coherent structures in cellular automata

11
Volume 147, number 7 PHYSICS LETFERS A 23 July 1990 Coherent structures in cellular automata A.S. Fokas, E. Papadopoulou and Y. Saridakis Department of Mathematics and Computer Science and Institute for Nonlinear Studies, Clarkson University, Potsdam, NY 13676, USA Received 7 September 1989; revised manuscript received 12 February 1990; accepted for publication 30 April 1990 Communicated by A.P. Fordy The filter cellular automaton (CA) introduced by Park, Steiglitz and Thurston is generalized to take values in an arbitrary finite group. Interesting examples include Zn, the cyclic group of order n, and Sn, the group of permutations of n elements. These new CA, can support coherent periodic structures, and can be analyzed by the theory recently developed by the authors. Furthermore, several multidimensional versions of the above CA are also presented. 1. Introduction Park et a!. [1] introduced a particular one-dimensional cellular automaton, called filter cellular automaton and showed numerically that it could support solitons. Namely, if one considers a given initial configuration as a collection of particles, then for most of the initial data considered in the numerical experiments of refs. [1,21, the particles emerging after interaction were identical to the original ones. Papatheodorou et al. [3] found an equivalent but more explicit rule than that of ref. [1], which they called fast rule theorem (FRT). Using the FRT several interesting analytical results were derived in refs. [3—5]. In deriving some of these re- sults one finds it useful to consider a particle as a collection of basic strings [4,51. Following the above developments we began a systematic study of filter cellular automata (CA). In order to describe the evolution of an arbitrary configuration, we have studied single particles [6] as well as the in- teraction of particles [7,8]. In particular we have shown that: (a) The interaction properties of the particles of CA are richer than the usual solitons: it is possible for two periodic particles not to interact solitonically but instead to recombine and form new periodic. Also, even if two particles interact solitonically, they may interact several times before they get separated with the faster particle moving in front of the slower one. (b) Arbitrary initial configurations will decompose as t-+ ~ into a number of periodic particles, and into a number of certain new periodic coherent structures which are generalized breathers [8]. (c) There exists a difference equation formulation of the above CA [8]. In this Letter we show that the filter CA introduced in ref. [1] can be generalized substantially, without affecting its basic properties. Namely, while the CA of ref. [1] is formulated only in terms of the elements 0 and 1, the CA introduced here is formulated in terms of the elements of an arbitrary finite group. Interesting examples include 74, (the cyclic group of order n) and S,, (the group of permutations of n elements). Fur- thermore, we prove that the theory developed in refs. [6—8],suitably generalized, is also applicable to the above CA. In particular we compute the period of a periodic particle, and show that if premature splitting does not occur during the collision of two periodic particles, then their interaction is solitonic (see ref. [8] for the notion of premature splitting). It is quite interesting that, using the above ideas, one is able to construct certain multidimensional CA sup- porting coherent structures. However, these CA have certain limitations, in particular there is minimal coupling 0375-9601/90/S 03.50 © 1990 Elsevier Science Publishers B.V. (North-Holland) 369

Upload: as-fokas

Post on 21-Jun-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Coherent structures in cellular automata

Volume147, number7 PHYSICSLETFERSA 23 July 1990

Coherentstructuresin cellularautomata

A.S. Fokas,E. PapadopoulouandY. SaridakisDepartmentofMathematicsandComputerScienceandInstitutefor NonlinearStudies,Clarkson University,Potsdam,NY13676, USA

Received7 September1989; revisedmanuscriptreceived12 February1990; acceptedfor publication30April 1990Communicatedby A.P. Fordy

Thefilter cellularautomaton(CA) introducedby Park,SteiglitzandThurstonis generalizedto takevaluesin anarbitraryfinitegroup. InterestingexamplesincludeZn, thecyclic groupof ordern, andSn, thegroupof permutationsof n elements.ThesenewCA, cansupportcoherentperiodicstructures,andcanbeanalyzedby thetheoryrecentlydevelopedby theauthors.Furthermore,severalmultidimensionalversionsoftheaboveCA arealsopresented.

1. Introduction

Parket a!. [1] introduceda particularone-dimensionalcellularautomaton,calledfilter cellularautomatonandshowednumericallythat it could supportsolitons.Namely, if oneconsidersa given initial configurationasa collectionof particles,thenfor mostof the initial dataconsideredin the numericalexperimentsof refs.[1,21, the particlesemergingafter interactionwere identical to the original ones.Papatheodorouet al. [3]foundan equivalentbut moreexplicit rule than thatof ref. [1], which they calledfast rule theorem(FRT).Usingthe FRT severalinterestinganalyticalresultswerederivedin refs. [3—5].In derivingsomeof thesere-sultsone finds it usefulto considera particleas a collectionof basicstrings [4,51.

Following the abovedevelopmentswe begana systematicstudyof filter cellularautomata(CA). In order

to describethe evolutionof an arbitraryconfiguration,we havestudiedsingleparticles[6] aswell asthe in-teractionof particles[7,8]. In particularwe haveshownthat: (a) Theinteractionpropertiesof the particlesof CA arericherthan theusualsolitons: it is possiblefor two periodicparticlesnot to interactsolitonicallybutinsteadto recombineandform newperiodic.Also, evenif two particlesinteractsolitonically,theymayinteractseveraltimesbeforetheygetseparatedwith the fasterparticlemovingin frontof theslowerone. (b) Arbitraryinitial configurationswill decomposeas t-+ ~ intoa numberof periodicparticles,andinto a numberof certainnewperiodic coherentstructureswhich aregeneralizedbreathers[8]. (c) Thereexists a differenceequationformulation of the aboveCA [8].

In this Letterwe show that the filter CA introducedin ref. [1] canbe generalizedsubstantially,withoutaffectingits basicproperties.Namely,while the CA of ref. [1] is formulatedonly in termsof the elements0and1, theCA introducedhereis formulatedin termsof the elementsof anarbitrary finite group.Interestingexamplesinclude 74, (the cyclic groupof order n) andS,, (the groupof permutationsof n elements).Fur-thermore,weprovethatthetheorydevelopedin refs. [6—8],suitablygeneralized,isalsoapplicableto theaboveCA. In particularwecomputethe periodof a periodicparticle,andshow that if prematuresplittingdoesnotoccurduringthecollisionof two periodicparticles,thentheir interactionis solitonic(seeref. [8] for thenotionof prematuresplitting).

It is quite interestingthat, usingtheaboveideas,one is ableto constructcertainmultidimensionalCA sup-portingcoherentstructures.However,theseCAhavecertainlimitations,inparticularthereisminimal coupling

0375-9601/90/S03.50© 1990 — ElsevierSciencePublishersB.V. (North-Holland) 369

Page 2: Coherent structures in cellular automata

Volume 147. number7 PHYSICSLETTERSA 23 July 1990

between the space dimensions. More general multidimensional CA will be presented elsewhere.

2. A soliton cellularautomaton

Thefilter CA introducedin ref. [1] consistsof a collectionof zerosor ones,which evolve in timeaccordingto the following rule: let

at ~ L<oo, (2.1)

be the stateat time t, wherea~=0or 1 for all i anda~= 1, ak = 1 are the first andthe last I respectivelyina’. Thenthe next stateis calculated,sequentiallyfrom the left to right, as follows:

a~=l, seven,

=0, soddorzero, (2.2)

where

s~~ a~iJ+~ a~J_—r j=O

(oneassumesthat a = 0 for i far enoughto theleft). In the abover is a fixed integercalledthe radius andr>~2. For example,if r= 2 andat is given as below,thena’~’is asfollows:

a’: •~S0l 10101101110000001 io•••a’~’: •~o l000lOOlOlOl00000lOlOSS•. (2.3)

The FRI consistsof thefollowing four steps:(i) Placethefirst I in the box. (ii) Putboxesevery r+ 1 bits,unlessthereexist at leastr+ 1 0’s aftera given box; in thiscaseputa box at the first available 1 afterthe 0’s.(iii) Changethe boxesto their complementsandleave the restunchanged.(iv) Displaceeverythingby r tothe left. As an illustration of the FRT consideragainthe exampleof (2.3). a’ is givenby

at: S..0~J10~01E0lJl0I~30000i10E~J..S,

which implies the samea’~’as (2.3).An arbitraryconfigurationis collectionof particles anda particleis a collectionof basic strings (BS) [8].

Forexample, ‘aboveconsistsof two particlesA andB separatedby five zeros;A consistsof fourbasicstringsA’ = 110, A2=101, A3 101, A4 110, while B consistsof the basicstring 110.

Wehavefound [6—81thefollowingconvenientmathematicalcharacterizationof the FRT. Let B1denotethe

BS obtainedfrom B by leaving the part of B up to the jth 1 unchangedandby replacingthe remainingpartof B with zeros.Let “exclusiveor” denotetheoperation~ definedby b~0= b, b~1=b, whereb is 0 or 1 andbis I or 0. Thenif

at: AIA2...ALAOOBIB2...BLBOO...,

then

a’~’: A(AIA2...ALA)A~OB~(BIB2...BLH)B~O...,

where0 denotesthe null BS. Usingthe abovemathematicalexpressionof the FRT we haveshownthat: (i)If a singleparticleA is periodicthen its periodequalsthe sum of the l’s in the BSs A’, A’~A2,A2~A3AL_I SAL, AL. (A particleceasesto be periodic in two cases,namelywhensplitting occursor whena BS atthe beginningor at the end of the particledisappears[61.) (ii) Theinteractionof two particlesis so!itonic,providedthat prematuresplittingdoesnot occur [8].

370

Page 3: Coherent structures in cellular automata

Volume 147, number7 PHYSICSLETTERSA 23 July 1990

In what follows we generalizethe aboveresultsfor a filter CA with elementsbelongingto any finite group.As in refs. [6,8] we find it convenientto usea movingframeof referenceby omittingthe step (iv) of theFRT.

3. A generalizedsoliton cellular automaton

Definition 3.1. Let G= {0, g,, ... , g~}be a finite groupwith its associatedcompositiondenotedby ®. Let0 bethe identity element,i.e. 0®g=g®0=g, andlet g be the inverseof g, i.e. gøg=g®g=0.

Definition 3.2. (A generalizedsoliton CA.) Let 0 by any finite group,and let

a’: ~ L<cc, (3.1)

0 anda~�0.Then,

a~’= 0, if all factorsof Skare0,

Sk®C®~~+r, otherwise, (3.2)

whereSk= ~ ‘(aj~,~®a5) andthe carryc:=a~÷~wheneverall factorsof Sk are0; otherwisec remainsun-changed(it is assumedthat all factorsof Sk, k—p — ~, are all zero.)

The aboverule providesa generalizationof the sumrule (2.2).Remark3.1. If 0 = (®, 74,) with Zn= {0, 1, ... , n—i) and ® denotingtheadditionmodulusn thentheabove

sumrule is simplified: sinceG is Abelian

r r—IC, — t+l~C,~ ~-t‘-‘k ak...J¼Y ak+J

j=O®

and

ifallfactorsofSkareO,

= (Sk®d~+r®c), otherwise, (3.4)

where c is as in definition 3.1.Furthermore,due to the propertiesof the modulusadditionoperationthe aboverule canalsobewritten as

r r—1— t+, -t

k ak_f a,~,.1,

j=1 j~O

a~7’= 0, if all factorsof Sk are0,

(Sk+d’k+r+C)mOdfl, otherwise, (3.6)

wherec is as in definition 3.1.Definition 3.3. A basicstring (BS) B is a collectionof r+ 1 elementsof 0. B1 denotesthe BS obtainedvia

the followingoperation:replacethe elementsof B up to the ith nonidentity(nonzero)elementwith their in-verses,andreplacetheremainingpart of B with 0’s. For example,let B=g,0g2g3(i.e. r= 3); then B, =g,000,

B2=g10g20,B3=,~,0g~3.Definition3.4. (An alternativedefinitionofa generalizedCA.) Let 0 beanyfinite group.Thena generalized

soliton CA is definedby the following evolution. If

a’: AIA2...ALAOO...OBIB2...BLBOO...0 FIF2...FLFOO..., (3.7)

371

Page 4: Coherent structures in cellular automata

Volume 147, number7 PHYSICSLETTERSA 23 July 1990

where the first elements of A’, B’, ... , F’, ... are nonzero, and ALA, BLB, ..., FLF are differentfrom 0 andarerr~

different from a trivial basic string T= gO—0, then

a’~’: ~ (3.8)

In the above0 denotesthenull BS (i.e. r+ 1 consecutive 0’s). The above definition provides a generalizationof the FRT. It canbe shownthat the CA definedby definitions3.2 and3.4 areequivalent,providedthat theconfigurationobtainedby definition3.4 is shifted by r to the right at eachtime step.

Example3.1. Let G=14f0, 1, 2, 3), i.e. 1=3, 2=2, ~=l. Consider the evolutionof the singleparticle(r=3) 0102311010,consistingof the two BSs A’ = 1023, A2= 1101. Using a moving framewe find

10231101002301013000000301213020000001223021

002233210300000233010320000033030322

030313221000000310221100000010231101

Example3.2. As an illustration of the sumrule on a non-Abeliangroup we considerS3, the groupof per-

mutationof threeelements.We choosethe following representationof S3:

(1 2 3\ (1 2 3\ (1 2 3\2 3)’ 0~~2 ~ i)’ 02(\3 1 2)’

/1 2 3’\ (1 2 3\ (1 2 3a3=~2 1 3)’ ~ 3 2)’ 05=~3 2 1

wherea,means1 -.~2,2-+3, 3—+ 1 and0 denotestheidentityelement.Using (aJ•®ak)(y) = cr~(ak(Y)), for example

1! 2 3\(l 2 3\ /1 2 3\3 1 3)~l 3

we find

0 a, 02 a3 04 05

0 0 01 02 03 ~

0~ 0~ 02 0 04 05 03

02 ~2 0 a, a~ 03 04

03 a~ 0~ 04 0 a2 a,04 04 03 0~ a~ 0 a2a5 0~ 04 03 02 a, 0

Thus

0~=02, ~ =a3, 04 04, 05=05

372

Page 5: Coherent structures in cellular automata

Volume 147, number7 PHYSICSLETTERSA 23 July 1990

Considernow the following statea’ andr=2,

a’=...000o,o2a3000...,a~,=o1,a’1=o2, a’2=a3,

S_2=0®O®0®O=Owithallelements0 a~=0andc:=aG=o,,

S_,=0®0®0®d1=d, a~11=(S_,®c®aç)=(a,®a,®a

2)=a2,

So=0®ã,®a2®cJ2=d1 ~. a~=(S0®c®d~)=(ã1®o,®ã3)=o3,

S1=o2®ã2®a3®d3=0 =‘ a~~’=(0®o,O)=d1=o2,

S2=o3®ã3®o2®O=a2 ~. a~~’=(o2®o1®O)=O=0,

S3=a2®0®0®0=o2 a’j’’=(o2®o1®0)=0=0,

S4=0ØO®0®O=Owithallelements0 =. a’~’ =Oandc=0.

Hence

a’: 000 0,0203000a’~: 00203020 00

or consideringthe movingframeof reference

a’: 0000102030 00a’~’: 0000 02030200

If we continuethe evolutionof the aboveparticlewe find that it is periodicwith p=6, i.e.

a’: 0000,a2a3000000a’~’: 0000 0203020 0 0 0 0a’~

2: 0000003020,0000a’~3: 000000020,03000a’~4: 0000 0 0 0 0~03010 0a’~5: 0000 0 0 0 0 0302020a’~6: 0000 0 0 0 0 0 010203

Theorem 3.1. (Evolutionof singleparticles.)Considerthe particle

t=0: OAIA2...ALO, (39)

consistingof L basicstringsA’, ... , AL with elementsin0. Let l~,I, ‘L bethenumberof non-zeroelementsin the following BSs,

AI,Al®A2,A2®A3,...,AL_I®AL,A~~, (3.10)

whereif A containselementsa, A containselementsa. If theparticle (3.10) is periodic(i.e. if neithersplittingnor loss of a BS occurs),then its evolutionis givenby

1k]

t=10+l1 + ... +lk_I +i,

0<~~<’k• 0—0 (Ak®Ak ).®A”Ø(A”~’ ...AL®AI ... Ak). (3.11)In particularat

~k+I]

t=lo+lI+...+lk: ~ (3.12)

andat

371

Page 6: Coherent structures in cellular automata

Volume 147, number7 PHYSICSLETTERSA 23 July 1990

[L+ Iit=p~lo+l,+...lL: 0_OAIA2...AL. (3.13)

[kiIn the above0—0 denotes k zero BSs.

Proof

t=i, 0<i~<l0: A,I®(AIA

2...ALO).

Since A/0 =A’ andA’®A’ = 0, it follows that

tl~: OAI®(A2...AL®Al),

t=10+i: 0(Al®A

2),®Al®(A2...ALOA1).

Since (A’®A2)l,=A’®A2=A2®A’, it follows that

t=10+l,: 00A

2®(A3A4...ALOAIA2), etc.

Remark3.2. In deriving the aboveresult we haveusedthat ® is associative,andthatA®A= 0, thusweneedan arbitrary (andnot necessarilyAbelian) group structure.

Consideragainexample3.1: A’=l023, A’=(302l)®(llOl)=0122, A2=3303,thusp=9.Theorem3.2. (Interactionof periodicparticles.)Considertwo periodicparticlesA andB which begin in-

teractingat t = 1. If prematuresplitting doesnot occur (i.e. if splittingdoesnot occur in t=p, wherep is theperiodof theparticleon theleft), thenthe interactionof A, B is solitonic. (Seerefs. [6—8]for the definitionsof splittingandinteractionof particles.)

Proof Supposethat A andB are separatedby r+ 1 + m zerosat t = 0, andthat they begintheir collision att= 1:

t=0 A OOBO

t=l A~®A A~ OB~®B~

tPA 0 0 A~®(oB~®B~) A

tPA+l 0 0 OB~®B~ A~®A A~

In the above0 denotesm zerosandA denotesthe part of the BS A up to r+ 1— m position.Remark3.3. In a similar way it is straightforwardto generalizeall the resultsobtainedin refs. [6—8].Example3.3. As an exampleof solitonic interactionof two particlesconsideragainthe groupdefinedin

example3.2 andthe particlesA=cr,0o4 andB=a,o2a3with r=2. Their interactionis shown in fig. 1.

4. Two-dimensionalsoliton cellular automata

Usingtheaboveideasit is possibletoconstructcertainmultidimensionalCA thatcansupportcoherentstruc-tures.For simplicity we considertwo spacedimensions,the extensionto arbitrarynumberof dimensionsisstraightforward.In what follows we presenttwo classesof two-dimensional(2-D) CA.

4.1. Matrix valued2-D CA

To constructeda 2-D CA, weconsiderthenewcellularautomatonintroducedin definitions3.2 and3.4 andwe allow a givensite to takevaluesin anarbitrarymatrix.The resulting2-D CA hasthe limitation that it can

374

Page 7: Coherent structures in cellular automata

Volume147, number7 PHYSICSLETTERSA 23 July 1990

t=0 a,0a40 000 a,a2a3

1=1 0 0a4c200 0 0 a2a3a2

1=2 0 00 a20a40 0 0 a3a2a,t=3 00000o,u,000a2a,a3t=4 0 00 a,0 t740 a2a3a30 a4t=5 0 00 0 0 a4a2a2a3a50a4a21=6 0 a2 a2 ~Tj a50 0 a20 a4t=7 Oa2a,a30000a4a1t=8 Oa,a3a,0000a,0a4

1=9 Oa3a,a200000a4a2t=10 Oa,a2a300000a20a4t=ll 0 a2a3a20 0 0 0 0 Oa4a,t=12 Ocr3a2a,000000ci,0a41=13 Oa2a,a30000000a4a2t=14 0 a,a3a20 000000 a20a4t=15 a3a,a20 00 0 00 0 Oa4a,t=16 a,a2a300000000 a,0a4

Fig. I.

move only in a specificdirection (sayin the x-direction) andthereis minimal couplingbetweenthe x- andy-directions.The theorydevelopedin section3 is sufficientto coverthis 2-D CA.

Example4.1. (A periodicparticle.) Let r= 2, 0 = Mat3 2(Z2),theadditivegroupof 3 x 2 matriceswith ele-mentsin 74. Let the groupoperationbe the matrix additionmodulo2. The configuration

100010110110000001 111101010011001011

canbethoughtof asa singleparticle,consistingof the two BSs A = a,a2a3,B = b,b2b3,where

a,=10, a2=0, a3=10, b,=1l, b2=0l, b3=a3.00 01 11 1101 11 00 10

Then

A,=a,00, A2=A, AØB=Ol 0100, (A®B),=OlOO, (A®B)2=A®B.111100 11011000 01

Hence,the evolutionof the aboveparticleis givenby

t=0 100010110110000001111101010011001011

t=l 0000lOOlOllOl00000000111110100000000110110110100

t=2 00010100100010001111000000010001100001001 1

375

Page 8: Coherent structures in cellular automata

Volume 147, number7 PHYSICSLETTERSA 23 July 1990

1=3 000100110010010011001100011100100000001101

1=4 000011011001010000001111011111000000001011011000

t=5 00000110100100110000110100110011

0000101101100000

1=6 001010000011010001000000111100110100000010

1=7 001000101101100000000111110100010011001011

In particular,theaboveparticleis periodicwith periodequalto thesumof thenonzero“elements”of A, A®B,B, i.e. p=2+2+3=7.

Example4.2. (Interactionof two periodicparticles.)An exampleof a soliton collision is givenby (comparethe statesat 1=0 and t= 10, r=2)

t=0 100011000000001101001 l000l0000000000lOl 101001000000000101101

1=1 000011100000000001001100000lll00000000lOl 1000000lOOl00000000l 10110

t=2 OOl000ll00000000llOlOOll000l000000llOOlO000lOOl00000000llOll

1=3 0000lll0000000llOl000000000lll00000000lOllOO0000lOOl000000lOllOlOO

t=4 OOl000llOOlll00000llOOll000l0000llll000l000lOOl000lOOlOlOOlO

t=5 0000lllOlllOl000lll00000000lllOOll00000lllOO0000lOOllOOl0000lOOlOO

376

Page 9: Coherent structures in cellular automata

Volume 147, number7 PHYSICSLETTERSA 23 July 1990

t=6 OOlOllOll00000l000ll001100100000001100010001 1011000000010010

1=7 OOllOl0000000000lll0000000101 l000000000lllOOOOlOllOl00000000lOOlOO

t=8 0001001 100000000100011001011000000000011000100110l1000000000010010

1=9 0000llOl0000000000lll000001 lOOl000000000000l 11000001101 10000000000100100

1=10 OOllOl000000000000l000ll00001011000000000011000100101 lOl00000000000lOOlO

4.2. A direct product ofI-D CA

Givena group0, andtwo radii r~and ry, we constructa 2-D CAas follows: First we use 0, r~(see definitions3.2, 3.4) to evolve a given configuration in the x-direction andthen we use0, r,, to evolvethe resulting con-figurationin the y-direction. It turns out [9] that this 2-D CA not only cansupportcoherentstructures,butit alsoexhibits interestingnewfeaturesnot found in the 1 -D CA thatgeneratedit. However,the theoreticaltools introducedby the authors,suitablyextended,arequite effectivefor the analysisof the multidimensionalCA. For example,thebasicstringB~of definition 3.3 is now replacedby a suitablematrix B = B~®B1, whereB-’, B~’arematricesassociatedwith the evolutionin the x- andy-directions.From this it follows that this CAis merely a “direct problem” of two I -D CA. The analysisof theseCA is presentedin ref. [9].

In examples4.3.—4.5we takeG=74, r~=3,r~=2.Example4.3. (A periodicparticle.) W considerthe evolutionof

B°=111000111

Theperiodof 111 is P~=3 while theperiodof 101 is P,= 2. Thetheory developedin ref. [9] predictsthatB°is a periodicparticlewith periodP~P,,= 6. This canbe verified by following the evolutionof B°:

B’=llOl, B2=lOll, B3=lll, B4=llOl, B5=lOll, B6=B°.1101 0000 111 0000 lOll

lOll 1101

It is possiblefor a particleto evolveto a newparticleF, whereF is a periodicparticle,without splittingorloosinga basicstring.

Example4.4. TheparticleB°= A evolvesto B4= F, whereF is a periodicparticle,

377

Page 10: Coherent structures in cellular automata

Volume 147, number7 PHYSICSLETTERSA 23July 1990

A=lOll, F=l1.1111 111111 11

Example4.5. (Solitonic interactionof two periodicparticles.)Fig. 2 showsthe solitonic interactionof theperiodicparticles~fl and ~ At 1=2 a solitonicinteractionbeginswhich lastsfor six stepsaspredictedbythe theory in ref. [9] (the periodof the slowerparticleis P~P~=6).At t=8 the particleshaveshifted II bitsin the x-directionand 13 bits in the y-direction (againwe use a movingframeof reference,i.e. eachconfig-

1=0: 10110000011110000000000 1=6: 00000000000000000000000lOll00000lIll0000000000 0000000000000000000000000000000000000000000000 00000000000000000000000

000000000000000000000001=1: 00000000000000000000000 00000000000000000000000

00111000001111000000000 0000000000000000000000000000000000000000000000 00000000000000000000000OO1II00000I11I000000000 00000000000000000000000

000000000000000000000001=2: 00000000000000000000000 00000000101101001011000

00000000000000000000000 00000000101101001011000

0000000000000000000000000011010000111100000000 1=7: 00000000000000000000000

00011010000111100000000 0000000000000000000000000000000000000000000000

1=3: 00000000000000000000000 0000000000000000000000000000000000000000000000 00000000000000000000000

00000000000000000000000 0000000000000000000000000000000000000000000000 0000000000000000000000000001011000011110000000 0000000000000000000000000000000000000000000000 0000000000000000000000000001011000011110000000 00000000000000000000000

000000000011110000111001=4: 00000000000000000000000 00000000000000000000000

00000000000000000000000 000000000011110000111000000000000000000000000000000000000000000000000 1=8: 0000000000000000000000000000000000000000000000 00000000000000000000000

00000000000000000000000 0000000000000000000000000000011100001111000000 00000000000000000000000000000lll0000llll000000 00000000000000000000000

000000000000000000000001=5: 00000000000000000000000 00000000000000000000000

00000000000000000000000 0000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000 0000000000011110000110100000001101001011010000 000000000001111000011010000000000000000000000000000001 10100101 1010000

Fig. 2.

378

Page 11: Coherent structures in cellular automata

Volume 147, number7 PHYSICSLETTERSA 23 July 1990

uration is displacedby r~bits to the right and by r~bits downwardsat eachtime step).

Acknowledgement

It is our pleasureto thank Vas Papageorgioufor many importantdiscussions,andin particularfor his sug-gestionregardingnon-Abeliangroups.Thiswork waspartiallysupportedby theOfficeof NavalResearchunderGrantNumberN0001 4-88K-0447,NationalScienceFoundationunderGrantNumberDMS-88O347I, andAirForceOffice of Scientific ResearchunderGrantNumber87-0310and 88-0073.

References

[1] J.K.Park,K. SteiglitzandW.P.Thurston,PhysicaD 19 (1976)423.(2] K. Steiglitz,I. KamalandA. Watson,IEEETrans.Comput.37 (1988) 138.[3] T.S.Papatheodorou,MJ. Ablowitz andY.G.Saridakis,Stud.AppI. Math.79 (1988) 173.[4] T.S. PapatheodorouandA.S. Fokas,Stud.AppI. Math.80 (1989) 165.[5] C.H. Goldberg,ComplexSyst.2 (1988)91.[6] A.S. Fokas,E.P.PapadopoulouandY.G. Saridakis,Particlesin solitoncellularautomata,preprint,ClarksonUniversity, INS 107

(1989),to bepublished.[7] A.S. Fokas,E.P.Papadopoulou,Y.G. SaridakisandM.J. Ablowitz,Stud.Appi. Math.81(1989) 153.[8] A.S. Fokas,E.P.PapadopoulouandY.G. Saridakis,PhysicaD41(1990)297.[9] AS. Fokas,E.P.PapadopoulouandY.G.Saridakis,Coherentstructuresin multidimensionalcellularautomata,preprint,Clarkson

University,INS 128 (1989).

379