codon usage bias: variable frequency of synonomous codons. codon preferences reflect natural...

23
Codon Optimization

Post on 21-Dec-2015

231 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

Codon Optimization

Page 2: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

Codon Usage Bias: Variable frequency of synonomous codons.

Codon preferences reflect natural selection in organisms for translational optimization.

Optimal codons allow faster translation rates, thus highly expressed genes are coded by these.

Codon optimization can be used to produce a synthetic version of a foreign gene for more efficient expression.

Codon Optimization

Page 3: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

Codon Usage of HIV vs. Human

Page 4: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

Expression Profile of Synthetic vs. Wildtype gp120

Page 5: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

HIV Codons Decrease Efficiency of Thy-1 Expression

-Thy-1 is a highly expressed cell-surface protein.

-Replacing codons of Thy-1 with HIV envelope codons significantly decreases expression.

Page 6: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

A: Control: Empty vector.

B: Native GFP from Aequorea victoria.

C: Mammalian codon optimized GFP.

D: Mammalian codon optimized GFP + S65T replacement.

Codon Optimization of GFP

Page 7: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

E. Coli vs. Human Codon Usage

Page 8: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

Codon Optimization: Human to Bacteria

Page 9: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

Codon Optimization: Human to Bacteria

Page 10: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

Codon Optimization: Human to Bacteria

Page 11: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

Codon Optimization: Human to Bacteria

Page 12: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

Codon Optimization: Human to Bacteria

Page 13: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

Molecular biology technique used to amplify specific nucleotide sequences.

Developed by Kary Mullis in 1983.Takes advantage of Taq polymerase from

thermophile Thermus aquaticus.Taq is a heat-resistant enzyme that can

function in temperatures above 70°C.

Polymerase Chain Reaction

Page 15: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

Polymerase Chain Reaction

Page 16: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

WaterTaq Buffer containing divalent and monovalent

cations – Provides suitable chemical environment for optimal activity of DNA polymerase (pH, [salt], co-factors,etc.)

DNA template containing target region to be amplified.

Sense and anti-sense primers.Deoxynucleotide triphosphates (dNTPs), the

building-blocks for synthesis of new DNA.Taq polymerase – has optimal activity around

70°C.

Components of PCR

Page 17: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

NCBISearch through GENE databases.Enter the name of the gene of interest.Search for Homo sapien or E. coli and select

the gene.Scroll down to mRNA and proteins and select.Copy the “translation”

EncorbioSelect the organism that the gene will be

codon optimized to.Paste the amino acid sequence into the top box.Generate the coding sequence.

Homework Assignment

Page 18: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

Amino Acid Sequence MKSGSGGGSPTSLWGLLFLSAALSLWPTSGEICGPGIDIRNDYQQLKRLENCTVIEGYLHILLISKAEDYRSYRFPKLTVITEYLLLFRVAGLESLGDLFPNLTVIRGWKLFYNYALVIFEMTNL

KDIGLYNLRNITRGAIRIEKNADLCYLSTVDWSLILDAVSNNYIVGNKPPKECGDLCPGTMEEKPMCEKTTINNEYNYRCWTTNRCQKMCPSTCGKRACTENNECCHPECLGSCSAPDNDTACVACRHYYYAGVCVPACPPNTYRFEGWRCVDRDFCANILSAESSDSEGFVIHDGECMQECPSGFIRNGSQSMYCIPCEGPCPKVCEEEKKTKTIDSVTSAQMLQGCTIFKGNLLINIRRGNNIASELENFMGLIEVVTGYVKIRHSHALVSLSFLKNLRLILGEEQLEGNYSFYVLDNQNLQQLWDWDHRNLTIKAGKMYFAFNPKLCVSEIYRMEEVTGTKGRQSKGDINTRNNGERASCESDVLHFTSTTTSKNRIIITWHRYRPPDYRDLISFTVYYKEAPFKNVTEYDGQDACGSNSWNMVDVDLPPNKDVEPGILLHGLKPWTQYAVYVKAVTLTMVENDHIRGAKSEILYIRTNASVPSIPLDVLSASNSSSQLIVKWNPPSLPNGNLSYYIVRWQRQPQDGYLYRHNYCSKDKIPIRKYADGTIDIEEVTENPKTEVCGGEKGPCCACPKTEAEKQAEKEEAEYRKVFENFLHNSIFVPRPERKRRDVMQVANTTMSSRSRNTTAADTYNITDPEELETEYPFFESRVDNKERTVISNLRPFTLYRIDIHSCNHEAEKLGCSASNFVFARTMPAEGADDIPGPVTWEPRPENSIFLKWPEPENPNGLILMYEIKYGSQVEDQRECVSRQEYRKYGGAKLNRLNPGNYTARIQATSLSGNGSWTDPVFFYVQAKTGYENFIHLIIALPVAVLLIVGGLVIMLYVFHRKRNNSRLGNGVLYASVNPEYFSAADVYVPDEWEVAREKITMSRELGQGSFGMVYEGVAKGVVKDEPETRVAIKTVNEAASMRERIEFLNEASVMKEFNCHHVVRLLGVVSQGQPTLVIMELMTRGDLKSYLRSLRPEMENNPVLAPPSLSKMIQMAGEIADGMAYLNANKFVHRDLAARNCMVAEDFTVKIGDFGMTRDIYETDYYRKGGKGLLPVRWMSPESLKDGVFTTYSDVWSFGVVLWEIATLAEQPYQGLSNEQVLRFVMEGGLLDKPDNCPDMLFELMRMCWQYNPKMRPSFLEIISSIKEEMEPGFREVSFYYSEENKLPEPEELDLEPENMESVPLDPSASSSSLPLPDRHSGHKAENGPGPGVLVLRASFDERQPYAHMNGGRKNERALPLPQSSTC

Codon Optimized Sequence ATGAAAAGCGGCAGCGGCGGCGGCAGCCCGACCAGCCTGTGGGGCCTGCTGTTTCTGAGCGCGGCGCTGAGCCTGTGGCCGACCAGCGGCGAAATTTGCGGCCCGGGCATTGATATTCGCAACGATTATCAGCA

GCTGAAACGCCTGGAAAACTGCACCGTGATTGAAGGCTATCTGCATATTCTGCTGATTAGCAAAGCGGAAGATTATCGCAGCTATCGCTTTCCGAAACTGACCGTGATTACCGAATATCTGCTGCTGTTTCGCGTGGCGGGCCTGGAAAGCCTGGGCGATCTGTTTCCGAACCTGACCGTGATTCGCGGCTGGAAACTGTTTTATAACTATGCGCTGGTGATTTTTGAAATGACCAACCTGAAAGATATTGGCCTGTATAACCTGCGCAACATTACCCGCGGCGCGATTCGCATTGAAAAAAACGCGGATCTGTGCTATCTGAGCACCGTGGATTGGAGCCTGATTCTGGATGCGGTGAGCAACAACTATATTGTGGGCAACAAACCGCCGAAAGAATGCGGCGATCTGTGCCCGGGCACCATGGAAGAAAAACCGATGTGCGAAAAAACCACCATTAACAACGAATATAACTATCGCTGCTGGACCACCAACCGCTGCCAGAAAATGTGCCCGAGCACCTGCGGCAAACGCGCGTGCACCGAAAACAACGAATGCTGCCATCCGGAATGCCTGGGCAGCTGCAGCGCGCCGGATAACGATACCGCGTGCGTGGCGTGCCGCCATTATTATTATGCGGGCGTGTGCGTGCCGGCGTGCCCGCCGAACACCTATCGCTTTGAAGGCTGGCGCTGCGTGGATCGCGATTTTTGCGCGAACATTCTGAGCGCGGAAAGCAGCGATAGCGAAGGCTTTGTGATTCATGATGGCGAATGCATGCAGGAATGCCCGAGCGGCTTTATTCGCAACGGCAGCCAGAGCATGTATTGCATTCCGTGCGAAGGCCCGTGCCCGAAAGTGTGCGAAGAAGAAAAAAAAACCAAAACCATTGATAGCGTGACCAGCGCGCAGATGCTGCAGGGCTGCACCATTTTTAAAGGCAACCTGCTGATTAACATTCGCCGCGGCAACAACATTGCGAGCGAACTGGAAAACTTTATGGGCCTGATTGAAGTGGTGACCGGCTATGTGAAAATTCGCCATAGCCATGCGCTGGTGAGCCTGAGCTTTCTGAAAAACCTGCGCCTGATTCTGGGCGAAGAACAGCTGGAAGGCAACTATAGCTTTTATGTGCTGGATAACCAGAACCTGCAGCAGCTGTGGGATTGGGATCATCGCAACCTGACCATTAAAGCGGGCAAAATGTATTTTGCGTTTAACCCGAAACTGTGCGTGAGCGAAATTTATCGCATGGAAGAAGTGACCGGCACCAAAGGCCGCCAGAGCAAAGGCGATATTAACACCCGCAACAACGGCGAACGCGCGAGCTGCGAAAGCGATGTGCTGCATTTTACCAGCACCACCACCAGCAAAAACCGCATTATTATTACCTGGCATCGCTATCGCCCGCCGGATTATCGCGATCTGATTAGCTTTACCGTGTATTATAAAGAAGCGCCGTTTAAAAACGTGACCGAATATGATGGCCAGGATGCGTGCGGCAGCAACAGCTGGAACATGGTGGATGTGGATCTGCCGCCGAACAAAGATGTGGAACCGGGCATTCTGCTGCATGGCCTGAAACCGTGGACCCAGTATGCGGTGTATGTGAAAGCGGTGACCCTGACCATGGTGGAAAACGATCATATTCGCGGCGCGAAAAGCGAAATTCTGTATATTCGCACCAACGCGAGCGTGCCGAGCATTCCGCTGGATGTGCTGAGCGCGAGCAACAGCAGCAGCCAGCTGATTGTGAAATGGAACCCGCCGAGCCTGCCGAACGGCAACCTGAGCTATTATATTGTGCGCTGGCAGCGCCAGCCGCAGGATGGCTATCTGTATCGCCATAACTATTGCAGCAAAGATAAAATTCCGATTCGCAAATATGCGGATGGCACCATTGATATTGAAGAAGTGACCGAAAACCCGAAAACCGAAGTGTGCGGCGGCGAAAAAGGCCCGTGCTGCGCGTGCCCGAAAACCGAAGCGGAAAAACAGGCGGAAAAAGAAGAAGCGGAATATCGCAAAGTGTTTGAAAACTTTCTGCATAACAGCATTTTTGTGCCGCGCCCGGAACGCAAACGCCGCGATGTGATGCAGGTGGCGAACACCACCATGAGCAGCCGCAGCCGCAACACCACCGCGGCGGATACCTATAACATTACCGATCCGGAAGAACTGGAAACCGAATATCCGTTTTTTGAAAGCCGCGTGGATAACAAAGAACGCACCGTGATTAGCAACCTGCGCCCGTTTACCCTGTATCGCATTGATATTCATAGCTGCAACCATGAAGCGGAAAAACTGGGCTGCAGCGCGAGCAACTTTGTGTTTGCGCGCACCATGCCGGCGGAAGGCGCGGATGATATTCCGGGCCCGGTGACCTGGGAACCGCGCCCGGAAAACAGCATTTTTCTGAAATGGCCGGAACCGGAAAACCCGAACGGCCTGATTCTGATGTATGAAATTAAATATGGCAGCCAGGTGGAAGATCAGCGCGAATGCGTGAGCCGCCAGGAATATCGCAAATATGGCGGCGCGAAACTGAACCGCCTGAACCCGGGCAACTATACCGCGCGCATTCAGGCGACCAGCCTGAGCGGCAACGGCAGCTGGACCGATCCGGTGTTTTTTTATGTGCAGGCGAAAACCGGCTATGAAAACTTTATTCATCTGATTATTGCGCTGCCGGTGGCGGTGCTGCTGATTGTGGGCGGCCTGGTGATTATGCTGTATGTGTTTCATCGCAAACGCAACAACAGCCGCCTGGGCAACGGCGTGCTGTATGCGAGCGTGAACCCGGAATATTTTAGCGCGGCGGATGTGTATGTGCCGGATGAATGGGAAGTGGCGCGCGAAAAAATTACCATGAGCCGCGAACTGGGCCAGGGCAGCTTTGGCATGGTGTATGAAGGCGTGGCGAAAGGCGTGGTGAAAGATGAACCGGAAACCCGCGTGGCGATTAAAACCGTGAACGAAGCGGCGAGCATGCGCGAACGCATTGAATTTCTGAACGAAGCGAGCGTGATGAAAGAATTTAACTGCCATCATGTGGTGCGCCTGCTGGGCGTGGTGAGCCAGGGCCAGCCGACCCTGGTGATTATGGAACTGATGACCCGCGGCGATCTGAAAAGCTATCTGCGCAGCCTGCGCCCGGAAATGGAAAACAACCCGGTGCTGGCGCCGCCGAGCCTGAGCAAAATGATTCAGATGGCGGGCGAAATTGCGGATGGCATGGCGTATCTGAACGCGAACAAATTTGTGCATCGCGATCTGGCGGCGCGCAACTGCATGGTGGCGGAAGATTTTACCGTGAAAATTGGCGATTTTGGCATGACCCGCGATATTTATGAAACCGATTATTATCGCAAAGGCGGCAAAGGCCTGCTGCCGGTGCGCTGGATGAGCCCGGAAAGCCTGAAAGATGGCGTGTTTACCACCTATAGCGATGTGTGGAGCTTTGGCGTGGTGCTGTGGGAAATTGCGACCCTGGCGGAACAGCCGTATCAGGGCCTGAGCAACGAACAGGTGCTGCGCTTTGTGATGGAAGGCGGCCTGCTGGATAAACCGGATAACTGCCCGGATATGCTGTTTGAACTGATGCGCATGTGCTGGCAGTATAACCCGAAAATGCGCCCGAGCTTTCTGGAAATTATTAGCAGCATTAAAGAAGAAATGGAACCGGGCTTTCGCGAAGTGAGCTTTTATTATAGCGAAGAAAACAAACTGCCGGAACCGGAAGAACTGGATCTGGAACCGGAAAACATGGAAAGCGTGCCGCTGGATCCGAGCGCGAGCAGCAGCAGCCTGCCGCTGCCGGATCGCCATAGCGGCCATAAAGCGGAAAACGGCCCGGGCCCGGGCGTGCTGGTGCTGCGCGCGAGCTTTGATGAACGCCAGCCGTATGCGCATATGAACGGCGGCCGCAAAAACGAACGCGCGCTGCCGCTGCCGCAGAGCAGCACCTGC

Example: Insulin-like Growth Factor 1 Receptor (IGF1R)

Page 19: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

Add EcoRI (GAATTC) at 5’ end and BamHI (GGATCC) at 3’ end. GAATTCATGAAAAGCGGCAGCGGCGGCGGCAGCCCGACCAGCCTGTGGGGCCTGCTGTTTCTGAGCGCGGCGCTGAGCCTGTGGCCGACCAGCGGCGAAATTTGCG

GCCCGGGCATTGATATTCGCAACGATTATCAGCAGCTGAAACGCCTGGAAAACTGCACCGTGATTGAAGGCTATCTGCATATTCTGCTGATTAGCAAAGCGGAAGATTATCGCAGCTATCGCTTTCCGAAACTGACCGTGATTACCGAATATCTGCTGCTGTTTCGCGTGGCGGGCCTGGAAAGCCTGGGCGATCTGTTTCCGAACCTGACCGTGATTCGCGGCTGGAAACTGTTTTATAACTATGCGCTGGTGATTTTTGAAATGACCAACCTGAAAGATATTGGCCTGTATAACCTGCGCAACATTACCCGCGGCGCGATTCGCATTGAAAAAAACGCGGATCTGTGCTATCTGAGCACCGTGGATTGGAGCCTGATTCTGGATGCGGTGAGCAACAACTATATTGTGGGCAACAAACCGCCGAAAGAATGCGGCGATCTGTGCCCGGGCACCATGGAAGAAAAACCGATGTGCGAAAAAACCACCATTAACAACGAATATAACTATCGCTGCTGGACCACCAACCGCTGCCAGAAAATGTGCCCGAGCACCTGCGGCAAACGCGCGTGCACCGAAAACAACGAATGCTGCCATCCGGAATGCCTGGGCAGCTGCAGCGCGCCGGATAACGATACCGCGTGCGTGGCGTGCCGCCATTATTATTATGCGGGCGTGTGCGTGCCGGCGTGCCCGCCGAACACCTATCGCTTTGAAGGCTGGCGCTGCGTGGATCGCGATTTTTGCGCGAACATTCTGAGCGCGGAAAGCAGCGATAGCGAAGGCTTTGTGATTCATGATGGCGAATGCATGCAGGAATGCCCGAGCGGCTTTATTCGCAACGGCAGCCAGAGCATGTATTGCATTCCGTGCGAAGGCCCGTGCCCGAAAGTGTGCGAAGAAGAAAAAAAAACCAAAACCATTGATAGCGTGACCAGCGCGCAGATGCTGCAGGGCTGCACCATTTTTAAAGGCAACCTGCTGATTAACATTCGCCGCGGCAACAACATTGCGAGCGAACTGGAAAACTTTATGGGCCTGATTGAAGTGGTGACCGGCTATGTGAAAATTCGCCATAGCCATGCGCTGGTGAGCCTGAGCTTTCTGAAAAACCTGCGCCTGATTCTGGGCGAAGAACAGCTGGAAGGCAACTATAGCTTTTATGTGCTGGATAACCAGAACCTGCAGCAGCTGTGGGATTGGGATCATCGCAACCTGACCATTAAAGCGGGCAAAATGTATTTTGCGTTTAACCCGAAACTGTGCGTGAGCGAAATTTATCGCATGGAAGAAGTGACCGGCACCAAAGGCCGCCAGAGCAAAGGCGATATTAACACCCGCAACAACGGCGAACGCGCGAGCTGCGAAAGCGATGTGCTGCATTTTACCAGCACCACCACCAGCAAAAACCGCATTATTATTACCTGGCATCGCTATCGCCCGCCGGATTATCGCGATCTGATTAGCTTTACCGTGTATTATAAAGAAGCGCCGTTTAAAAACGTGACCGAATATGATGGCCAGGATGCGTGCGGCAGCAACAGCTGGAACATGGTGGATGTGGATCTGCCGCCGAACAAAGATGTGGAACCGGGCATTCTGCTGCATGGCCTGAAACCGTGGACCCAGTATGCGGTGTATGTGAAAGCGGTGACCCTGACCATGGTGGAAAACGATCATATTCGCGGCGCGAAAAGCGAAATTCTGTATATTCGCACCAACGCGAGCGTGCCGAGCATTCCGCTGGATGTGCTGAGCGCGAGCAACAGCAGCAGCCAGCTGATTGTGAAATGGAACCCGCCGAGCCTGCCGAACGGCAACCTGAGCTATTATATTGTGCGCTGGCAGCGCCAGCCGCAGGATGGCTATCTGTATCGCCATAACTATTGCAGCAAAGATAAAATTCCGATTCGCAAATATGCGGATGGCACCATTGATATTGAAGAAGTGACCGAAAACCCGAAAACCGAAGTGTGCGGCGGCGAAAAAGGCCCGTGCTGCGCGTGCCCGAAAACCGAAGCGGAAAAACAGGCGGAAAAAGAAGAAGCGGAATATCGCAAAGTGTTTGAAAACTTTCTGCATAACAGCATTTTTGTGCCGCGCCCGGAACGCAAACGCCGCGATGTGATGCAGGTGGCGAACACCACCATGAGCAGCCGCAGCCGCAACACCACCGCGGCGGATACCTATAACATTACCGATCCGGAAGAACTGGAAACCGAATATCCGTTTTTTGAAAGCCGCGTGGATAACAAAGAACGCACCGTGATTAGCAACCTGCGCCCGTTTACCCTGTATCGCATTGATATTCATAGCTGCAACCATGAAGCGGAAAAACTGGGCTGCAGCGCGAGCAACTTTGTGTTTGCGCGCACCATGCCGGCGGAAGGCGCGGATGATATTCCGGGCCCGGTGACCTGGGAACCGCGCCCGGAAAACAGCATTTTTCTGAAATGGCCGGAACCGGAAAACCCGAACGGCCTGATTCTGATGTATGAAATTAAATATGGCAGCCAGGTGGAAGATCAGCGCGAATGCGTGAGCCGCCAGGAATATCGCAAATATGGCGGCGCGAAACTGAACCGCCTGAACCCGGGCAACTATACCGCGCGCATTCAGGCGACCAGCCTGAGCGGCAACGGCAGCTGGACCGATCCGGTGTTTTTTTATGTGCAGGCGAAAACCGGCTATGAAAACTTTATTCATCTGATTATTGCGCTGCCGGTGGCGGTGCTGCTGATTGTGGGCGGCCTGGTGATTATGCTGTATGTGTTTCATCGCAAACGCAACAACAGCCGCCTGGGCAACGGCGTGCTGTATGCGAGCGTGAACCCGGAATATTTTAGCGCGGCGGATGTGTATGTGCCGGATGAATGGGAAGTGGCGCGCGAAAAAATTACCATGAGCCGCGAACTGGGCCAGGGCAGCTTTGGCATGGTGTATGAAGGCGTGGCGAAAGGCGTGGTGAAAGATGAACCGGAAACCCGCGTGGCGATTAAAACCGTGAACGAAGCGGCGAGCATGCGCGAACGCATTGAATTTCTGAACGAAGCGAGCGTGATGAAAGAATTTAACTGCCATCATGTGGTGCGCCTGCTGGGCGTGGTGAGCCAGGGCCAGCCGACCCTGGTGATTATGGAACTGATGACCCGCGGCGATCTGAAAAGCTATCTGCGCAGCCTGCGCCCGGAAATGGAAAACAACCCGGTGCTGGCGCCGCCGAGCCTGAGCAAAATGATTCAGATGGCGGGCGAAATTGCGGATGGCATGGCGTATCTGAACGCGAACAAATTTGTGCATCGCGATCTGGCGGCGCGCAACTGCATGGTGGCGGAAGATTTTACCGTGAAAATTGGCGATTTTGGCATGACCCGCGATATTTATGAAACCGATTATTATCGCAAAGGCGGCAAAGGCCTGCTGCCGGTGCGCTGGATGAGCCCGGAAAGCCTGAAAGATGGCGTGTTTACCACCTATAGCGATGTGTGGAGCTTTGGCGTGGTGCTGTGGGAAATTGCGACCCTGGCGGAACAGCCGTATCAGGGCCTGAGCAACGAACAGGTGCTGCGCTTTGTGATGGAAGGCGGCCTGCTGGATAAACCGGATAACTGCCCGGATATGCTGTTTGAACTGATGCGCATGTGCTGGCAGTATAACCCGAAAATGCGCCCGAGCTTTCTGGAAATTATTAGCAGCATTAAAGAAGAAATGGAACCGGGCTTTCGCGAAGTGAGCTTTTATTATAGCGAAGAAAACAAACTGCCGGAACCGGAAGAACTGGATCTGGAACCGGAAAACATGGAAAGCGTGCCGCTGGATCCGAGCGCGAGCAGCAGCAGCCTGCCGCTGCCGGATCGCCATAGCGGCCATAAAGCGGAAAACGGCCCGGGCCCGGGCGTGCTGGTGCTGCGCGCGAGCTTTGATGAACGCCAGCCGTATGCGCATATGAACGGCGGCCGCAAAAACGAACGCGCGCTGCCGCTGCCGCAGAGCAGCACCTGCGGATCC

Example: Insulin-like Growth Factor 1 Receptor (IGF1R)

Page 20: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

Add EcoRI (GAATTC) at 5’ end and BamHI (GGATCC) at 3’ end. GAATTCATGAAAAGCGGCAGCGGCGGCGGCAGCCCGACCAGCCTGTGGGGCCTGCTGTTTCTGAGCGCGGCGCTGAGCCTGTGGCCGACCAGCGGCGAAATTTGCG

GCCCGGGCATTGATATTCGCAACGATTATCAGCAGCTGAAACGCCTGGAAAACTGCACCGTGATTGAAGGCTATCTGCATATTCTGCTGATTAGCAAAGCGGAAGATTATCGCAGCTATCGCTTTCCGAAACTGACCGTGATTACCGAATATCTGCTGCTGTTTCGCGTGGCGGGCCTGGAAAGCCTGGGCGATCTGTTTCCGAACCTGACCGTGATTCGCGGCTGGAAACTGTTTTATAACTATGCGCTGGTGATTTTTGAAATGACCAACCTGAAAGATATTGGCCTGTATAACCTGCGCAACATTACCCGCGGCGCGATTCGCATTGAAAAAAACGCGGATCTGTGCTATCTGAGCACCGTGGATTGGAGCCTGATTCTGGATGCGGTGAGCAACAACTATATTGTGGGCAACAAACCGCCGAAAGAATGCGGCGATCTGTGCCCGGGCACCATGGAAGAAAAACCGATGTGCGAAAAAACCACCATTAACAACGAATATAACTATCGCTGCTGGACCACCAACCGCTGCCAGAAAATGTGCCCGAGCACCTGCGGCAAACGCGCGTGCACCGAAAACAACGAATGCTGCCATCCGGAATGCCTGGGCAGCTGCAGCGCGCCGGATAACGATACCGCGTGCGTGGCGTGCCGCCATTATTATTATGCGGGCGTGTGCGTGCCGGCGTGCCCGCCGAACACCTATCGCTTTGAAGGCTGGCGCTGCGTGGATCGCGATTTTTGCGCGAACATTCTGAGCGCGGAAAGCAGCGATAGCGAAGGCTTTGTGATTCATGATGGCGAATGCATGCAGGAATGCCCGAGCGGCTTTATTCGCAACGGCAGCCAGAGCATGTATTGCATTCCGTGCGAAGGCCCGTGCCCGAAAGTGTGCGAAGAAGAAAAAAAAACCAAAACCATTGATAGCGTGACCAGCGCGCAGATGCTGCAGGGCTGCACCATTTTTAAAGGCAACCTGCTGATTAACATTCGCCGCGGCAACAACATTGCGAGCGAACTGGAAAACTTTATGGGCCTGATTGAAGTGGTGACCGGCTATGTGAAAATTCGCCATAGCCATGCGCTGGTGAGCCTGAGCTTTCTGAAAAACCTGCGCCTGATTCTGGGCGAAGAACAGCTGGAAGGCAACTATAGCTTTTATGTGCTGGATAACCAGAACCTGCAGCAGCTGTGGGATTGGGATCATCGCAACCTGACCATTAAAGCGGGCAAAATGTATTTTGCGTTTAACCCGAAACTGTGCGTGAGCGAAATTTATCGCATGGAAGAAGTGACCGGCACCAAAGGCCGCCAGAGCAAAGGCGATATTAACACCCGCAACAACGGCGAACGCGCGAGCTGCGAAAGCGATGTGCTGCATTTTACCAGCACCACCACCAGCAAAAACCGCATTATTATTACCTGGCATCGCTATCGCCCGCCGGATTATCGCGATCTGATTAGCTTTACCGTGTATTATAAAGAAGCGCCGTTTAAAAACGTGACCGAATATGATGGCCAGGATGCGTGCGGCAGCAACAGCTGGAACATGGTGGATGTGGATCTGCCGCCGAACAAAGATGTGGAACCGGGCATTCTGCTGCATGGCCTGAAACCGTGGACCCAGTATGCGGTGTATGTGAAAGCGGTGACCCTGACCATGGTGGAAAACGATCATATTCGCGGCGCGAAAAGCGAAATTCTGTATATTCGCACCAACGCGAGCGTGCCGAGCATTCCGCTGGATGTGCTGAGCGCGAGCAACAGCAGCAGCCAGCTGATTGTGAAATGGAACCCGCCGAGCCTGCCGAACGGCAACCTGAGCTATTATATTGTGCGCTGGCAGCGCCAGCCGCAGGATGGCTATCTGTATCGCCATAACTATTGCAGCAAAGATAAAATTCCGATTCGCAAATATGCGGATGGCACCATTGATATTGAAGAAGTGACCGAAAACCCGAAAACCGAAGTGTGCGGCGGCGAAAAAGGCCCGTGCTGCGCGTGCCCGAAAACCGAAGCGGAAAAACAGGCGGAAAAAGAAGAAGCGGAATATCGCAAAGTGTTTGAAAACTTTCTGCATAACAGCATTTTTGTGCCGCGCCCGGAACGCAAACGCCGCGATGTGATGCAGGTGGCGAACACCACCATGAGCAGCCGCAGCCGCAACACCACCGCGGCGGATACCTATAACATTACCGATCCGGAAGAACTGGAAACCGAATATCCGTTTTTTGAAAGCCGCGTGGATAACAAAGAACGCACCGTGATTAGCAACCTGCGCCCGTTTACCCTGTATCGCATTGATATTCATAGCTGCAACCATGAAGCGGAAAAACTGGGCTGCAGCGCGAGCAACTTTGTGTTTGCGCGCACCATGCCGGCGGAAGGCGCGGATGATATTCCGGGCCCGGTGACCTGGGAACCGCGCCCGGAAAACAGCATTTTTCTGAAATGGCCGGAACCGGAAAACCCGAACGGCCTGATTCTGATGTATGAAATTAAATATGGCAGCCAGGTGGAAGATCAGCGCGAATGCGTGAGCCGCCAGGAATATCGCAAATATGGCGGCGCGAAACTGAACCGCCTGAACCCGGGCAACTATACCGCGCGCATTCAGGCGACCAGCCTGAGCGGCAACGGCAGCTGGACCGATCCGGTGTTTTTTTATGTGCAGGCGAAAACCGGCTATGAAAACTTTATTCATCTGATTATTGCGCTGCCGGTGGCGGTGCTGCTGATTGTGGGCGGCCTGGTGATTATGCTGTATGTGTTTCATCGCAAACGCAACAACAGCCGCCTGGGCAACGGCGTGCTGTATGCGAGCGTGAACCCGGAATATTTTAGCGCGGCGGATGTGTATGTGCCGGATGAATGGGAAGTGGCGCGCGAAAAAATTACCATGAGCCGCGAACTGGGCCAGGGCAGCTTTGGCATGGTGTATGAAGGCGTGGCGAAAGGCGTGGTGAAAGATGAACCGGAAACCCGCGTGGCGATTAAAACCGTGAACGAAGCGGCGAGCATGCGCGAACGCATTGAATTTCTGAACGAAGCGAGCGTGATGAAAGAATTTAACTGCCATCATGTGGTGCGCCTGCTGGGCGTGGTGAGCCAGGGCCAGCCGACCCTGGTGATTATGGAACTGATGACCCGCGGCGATCTGAAAAGCTATCTGCGCAGCCTGCGCCCGGAAATGGAAAACAACCCGGTGCTGGCGCCGCCGAGCCTGAGCAAAATGATTCAGATGGCGGGCGAAATTGCGGATGGCATGGCGTATCTGAACGCGAACAAATTTGTGCATCGCGATCTGGCGGCGCGCAACTGCATGGTGGCGGAAGATTTTACCGTGAAAATTGGCGATTTTGGCATGACCCGCGATATTTATGAAACCGATTATTATCGCAAAGGCGGCAAAGGCCTGCTGCCGGTGCGCTGGATGAGCCCGGAAAGCCTGAAAGATGGCGTGTTTACCACCTATAGCGATGTGTGGAGCTTTGGCGTGGTGCTGTGGGAAATTGCGACCCTGGCGGAACAGCCGTATCAGGGCCTGAGCAACGAACAGGTGCTGCGCTTTGTGATGGAAGGCGGCCTGCTGGATAAACCGGATAACTGCCCGGATATGCTGTTTGAACTGATGCGCATGTGCTGGCAGTATAACCCGAAAATGCGCCCGAGCTTTCTGGAAATTATTAGCAGCATTAAAGAAGAAATGGAACCGGGCTTTCGCGAAGTGAGCTTTTATTATAGCGAAGAAAACAAACTGCCGGAACCGGAAGAACTGGATCTGGAACCGGAAAACATGGAAAGCGTGCCGCTGGATCCGAGCGCGAGCAGCAGCAGCCTGCCGCTGCCGGATCGCCATAGCGGCCATAAAGCGGAAAACGGCCCGGGCCCGGGCGTGCTGGTGCTGCGCGCGAGCTTTGATGAACGCCAGCCGTATGCGCATATGAACGGCGGCCGCAAAAACGAACGCGCGCTGCCGCTGCCGCAGAGCAGCACCTGCGGATCC

Example: Insulin-like Growth Factor 1 Receptor (IGF1R)

Page 21: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

~5’ End5’GAATTCATGAAAAGCGGCAGCGGCGGCGGC3’3’CTTAAGTACTTTTCGCCGTCGCCGCCGCCG5’~*You need an available 3’OH, so for this end

you make a primer against the antisense strand.

5’GAATTCATGAAAAGCGGCAGCGGCGGCGGC3’

5’GAATTCATGAAAAGCGGCAGCGGC3’OH3’CTTAAGTACTTTTCGCCGTCGCCGCCGCCG5’

Designing Amplification Oligos

Page 22: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

~3’ End5’TGCCGCTGCCGCAGAGCAGCACCTGCGGATCC3’3’ACGGCGACGGCGTCTCGTCGTGGACGCCTAGG5’~Again, you need a 3’OH so this time make a primer

against the sense strand.5’TGCCGCTGCCGCAGAGCAGCACCTGCGGATCC3’ HO3’GGCGTCTCGTCGTGGACGCCTAGG5’

3’ACGGCGACGGCGTCTCGTCGTGGACGCCTAGG5’

Designing Amplification Oligos

Page 23: Codon Usage Bias: Variable frequency of synonomous codons. Codon preferences reflect natural selection in organisms for translational optimization. Optimal

Primers need to be anywhere from 18-25 nucleotides.

Don’t include the restriction site or Kozak sequence as part of your 18-25 nucleotides for the primer.

Should contain at least 50% GC composition.

Must flank the entire CODING sequence.

Designing Amplification Oligos