co2 conversion to fuels - columbia university

17
CO 2 Conversion to Fuels A Progress Report on Liquid Light Inc. Columbia University, April 2014

Upload: others

Post on 11-Dec-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

CO2 Conversion to Fuels

A Progress Report on Liquid Light Inc.

Columbia University, April 2014

CO2

Oil, Gas

(CHx)

More

Oxidized

More

Reduced

Products and Energetics

Ethylene Oxalic Acid Ethanol Glyoxal

75 GJ/T Propylene

Isopropanol

Acetone

100 GJ/T

81 GJ/T 100 GJ/T

2-Butanol

Syngas Methanol Formaldehyde Formic Acid 6 GJ/T 36 GJ/T

15 GJ/T 33 GJ/T 43 GJ/T

36 GJ/T 34 GJ/T

40 GJ/T

One Cannot Achieve the Electrochemical Energy Goals without an Efficient Catalyst

N+

H

Aromatic Amines Drop the Activation Overpotential to ~200mV

MeOH Evolving PEC Using p-GaP

CO2 + 6e- + 6H+ CH3OH + H2O pH 5.2, 10mM pyridine

465nm

96% Faradaic Yield of MeOH @ 200mV UNDERpotential

N+

H

CO2 to Formate at an In Surface

The Liquid Light Process

Renewable Energy Source

Waste CO2

CO2 Generating Source

Water

CO2 + xH+ + xe-

product

2H2O 4H+ + 4e- + O2

e- e-

e-

Product Extraction

Chemicals & Fuels

Abundant cathode materials

Efficient and

selective catalysts

Low cell voltages (energy efficient)

Stability

Highlights

Solar Panel Provided By

and

Solar Fuel is Here!

System Runs Utilize Real Sunlight (AM 1.5)

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

0

200

400

600

800

1000

1200

0.00 20.00 40.00 60.00 80.00 100.00 120.00

The

rmio

nic

Eff

icie

ncy

Inte

nsi

ty (

W/m

2)

Time (minutes)

Insolation vs. Cell Response 4/22/13

Cloud Cover

Liquid Light’s 100cm2 scale electrochemical cell test bench

Photo shows 100cm2 active area electrochemical cell for conversion of CO2 to multi-carbon product along with test bench used to operate and control electrochemical cell. System includes control of electrolyte feed and circulation and instrumentation for process monitoring and control.

Test bench Controls

Cell

They Did It! Anyone want a good deal on Oxalate?

Acknowledgement

Advancing CO2 Chemistry

A Complex Synergy

GaInP2 @465nm

0

5

10

15

20

25

30

PY1 PY2 PY3 PY4 PY5

Catalyst

Relative P

ercen

t P

ro

du

ct

Acetone

Methanol

Isopropanol

Quantum Yield

GaP @ 365nm

0

10

20

30

40

50

60

PY2 PY3 PY4 PY5 PY6

Catalyst

Relative P

ercen

t P

ro

du

ct

Acetone

Methanol

Isopropanol

Quantum Yield

p-GaP MeOH Evolving Cell

CO2 + 6e- + 6H+ CH3OH + H2O pH 5.2, 10mM pyridine

465nm

Currently producing target chemicals at grams/day with product concentration streams > 3% and CD > 100 mA/cm2 and 1000 hr stability testing, now scaling up to kg/day over the

next year

Formic Acid System Scale-Up

What should we do with CO2?

Schematic diagram of possible CCS systems

SRCCS Figure TS-1

CO2 Utilization

Sequestration

Utilization:

Polymers, Solid-State Products

Fuels

7%

93%

Carbon-Carbon Coupling is Possible!

GaP @ 365nm

0

10

20

30

40

50

60

PY2 PY3 PY4 PY5 PY6

Catalyst

Relative P

ercen

t P

ro

du

ct

Acetone

Methanol

Isopropanol

Quantum Yield

Counting the Cost

CO2 + 2H2O

CH3OH + 3/2O2

H2O O2 kinetics

CO2 reduction kinetics According to the US DOE a gas fired power plant generates 1135 pounds of CO2/MWH

2.25 Moles CO2

If 1 Mole of CO2 is converted:

0.57 Moles CO2

2.82 Moles CO2

–1.00 Moles Consumed 1.82 Moles Net Formed!

690kJ/mole (1.2V•6e-)

≥170kJ/mole (1.4V)

(0.4V)

1.6eV

3.0eV photon

6e-/6H+