    5

    10

    15

    20

    24

    1 5 10 15 20 24

    1

    5

    10

    15

    20

    24

    2

    66666666666666666666666666666666666666664

    hDww̄

    Dxx̄

    Dyȳ

    Dzz̄

    ihQ

    ww̄xx̄

    Dyz̄

    Dzȳ

    ihQ

    ww̄xȳ

    Dyx̄

    Dzz̄

    ihQ

    ww̄xȳ

    Dyz̄

    Dzx̄

    ihQ

    ww̄xz̄

    Dyx̄

    Dzȳ

    ihQ

    ww̄xz̄

    Dyȳ

    Dzx̄

    ihQ

    wx̄xw̄

    Dyȳ

    Dzz̄

    ihQ

    wx̄xw̄

    Qyz̄zȳ

    ihQ

    wx̄xȳ

    Qyw̄zz̄

    ihQ

    wx̄xȳ

    Qyz̄zw̄

    ihS

    wx̄xz̄yw̄

    Dzȳ

    ihS

    wx̄xz̄yȳ

    Dzw̄

    ihS

    wȳxw̄yx̄

    Dzz̄

    ihS

    wȳxw̄yz̄

    Dzx̄

    ihS

    wȳxx̄yw̄

    Dzz̄

    ihS

    wȳxx̄yz̄

    Dzw̄

    ihS

    wȳxz̄yw̄

    Dzx̄

    ihS

    wȳxz̄yx̄

    Dzw̄

    ihO

    wz̄xw̄yx̄zȳ

    ihO

    wz̄xw̄yȳzx̄

    ihO

    wz̄xx̄yw̄zȳ

    ihO

    wz̄xx̄yȳzw̄

    ihO

    wz̄xȳyw̄zx̄

    ihO

    wz̄xȳyx̄zw̄

    i

    3

    77777777777777777777777777777777777777775

    (47)

    [A] ⌘⇥↵ww̄xx̄yȳzz̄

    ⇤(48)

    [B] ⌘⇥�wxw̄x̄

    �wyw̄ȳ

    �wzw̄z̄

    �xyx̄ȳ

    �xzx̄z̄

    �yzȳz̄

    ⇤(49)

    [C] ⌘

    2

    666664

    �wxx̄w̄

    �wyȳw̄

    �wzz̄w̄

    �xyȳx̄

    �xzz̄x̄

    �yzz̄ȳ

    3

    777775(50)

    [D] ⌘

    2

    666664

    ↵wx̄xw̄yȳzz̄

    0 0 0 0 0

    0 ↵wȳyw̄xx̄zz̄

    0 0 0 0

    0 0 ↵wz̄zw̄xx̄yȳ

    0 0 0

    0 0 0 ↵xȳyx̄ww̄zz̄

    0 0

    0 0 0 0 ↵xz̄zx̄ww̄yȳ

    0

    0 0 0 0 0 ↵yz̄zȳww̄xx̄

    3

    777775(51)

    7

    2

    66666666666666666666666666666666666666664

    hDww̄

    Dxx̄

    Dyȳ

    Dzz̄

    ihQ

    ww̄xx̄

    Dyz̄

    Dzȳ

    ihQ

    ww̄xȳ

    Dyx̄

    Dzz̄

    ihQ

    ww̄xȳ

    Dyz̄

    Dzx̄

    ihQ

    ww̄xz̄

    Dyx̄

    Dzȳ

    ihQ

    ww̄xz̄

    Dyȳ

    Dzx̄

    ihQ

    wx̄xw̄

    Dyȳ

    Dzz̄

    ihQ

    wx̄xw̄

    Qyz̄zȳ

    ihQ

    wx̄xȳ

    Qyw̄zz̄

    ihQ

    wx̄xȳ

    Qyz̄zw̄

    ihS

    wx̄xz̄yw̄

    Dzȳ

    ihS

    wx̄xz̄yȳ

    Dzw̄

    ihS

    wȳxw̄yx̄

    Dzz̄

    ihS

    wȳxw̄yz̄

    Dzx̄

    ihS

    wȳxx̄yw̄

    Dzz̄

    ihS

    wȳxx̄yz̄

    Dzw̄

    ihS

    wȳxz̄yw̄

    Dzx̄

    ihS

    wȳxz̄yx̄

    Dzw̄

    ihO

    wz̄xw̄yx̄zȳ

    ihO

    wz̄xw̄yȳzx̄

    ihO

    wz̄xx̄yw̄zȳ

    ihO

    wz̄xx̄yȳzw̄

    ihO

    wz̄xȳyw̄zx̄

    ihO

    wz̄xȳyx̄zw̄

    i

    3

    77777777777777777777777777777777777777775

    (47)

    [A] ⌘⇥↵ww̄xx̄yȳzz̄

    ⇤(48)

    [B] ⌘⇥�wxw̄x̄

    �wyw̄ȳ

    �wzw̄z̄

    �xyx̄ȳ

    �xzx̄z̄

    �yzȳz̄

    ⇤(49)

    [C] ⌘

    2

    666664

    �wxx̄w̄

    �wyȳw̄

    �wzz̄w̄

    �xyȳx̄

    �xzz̄x̄

    �yzz̄ȳ

    3

    777775(50)

    [D] ⌘

    2

    666664

    ↵wx̄xw̄yȳzz̄

    0 0 0 0 0

    0 ↵wȳyw̄xx̄zz̄

    0 0 0 0

    0 0 ↵wz̄zw̄xx̄yȳ

    0 0 0

    0 0 0 ↵xȳyx̄ww̄zz̄

    0 0

    0 0 0 0 ↵xz̄zx̄ww̄yȳ

    0

    0 0 0 0 0 ↵yz̄zȳww̄xx̄

    3

    777775(51)

    7

    =

    VW

  • RESULTS

  • Quantitiesofinterest

    •  Particlespectra:•  Two-particlecumulants:•  Four-particlecumulants:

    n{2} ⌘Z

    d2p1d2p2 cos [n (�p1 � �p2)]

    d2N

    d2p1d2p2

    cn{4} =n{4}0{4}

    � 2✓n{2}0{0}

    ◆2, vn{4} = (�cn{4})1/4

    cn{2} =n{2}0{2}

    , vn{2} =p

    cn{2}

    n{4} ⌘Z

    d2p1d2p2d

    2p3d2p4 cos [n (�p1 + �p2 � �p3 � �p4)]

    d4N

    d2p1d2p2d2p3d2p4

    Q2s ⇠ 2 GeV2Bp = 4 GeV�2

    d

    n

    N

    d

    2p · · · ⇠

    Ze

    �(x2+x̄2)/2Bp···⌧

    1

    N

    c

    Tr⇥W (x)W †(x̄)

    ⇤· · ·

    �e

    ip·(x�x̄)···

  • Integratedellipticdlow

    T.Lappi,Phys.Lett.,B744:315–319,2015.T.Lappi,B.Schenke,S.Schlichting,andR.Venugopalan.JHEP,01:061,2016.

  • Integratedellipticdlow

    v2{2}

    v2{4}

    offlinetrkN

    0 100 200 300

    2v0.00

    0.05

    0.10 |>2}η∆{2, |2v2}η∆{2, |2v {4}2v

    = 5.02 TeVNNsCMS pPb

    < 5 GeV/cT

    ATLAS, 0.3 < p

    < 3 GeV/cT

    0.3 < p

    , 50-100% sub.|>2}η∆{2, |2v{4}2v

  • Differentialdlow

    (GeV/c)T

    p2 4

    2v

    0.0

    0.1

    0.2

    0.3 = 2.76 TeVNNsCMS PbPb

    < 150trkoffline N≤120

    |>2}η∆{2, |2v2}η∆{2, |2v

    {4}2v

    (GeV/c)T

    p2 4

    2v0.0

    0.1

    0.2

    0.3 = 5.02 TeVNNsCMS pPb >80 GeVPbT EΣATLAS,

    |>2}η∆{2, |2v{4}2v

    |>0.8}η∆{2, |2vALICE, 0-20%

    (GeV/c)T

    p2 4

    2v

    0.0

    0.1

    0.2

    0.3

    < 185trkoffline N≤150

    (GeV/c)T

    p2 4

    2v

    0.0

    0.1

    0.2

    0.3 (GeV/c)T

    p2 4

    2v

    0.0

    0.1

    0.2

    0.3

    < 220trkoffline N≤185

    (GeV/c)T

    p2 4

    2v

    0.0

    0.1

    0.2

    0.3 (GeV/c)T

    p2 4

    2v

    0.0

    0.1

    0.2

    0.3

    < 260trkoffline N≤220

    (GeV/c)T

    p2 4

    2v

    0.0

    0.1

    0.2

    0.3

    18≥ part = 4.4 TeV, NNNspPb Hydro v2{2}

    v2{4}

  • Symmetriccumulants

    A random event having v2 > hv2i will be more likely to have a v4 > hv4i.

    SC(m,n) =⌦v2mv

    2n

    ↵�⌦v2m

    ↵ ⌦v2n

  • Furtherthoughts…

  • Conclusions

    • DevelopedthemachinerytocomputecorrelatorsofsixandeightfundamentalWilsonlinesatdiniteNc• Modulomanycaveatsqualitativefeaturesofthemeasuredfour-particlecorrelationsareunderstoodbynon-linearclassicaldields

  • BACKUP

  • Symmetriccumulants

  • BackgroundII:Collectivity

    A.Adareetal.(PHENIXCollaboration)Phys.Rev.Lett.115,142301(2015)

    Schenke,VenugopalanNucl.Phys.A931(2014)1039-1044

    J.L.Nagle,etal.Phys.Rev.Lett.113,112301

    Bożek,BroniowskiPhysicsLettersB747(2015)135–138