coen 3137 - experiment no. 7 - synchronous binary counters

Upload: jocansino4496

Post on 03-Jun-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 COEN 3137 - Experiment No. 7 - Synchronous Binary Counters

    1/19

    COEN 3137Advanced Logic Circuits Design

    EXPERIMENT NO.

    7SYNCHRONOUS BINARY COUNTERS

    Group #N (your g roup number)(list all team members and affix signatures)

    Team Members Signature

    Republic of the Philippines

    POLYTECHNIC UNIVERSITY OF THE PHILIPPINES

    COLLEGE OF ENGINEERING

    COMPUTER ENGINEERING DEPARTMENT

  • 8/12/2019 COEN 3137 - Experiment No. 7 - Synchronous Binary Counters

    2/19

    LAB 7 : Synchronous Binary Counters

    Duration: 3 Hours

    OBJECTIVES:a. ) To construct a sequential circuit using 74LS76 ICs.b. ) To verify the state table of the experimental circuit.c.) To demonstrate the behavior of the circuit.d.) To design and implement a sequential circuit 74LS76 ICs.e.) To verify the state diagram to ensure that the circuit will work in accordancewith the design problem.

    BASIC INFORMATION:A synchronous sequential circuit employ signals that affect the memoryelements only at a discrete instants of time. This is achieved by using pulses oflimited duration throughout the system so that one pulse amplitude representslogic 1 and another pulse amplitude represents logic 0.

    Practical logic systems use fixed amplitudes such as voltage levels for thebinary signals. Synchronization is achieved by a timing device called a master-clock generator, which generates a periodic train of clock pulses. The clockpulses are distributed throughout the system in such a way that memoryelements are affected only with the arrival of the synchronization pulse.

    DESIGNING SEQUENTIAL CIRCUITS.We can construct the sequential circuits by following this step-by-stepprocedure.

    a. From the given information about the circuit, obtain state diagram and circuitexcitation table.

    b. Determine the number flip-flops needed and assign a letter symbol to each.

    c. Choose the type FF to be used.

    d. Using the K-map, derive the circuit output functions and the flip-flop inputfunctions.

    e. Draw the logic diagram.

  • 8/12/2019 COEN 3137 - Experiment No. 7 - Synchronous Binary Counters

    3/19

    MATERIALS REQUIRED :3 LED 1 Breadboard1 Power supply 1 Cutter plier

    1 Long nose plier 1 Wire Stripper3 150 2 74LS76 IC1 74LS14 1 NO switch4 10K

    PROCEDURES:Mod 4 Binary Up/Down Counter:

    Design a circuit to build a Mod 4, two bit binary up/down counter.The counter cycles from 012301... when X=0

    or: 321032... when X=1This circuit can be represented by the State Transition Diagram in

    fig.1 below.

    The STATES (binary number) arerepresented using 2 flip-flops; eachflip-flop represents 1 binary digit. Theflip-flops can remember what hashappened in the past, or what valuehas been stored in them.

    There will be one external input, Xwhich controls the direction of thecount: UP for X=0, and DOWN for X=1.The state of the flip-flopsrepresenting the 2-bit binary number(the count) will be the only circuit

    output.

    We could design this circuit using JK, D or T flip-flops, but in this example welluse D flip-flops. When we are finished the circuit will look something like thisincomplete circuit:

    Construct the State Transition Diagramfor Counter Circuit

  • 8/12/2019 COEN 3137 - Experiment No. 7 - Synchronous Binary Counters

    4/19

    lights

    I. XDB QB

    Clc

    QB

    DA QA

    Clc

    QA

    clock

    Our task is to design the circuit, such that the flip flop inputs willproduce the currentNext Stateoutputs. The design procedure wewill follow for this problem will be:

    Design Procedure:1. Obtain the State Table from the problem statement of from the

    State Transition Diagram.2. Derive the flip-flop input equations from the next state conditions

    in the state table.3. Use K-maps to simplify the flip-flop input equations.

    4. Draw the logic diagram with flip-flops and combinational gates asspecified by the flip-flop input equations.

    We will illustrate the solution using both D flip flops and JK flip flops. Startingwith D flip flop solution.

  • 8/12/2019 COEN 3137 - Experiment No. 7 - Synchronous Binary Counters

    5/19

    Present Input Next State Flip FlopInputsQA QB X QA+ QB+ DA DB

    Derive the next-state equation using the K-mapping method:

    QAQB

    X 0 0 0 1 1 1 1 0

    0

    1

    DA=

    QAQB

    X 0 0 0 1 1 1 1 00

    1

    DB=

  • 8/12/2019 COEN 3137 - Experiment No. 7 - Synchronous Binary Counters

    6/19

    Draw the logic diagram for this counter circuit:

    lights

    II. XDB QB

    Clc

    QB

    DA QA

    Clc

    QA

    clock

    Complete the solution using JK flip flops is shown on the followingpage.

    PresentStateInput Next State Flip Flop Inputs

    QA QB X QA+ QB+ J A KA JB KB0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1

  • 8/12/2019 COEN 3137 - Experiment No. 7 - Synchronous Binary Counters

    7/19

    JK FLIP FLOP #1 corresponds to most significant bit of the 2 bitbinary number, while flip flop #2 represents the least significant bit.

    Deriving the next-state equations using K-mapping:

    JK FLIP FLOP 1

    QAQB

    QCX0 0 0 1 1 1 1 0

    QAQB

    QCX0 0 0 1 1 1 1 0

    0 0 0 0

    0 1 0 1

    1 1 1 11 0 1 0

    JA= K

    A=

    JK FLIP FLOP 2

    QAQBQCX

    0 0 0 1 1 1 1 0 QAQBQCX0 0 0 1 1 1 1 0

    0 0 0 0

    0 1 0 1

    1 1 1 1

    1 0 1 0

    JB= K

    B=

  • 8/12/2019 COEN 3137 - Experiment No. 7 - Synchronous Binary Counters

    8/19

    Draw the logic diagram for circuit implementation:

    Problem #2: Design a circuit that cycle through the numbers:13452134....

    Your counter for the sequence of numbers should advance up ordown based on a control variable input. When control variable C=1,advance forward, while a control input of C=0 should cause abackward move in the sequence. Assume the sequence wrapsaround at both ends. For example, if you have selected sequence13452 and the counter started up at 1, with control input at one(C=1), seven clock pulses should cause the following transitions:

    13452134....

  • 8/12/2019 COEN 3137 - Experiment No. 7 - Synchronous Binary Counters

    9/19

    1.Draw the State Transition Diagram:

    2.Fill in the State Table below, for your sequence, using thecompleted JK excitation values in the small table below.

  • 8/12/2019 COEN 3137 - Experiment No. 7 - Synchronous Binary Counters

    10/19

    For now leave the rows associated with the unused numbersempty for now. Later after we fill in the K-maps we will come

    back and explore what happens if the circuit ever gets into one ofthese states.Present State input Next State Flip Flop InputsQA QB QC E QA+ QB+ QC+ JA KA JB KB JC KC #0 0 0 0

    00 0 0 1

    0 1 0

    10 0 1 1

    0 1 0 0

    20 1 0 1

    0 1 1 0

    30 1 1 1

    1 0 0 0

    41 0 0 1

    1 0 1 0

    51 0 1 1

    1 1 0 0

    61 1 0 1

    1 1 1 0

    71 1 1 1

  • 8/12/2019 COEN 3137 - Experiment No. 7 - Synchronous Binary Counters

    11/19

    JK FLIP FLOP 1

    QAQB

    QCE 0 0 0 1 1 1 1 0

    QAQB

    QCE 0 0 0 1 1 1 1 00 0 0 0

    0 1 0 1

    1 1 1 1

    1 0 1 0

    JA= K

    A=

    JK FLIP FLOP 2

    QAQB

    QCE0 0 0 1 1 1 1 0

    QAQB

    QCE0 0 0 1 1 1 1 0

    0 0 0 0

    0 1 0 1

    1 1 1 1

    1 0 1 0

    JB= KB =

    JK FLIP FLOP 3

    QAQB

    QCE0 0 0 1 1 1 1 0

    QAQB

    QCE0 0 0 1 1 1 1 0

    0 0 0 0

    0 1 0 1

    1 1 1 1

    1 0 1 0

    JC= KC=

  • 8/12/2019 COEN 3137 - Experiment No. 7 - Synchronous Binary Counters

    12/19

    Circuit DiagramControl Input

    E________________________________________________________

    JA QA

    __

    JB QB

    __

    JC QC

    __

  • 8/12/2019 COEN 3137 - Experiment No. 7 - Synchronous Binary Counters

    13/19

    74LS76A

    1 2 3 4 5 6 7 8

    910111213141516

    FIGURE 6. Dual JK Flip-Flop with Set and C lear

    K

    CP

    J

    QSD

    CDQ

    16

    1

    4 14

    15

    2

    3

    K

    CP

    J

    QSD

    CDQ

    12

    6

    9 10

    11

    7

    8

    VCC

    =PIN 5GND=PIN 13

    LOGIC SYMBOLPIN CONFIGURATION

    330

    K

    CP

    J

    QSD

    CD

    Q

    16

    1

    4

    14

    15

    2

    3

    VCC

    K

    CP

    J

    QSD

    CD

    Q

    12

    6

    9

    10

    11

    7

    8

    VCC

    330

    330

    P O

    T

    10K

    5Vs

    RA

    7

    6

    2 1

    5

    3

    84

    555IC

    RB

    C

    VCC

    5V

    OUT

    0.0110uF

    ++

    10K

    100K

    Figure 6-1 Synchronous Sequential Circuit

  • 8/12/2019 COEN 3137 - Experiment No. 7 - Synchronous Binary Counters

    14/19

    DATA and RESULTSPART 1. Synchronous Sequential Circuit Analysis.

    Control Input Equations

    0

    0

    1

    1

    1

    1

    0

    0

    0

    0

    0

    0

    1

    1

    1

    1

    0

    0

    0

    0

    1

    1

    1

    1

    P

    stateIn FF Inputs

    N

    stateO

    P

    state

    Next state

    = 0 = 1OUT

    =0 =1

    TRUTH TABLE

    TRANSITION TABLE

    STATE DIAGRAM

  • 8/12/2019 COEN 3137 - Experiment No. 7 - Synchronous Binary Counters

    15/19

    PART II. Synchronous Sequential Circuit Design.

    0

    0

    1

    1

    1

    1

    0

    0

    0

    0

    0

    0

    1

    1

    1

    1

    0

    0

    0

    0

    1

    1

    1

    1

    Presentstate FF Inputs

    FF Excitation Table

    STATE DIAGRAM Nextstate

    0

    1

    00 01 11 10

    0

    1

    00 01 11 10

    0

    1

    00 01 11 10

    0

    1

    00 01 11 10

    0

    1

    00 01 11 10

    0

    1

    00 01 11 10

  • 8/12/2019 COEN 3137 - Experiment No. 7 - Synchronous Binary Counters

    16/19

    Design Circuit.

  • 8/12/2019 COEN 3137 - Experiment No. 7 - Synchronous Binary Counters

    17/19

    QUESTIONS :a.) Does the actual output of Figure 6-1 agree with theoritical value?

    Explain the reason of discrepancy, if any.

    _________________________________________________________________

    _________________________________________________________________

    b.) Does the actual output of your design circuit agree with theoriticalvalue? Explain the reason of discrepancy, if any.

    _________________________________________________________________

    _________________________________________________________________

    c.) In the circuit of Figure 6-2, the inputs A, B, and C are all initiallyLOW. Output Y is suppose to go HIGH only when A, B, and C go toHIGH in a certain sequence.Determine the sequence that will make Y go HIGH.Explain why the START pulse is needed.

    _________________________________________________________________

    _________________________________________________________________

    _________________________________________________________________

    _________________________________________________________________

    _________________________________________________________________

    A Y

    J

    Q

    Q

    K

    SET

    CLR

    XJ

    Q

    Q

    K

    SET

    CLR

    Figure 6-2.

    B

    C

    Start

  • 8/12/2019 COEN 3137 - Experiment No. 7 - Synchronous Binary Counters

    18/19

    d.) Refer to the circuit in Figure 6-3. Assume that all asynchronous

    inputs are connected to VCC. When tested, the circuit waveformsappear as shown in Figure 6-3. Consider the following list ofpossible faults. For each one indicate "YES" or "NO" as to whether

    it could cause the observed results. Explain each response.

    a.) CLR input Y2is open.

    ______________________________________________________________________________________________________________________________________________________

    b.) Y1output's transition times are too long, possibly due toloading.

    ____________________________________________________________________________________________________________________________________________________

    c. Y2output shorted to ground.____________________________________________________________________________________________________________________________________________________________

    d. Y2's hold-time requirement is not being met.____________________________________________________________________________________________________________________________________________________________

  • 8/12/2019 COEN 3137 - Experiment No. 7 - Synchronous Binary Counters

    19/19

    CONCLUSION:____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    Clock

    Y2

    Y1

    Y0

    Y2

    J

    Q

    Q

    K

    SET

    CLR

    Y1

    J

    Q

    Q

    K

    SET

    CLR

    Y0

    J

    Q

    Q

    K

    SET

    CLR

    Input Clock Pulses

    Figure 6-3. JK FF wired as a 3-bit counter

    1

    1

    1

    1

    1

    1

    Figure 6-4. Waveforms of the circuit in Figure 6-3.