coherence and decay within bose-einstein condensates – beyond bogoliubov · 2005. 2. 27. ·...

18
Coherence and decay within Coherence and decay within Bose Bose - - Einstein condensates Einstein condensates beyond beyond Bogoliubov Bogoliubov N. Katz N. Katz 1 1 , E. Rowen , E. Rowen 1 1 , R. Pugatch , R. Pugatch 1 1 , N. Bar , N. Bar - - gill gill 1 1 and and N. Davidson N. Davidson 1 1 , , I. Mazets I. Mazets 2 2 and and G. Kurizki G. Kurizki 2 2 ( ( R. R. Ozeri Ozeri and J. and J. Steinhauer Steinhauer ) ) 1. Department of Physics of Complex Systems 1. Department of Physics of Complex Systems , , 2. Department of Chemical Physics, 2. Department of Chemical Physics, Weizmann Weizmann Institute of Science, Institute of Science, Rehovot Rehovot 76100, Israel 76100, Israel For more information For more information see my webpage: see my webpage: www.weizmann.ac.il/home/katzn www.weizmann.ac.il/home/katzn

Upload: others

Post on 31-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Coherence and decay within Coherence and decay within BoseBose--Einstein condensates Einstein condensates ––

    beyond beyond BogoliubovBogoliubov

    N. KatzN. Katz11, E. Rowen, E. Rowen11, R. Pugatch, R. Pugatch11, N. Bar, N. Bar--gillgill11 and and N. DavidsonN. Davidson11, ,

    I. MazetsI. Mazets22 and and G. KurizkiG. Kurizki22

    ((R. R. OzeriOzeri and J. and J. SteinhauerSteinhauer))

    1. Department of Physics of Complex Systems1. Department of Physics of Complex Systems,,2. Department of Chemical Physics,2. Department of Chemical Physics,

    WeizmannWeizmann Institute of Science, Institute of Science, RehovotRehovot 76100, Israel76100, Israel

    For more information For more information –– see my webpage: see my webpage: www.weizmann.ac.il/home/katznwww.weizmann.ac.il/home/katzn

  • OutlineOutline

    • Weak Bogoliubov excitationsFringe spectroscopy

    • Strong Excitations Spectrum of BEC oscillating in a latticeTime domain – suppression of dephasingDecay of these states

    • Probing many-body correlation times (theory)

  • Experimental setExperimental set--upup

    • 87Rb atoms in the ground state.

    • N0 = 1-5x10 5 atoms.

    • T ~ 0.3 Tc ~ 100 nK

    • ~95% of atoms in the ground state

    • Chemical potential µ/h = 2 – 4 kHz

    2,2, =FmF

  • Time of flight (absorption imaging)Time of flight (absorption imaging)

    z (mm)

    r (m

    m)

    optical density - no background

    100 200 300 400 500 600

    20

    40

    60

    80

    100

    120

    0.7 0.8 0.9 1 1.1 1.2 1.3 1.4-0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3Z direction

    z [mm]

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-0.1

    0

    0.1

    0.2

    0.3Z direction

    z [mm]

    optic

    al d

    ensi

    ty (a

    .u.)

    T>Tc T=Tc T

  • TOF image of an excited condensate

    ωω +o oω

    pk θ pk

    ⎟⎠⎞

    ⎜⎝⎛=2

    sin2 θpkk

    Bragg SpectroscopyBragg Spectroscopy

    J. Stenger et al., PRL 82, 4569 (1999) (Ketterle); M. Kozuma et al., PRL 82, 871(1999) (Phillips); J. Steinhauer et al., PRL 88, 120407 (2002) (Davidson).

  • BogoliubovBogoliubov spectrumspectrum

    ( )gnkkk 200 += εεε

    k(ξ−1)

    E(µ)

    mk

    2

    2

    1−ξgn=µ

    ck

    ckk =εPhonon regimelow k limit:

    µεε += 0kk

    Free particle high k limit: regime

    0 2 4 6 8 10 12 140

    2

    4

    6

    8

    10

    12

    14

    2πR-1 ξ-1

    ω/(2

    π) (k

    Hz)

    k (µm-1)J. Steinhauer et al., PRL 88, 120407 (2002) (Davidson.

  • Excitation Spectrum: a roadmapExcitation Spectrum: a roadmap

    0 2 4 6 8 10 12 140

    2

    4

    6

    8

    10

    12

    14

    2πR-1 ξ-1

    ω/(2

    π) (k

    Hz)

    k (µm-1)

  • Can possibly observe singleparticle excitations!

    Fringe visibility: a spectroscopic toolFringe visibility: a spectroscopic tool

    −300 −200 −100 0 100 200 3000

    0.05

    0.1

    0.15

    0.2

    0.25

    ω/2π (Hz)

    frin

    ge v

    isib

    ility

    Fringe visibility

    N. Katz, R.Ozeri, J. Steinhauer, N. Davidson, C. Tozzo and F. Dalfovo, PRL 93, 220403 (2004).

    Heterodyne detection – matter wave interference

    counting visibility

  • y (m

    m)

    (a)

    −0.2 0 0.2

    −0.3

    −0.2

    −0.1

    0

    0.1

    0.2

    0.3

    (b)

    −0.2 0 0.2

    −0.3

    −0.2

    −0.1

    0

    0.1

    0.2

    0.3

    z (mm)

    y (m

    m)

    (c)

    −0.2 0 0.2

    −0.3

    −0.2

    −0.1

    0

    0.1

    0.2

    0.3

    z (mm)

    (d)

    −0.2 0 0.2

    −0.3

    −0.2

    −0.1

    0

    0.1

    0.2

    0.3

    π/6 π/2

    ~π ~12π

    Strong excitations at high Strong excitations at high momentamomenta

    N. Katz, R. Ozeri, E. Rowen, E. Gershnabel and N. Davidson, Phys. Rev. A 70, 033615 (2004)

  • Strong excitation Strong excitation –– splitting in spectrumsplitting in spectrum

    −2kL 0 2kL

    pumpprobe

    E. Rowen, N. Katz, R. Ozeri, E. Gershnabel and N. Davidson, cond-mat/0402225 (2004).time (µsec) frequency (kHz)

    For a dressed state view of atomicmode mixing –see Eitan Rowen’s poster (Mo-15)

  • Dynamics: Dynamics: decoherencedecoherence vs. vs. dephasingdephasing

    y (m

    m)

    x (mm)

    (a)

    −0.3 −0.2 −0.1 0 0.1 0.2 0.3

    −0.3

    −0.2

    −0.1

    0

    0.1

    0.2

    0.3

    Decoherence+dephasingMomentum measurement

    Tota

    l mom

    entu

    mEx

    cita

    tion

    frac

    tion

    Only dephasingAgrees with Gross-Pitaevskii!!

    Population measurement:

    0 200 400 600

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    exci

    ted

    popu

    latio

    n

    time (µsec)

    Exci

    tatio

    n fr

    actio

    n

    N. Katz, R. Ozeri, E. Rowen, E. Gershnabel and N. Davidson, Phys. Rev. A 70, 033615 (2004)

  • Suppression of mean field broadeningSuppression of mean field broadening

    Detuning (kHz)

    Gain mean-field

    Pay mean-field

    0.4 0.5 0.6 0.7 0.8 0.9 11

    1.5

    2

    2.5

    3

    3.5

    lattice momentum

    E/E

    r

    0.4 0.5 0.6 0.7 0.8 0.9 10

    0.5

    1

    1.5

    2

    2.5

    lattice momentum

    E/E

    r

    Weak Strong

    Suppression of mean field Suppression of mean field and Doppler broadeningand Doppler broadening

    E0k E0k

    Exci

    ted

    popu

    latio

    nResult:Coherence enhanced by more than a factor of 10.

  • Collisions in theCollisions in thelatticelattice

    (a)

    kz/k

    L

    k y/k

    L

    −2 −1 0 1 2

    −2

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    (b)

    kz/k

    L

    −2 −1 0 1 2

    experiment

    Bloch band model

    Stochastic GPE simulation

    Coupling to a nontrival continuum…

    E. Rowen, N. Katz, R. Ozeri, E. Gershnabel and N. Davidson, cond-mat/0402225 (2004).

    A.A. Norie, R. J Ballagh and C.W. Gardiner, cond-mat/0403378

  • Probing correlations Probing correlations -- RamanRamanScheme:

    • Excite off resonance (positive detuning ∆) Raman momentum states (q),• Monitor the decay products of these states as a function of time

    Raman beams

    Off-resonanceRaman excitation

    Decay products

    I. Mazets, G. Kurizki, N. Katz and N. Davidson, cond-mat/0411301

  • Zeno effects in BECZeno effects in BEC

    0 3 6 9 12mtê—

    0

    0.5

    1

    1.5

    GHt

    LêG

    GR

    t corr0.2=∆

    µ

    66.0=∆µ

    07.0=∆µ

  • Observing Zeno effectsObserving Zeno effects

    0 0.1 0.2 0.3 0.4t HmsL

    0

    0.01

    0.02

    0.03

    PHt

    L

    Pair production rate

    Golden Rule result

    Modulated frequency

  • Summary Summary -- physics beyond physics beyond BogoliubovBogoliubov

    • Heterodyne detection of few excitations

    • Strong excitations – spectra and decay

    • Many-body correlation time for Raman

    excitations

  • Dynamical instabilities (simulations)Dynamical instabilities (simulations)What happens when the Bragg pulse is at intermediate intensity

    (comparable to the mean-field)?

    1 2 3 4 5 6 7 8

    1950

    2000

    2050

    2100

    2150

    2200

    2250

    2300

    2350

    24001.5 2 2.5 3 3.5 4 4.5 5

    1950

    2000

    2050

    2100

    2150

    2200

    2250

    2300

    2350

    2400

    2/µ≈Ω µ2≈Ω

    A. Vardi and J. R. Anglin, Phys. Rev. Lett. 86, 568 (2001).