cns chapter 6 - uni-muenchen.de cha synthesis of cocaine j. org. chem. 2000, 65, 4773 a typical...

48
Chemical Neuroscience a course for synthetic chemists Transporters and Pumps 6 How to get polar compounds and ions across membranes ion channels ionophores transporters / pumps passive transport active transport

Upload: doanquynh

Post on 29-May-2018

217 views

Category:

Documents


1 download

TRANSCRIPT

Chemical Neuroscience a course for synthetic chemists

Transporters and Pumps

6

How to get polar compounds and ions across membranes

ion channels

ionophores

transporters / pumps

passive transport

active transport

Ionophores shuttle ions across membranes

Valinomycin is a potassium ionophore

OHN

O O

HN OO

O

O

HN

O

OO

NH

OO

O NHO

ONH

O

O

K+

OMe

Me

Me

D-Hyiv

L-Lac

L-Val

D-Hyiv

L-Lac

L-ValD-Hyiv

L-Lac

L-Val

D-Val

D-Val

D-Val

Merrifield synthesis: J. Am. Chem. Soc. 1969, 91, 2691

Monensin is a sodium ionophore

Kishi synthesis: J. Am. Chem. Soc. 1979, 101, 262

Still synthesis: J. Am. Chem. Soc. 1980, 202, 2120

OO

O

O OCOOMe

OMe

OHOH

Me

Me Me

MeH

MeOH

H

H

H

H

Na+

Me

Calcimycin (A-23187) is a calcium ionophore

Boeckmann synthesis: J. Am. Chem. Soc. 1991, 113, 5337

O

O

NO

NHMe

COO

O HN

Me

Ca2+

Proton ionophores (uncouplers)

They can be used to uncouple respiration from ATP-production in mitochondria.

HN

N

N

CCCP

HN

N

N

FCCP

O

OHNO2

NO2

DNP

F

F F N N

NON

HNNH

F F

BAM15

Cl

Ion channels, ionophores and transporters

Ion channels and ionophores pass ions along their electrochemical gradients.

Primary transporters hydrolyze ATP or use light energy to transport a solute against its (electro)chemical gradient.

Secondary transporters discharge chemical established gradients to transport a solute against its (electro)chemical gradient

Antiporters transport in opposite directions

Symporters transport in the same directions

The synapse

The synapse

http://en.wikipedia.org/wiki/Synapse

synaptic vesicle

transporter

vesiculartransporter

Neurotransmitter transporters

EAAT 1-5 (excitatory amino acid transporters)VGLUT 1-3 (vesicular glutamate transporters)

VAChT (vesicular acetylcholine transporters)

GlyT1,2 (glycine transporters)

GAT (GABA transporters)VGAT (vesicular GABA transporters)

DAT (dopamine transporters)NET (norepinephrine transporters)SERT (serotonine transporters)VMAT1,2 (vesicular monoamine transporters)

various peptide transporters

Cocaine has central effects

Until 1903 Coca Cola contained ca. 250 mg cocaine per liter (0.7 mM)

cocaine

NCOOMe

O

O

Na+

NH2HO

HO

dopamine

NHnortryptiline

pdb: 4M48

Na+

Cocaine inhibits the dopamine transporter (DAT)

NO

O

O OMe

NOH

O OH

(–)-cocaine ecgonine

N

O

tropinone

N

ψ-tropine

OHN

tropine

OH

N

(–)-hyoscyamineracemate: atropin

O

O

OH N

hyoscine = scopolamine

O

O

OHO

NCOOMe

O

O

O

ON

COOMe

α-truxilline

N

tropane(not a NP)

Tropane and Coca alkaloids

NO

O

O OMe

NOH

O OH

(–)-cocaine ecgonine

N

O

tropinone

N

ψ-tropine

OHN

tropine

OH

N

(–)-hyoscyamineracemate: atropin

O

O

OH N

hyoscine = scopolamine

O

O

OHO

NCOOMe

O

O

O

ON

COOMe

α-truxilline

N

tropane(not a NP)

Aspects of cocaine

NCOOMe

OBz

NO

O

O OMe

N

COOMe

OBz NMeOOC

OBz

NCOOMe

OBz

NCOOMe

OBz

NO

O

O OMe

methyl ester

NO

O

O OMe

benzoate

NO

O

O OMe

N-methyl group

NO

O

O OMe

NO

O

O OMe

NO

O

O OMe

NO

O

O OMe

NO

O

O OMe

tertary amine pyrrolidine piperidine

aldol 1,3-N,O

NO

O

O OMe

1,3-N,OMannich-retron

NO

O

O OMe

cocaine

NO

O

O OMe

tropane

N

O

tropinone

Molecular analysis of cocaine

Richard Willstätter

1915 Nobel Prize in Chemistry

Some Willstätter molecules

O

OH

HO

OH

OHCl

pelargonidin

O

OH

HO

OH

OHCl

cyanidin

OHO

OH

HO

OH

OHCl

delphinidin

OH

OH

N

Me

N

N NMg

OO

Me

Me

OOOMe

chlorophyll a

cocaine

NCOOMe

O

O

NCOOH

OH

ecgonin

N

O

OH

hyoscyamine (antagonist)

O

cyclooctatetraene cyclobutadiene(never made)

N

tropinone

O

The Hofmann degradation of cocaine

NHOOC

COOMe

OBz

This sequence established that cocaine contains a seven-membered carbocycle.

Chem. Ber. 1900, 33, 4011

1 1) HCl double ester hydrolysis → elimination

cocaine

NCOOMe

OBz

NCOOH

22) MeI N-methylation

NCOOHI

33) AgOH, Δ twofold Hofmann elimination of dimethylamine

HOOC

NCOOMe

OBz

HOOC

4 4) Pt, H2 hydrogenation

HOOC

5 5) NaN3, H2SO4 Schmidt rearrangement

H2N

6,7 6) MeI7) AgOH, Δ

methylation,Hofmann elimination

The Willstätter synthesis of tropinone

N

O Me2N

O

A heroic effort and one of the first total syntheses of a natural product. Inspired and enabled by degradation studies (via Hofmann eliminations). The overall yield was poor but the correlation was made.

Chem. Ber. 1900, 33, 4011

1,2

3,4

6-8

1) NH2OH2) Na/EtOH

3) MeI4) Ag2O/H2O

oxime formation,reduction

exhaustive methylation,Hoffmann elimination

methylation,Hofmann elimination

5 5) Br26) Me2NH

bromination,substutution and elimination

7) MeI8) Ag2O/H2O

O

NH2

NMe2

Cycloheptanone was available viaClaisen condensation/decarboxylation.

9 9) Br2, quinoline 1,4 dibromination, double elimination

Br

10 10) HBr hydrobromination

11,12 11) Me2NH12) Na/EtOH

aminationreduction of the diene

Me2N

13 13) Br2 → Δ key step: bromination followed by intramolecularnucleophilic substitution to form the nitrogen bridge

NBr

Br The tropane skeleton is in place.

NBr

Br

14-1614) NaOH15) Cl–16) 130 °C

elimination,chloride salt formation,monodemethylation

17,18 17) HBr18) H2SO4

hydrobrominationnucleophilic substitution under Sn1 conditions

19 19) CrO3 oxidation

N

O

tropinone

N

O≡

ϕ-tropine

tropidine

N

BrBr≡

N

N

OH

The Willstätter synthesis of racemic cocaine

Chem. Ber. 1901, 34, 1457

One of the first total syntheses (“vollständige Synthese”) of a complex natural product. A landmark achievement in natural product chemistry.

NO

COOMe

O

N

O

tropinone

N

O

1) 1) Na, CO2

N

O

2) 2) Na, HCl, H2O

NOH

COOH

(±)-ecgonine

+ isomers

formation of the sodium enolate,carboxylation

dissolved metal reduction via:

COONa

NO

COO

NOH

COOMe

4) 4) Bz2O benzoylation

NO

COOMe

O

(±)-cocaine

NOH

COOH

(±)-ecgonine

3) 3) HCl, MeOH Fischer esterification

Liebigs Ann. Chem. 1901, 317, 3163

The 1901 Willstätter synthesis of racemic cocaine

Chem. Ber. 1901, 34, 1457

N

O

OH

atropine (antagonist, racemate)

O

N

O

atropamine

O

N

O

belladonnine

O

N

O

O

Ph

(±)-cocaine

NCOOMe

OBz

Robert Robinson

1947 Nobel Prize in Chemistry

Robinson’s stroke of geniusJ. Chem. Soc. Trans. 1917, 111, 762

N

O

tropinoneOH

HNH2

O

OO

N OHOH

"imaginaryhydrolysis"

Robinson’s synthesis (and Schöpf’s improvement)

N

O

tropinone

H2O

low yield

NH2

O

OO

NH2

O

OO

N

O

tropinone

H2O

HOOC

COOH + 2 CO2pH > 7

42%

NH2

O

OO

N

O

tropinone

H2O

HOOC

COOH + 2 CO2pH 7 buffer

90%

Schöpf 1937:

O

H

O

H

H2N- H2O N

H

O

H

N

O–

COOHO

COOH N

O

COOH

HO

O OH

H

N

O

tropinone

N

OH

COOH

O OH

N

O

COOH

O O H

– 2 CO2H+

– H2O

A plausible mechanism

The Casale synthesis of cocaine

Forensic Sci. Int. 1987, 33, 275

N

cocaine

NH2

O

OO

COOMe

HOOC

COOMe

OBzN

COOMe

O

A “practical” synthesis that is in essence a variant of the Robinson tropinone synthesis. A similar synthesis was realized by Willstätter in 1923.

1

2

3

4

1) HOAc, Ac2O → MeOH

2) MeNH2,

3) Na-Hg, H2SO4

4) BzCl, py

formation of a cyclic anhydride → methanolysis via:

key step: Mannich condensation and decarboxylation via:

esterification

reduction of ketone to equatorial 3-hydroxy groupvia the more stable radical anion:

NO

O

O OMe

HOOC COOHO

HOOC COOMeO

N

O

OOMe N

OH

O OMe

NOH

O OMe

cocaine

N

O

OOH

O OMe

OHC CHO

O

O

O O

NO

COOMe

N

(+)-cocaine

OBzNE+

O

N

O

HH

tropinone

COOMe

The Cha synthesis of cocaineJ. Org. Chem. 2000, 65, 4773

A typical “concept-oriented synthesis”, wherein an enantiotopos-selective deprotonation is used. A synthetic equivalent for a C1 electrophile is employed. Probably for regulatory reasons, the unnatural enantiomer is made. The conversion of tropinone into racemic cocaine had been previously explored by Willstätter.

NLi

CH3 CH3

"chiral LDA"

NO

NN

O

O

NN

O

OHOH

PPh3

PPh3

O

O

OHOH

N N

O– –O

pybox

box

binol binap

taddol salen Zr ClCl

EBTHI

Homotopicityusually associated with C2-symmetry

HOOC COOH

HO OH

OAc

OAc

OAcMe

OAcMe

OO

Me

Me

O

H H

O

OMe

O

Me

OO

H

H

Me

Me

O

HH

O

OMe

MeO

H

H

NLi

CH3 CH3

HNN

N

Champix®

nonactin

O

O

H

H

O

OO

OHOHO

HOOC COOH

OH

OH

Enantiotopicityusually associated with Cs-symmetry (but sometimes applies to centrosymmetric molecules)

Diastereotopicityusually associated with C1

O OHO

O

NH2HO

AcNNAc

OTBS

O

O

O

O

1

2

3, 4

1) ,

2) TIPSOTf, lutidine

3) Li / NH34) BzCl, Et3N

key step: enantiotopos-selective deprotonation→ diastereoselective aldol addition, e.r. = 95:5

protection (needed for differentiation)

reduction,benzoylation

Tropinone is readily available via Robinson-Schoepf synthesis.

N

O

N

OTBSOH

O

N

OTBSOTIPS

O

N

OTBSOTIPS

OBz

→N

OLichiral lithium enolate

NLi

MeMe

H

OOTBS

stereoselective reduction via the more stable radical anion:

NO

R

NO OMe

OBz

5, 6

7

5) HF6) RuCl3 /NaIO4

methylation

diol deprotaction, diol cleavage

NO OH

OBz

NO OMe

OBz

(+)-cocaine

7) TMSCHN2

N

OTBSOTIPS

OBz

The Pearson synthesis of cocaine

Org. Lett. 2004, 6, 3305

N

(+)-cocaine

OBzN

meso-dialdehyde

COOMeO

H

O HNO≡

H

O

H

NO

H

O

H

A methodology- and concept-oriented synthesis. Pearson’s proprietary pyrrole synthesis is used and an organocatalytic aldol-desymmetrization of a meso-dialdehyde serves as a key step.

Me

O

O

analogous:

Wieland-Miescher ketone71% ee

O

O

O

O

O ONH

COOH

Me

O

OMe

O

O

OH

TsOH

PhH

DMF

NO

OH

O

O

3 mol%

Michael

enantiotopos -

differentiating !

93% ee

Houk-TS

Hajos-Parrish-Eder-Sauer-Wiechert ketone

Proline-catalyzed asymmetric aldol reactionsReview: B. List, Tetrahedron 2002, 58, 5573.

NCOOMe

OBz1-3

4

5

6-8

1) LDA, Bu3SnH2) phthalimide, PPh3, DEAD3) H2NNH2, EtOH

4) 4 Å MS,

5) n-BuLi,

6) Boc2O7) Li, NH3/THF

8) TPAP, NMO

stannylation,Mitsunobu reaction,hydrazinolysis

condensation

key step: 2-azaallyllithium [3+2] cycloaddition to phenyl vinyl sulfide gives the desired 2,5-substituted cis-pyrrolidine

Boc protection,reductive removal of thiophenyl group and both benzyl ethers,twofold Ley oxidation

BnO CHO

BnO

SnBu3

NH2

BnO

SnBu3

N OBn

HN

SPh

BnO OBn

BnO CHO

SPh

2-azaallyllithium [3+2] cycloadditions provide the cis-2,5-disubstituted pyrrolidines whereas (2-aza-allyl)stannanes lead predominantly to the trans-2,5-disubstituted pyrrolidines.

NBoc

O

H

O

H

9

10, 11

9) L-proline, PhCH3

10) NaClO211) CH2N2

key step: intramolecular enol-exo-proline-catalyzed aldol reaction gives an unseparable 1:1 mixture of epimers

Pinnick oxidation,esterification

12 benzoylation under Steglich conditions

13, 14 deprotection,reductive amination

12) (Bz)2O, DMAP

13) TFA14) HCHO, NaBH3CN

NBoc

N CHOOH

Boc

N COOMeOH

Boc

N COOMeOBz

(+)-cocaine

meso-dialdehydeO

H

O

H

N COOMeOBz

Boc

The Tufariello synthesis of cocaineJACS 1979, 101, 2435

N

cocaine

COOMe

OBzNO COOMe

NCOOMeO

NMeOOC

O

A methodology-oriented synthesis. A nitrone 1,3-dipolar cycloaddition is employed twice, establishing the 1,3-N,O-motif. The nitrone in itself is transiently protected as a cycloadduct. The reversibility of nitrone-cycloadditions was previously established by Edda Gössinger (University of Vienna).

NCOOMe

OBz

1

2

3

1)

2) m-CPBA

3)

oxidation and elimination to regioselectivelygenerate a second nitrone, possibly via:

1,3-dipolar cycloaddition

key step: 1,3-dipolar cycloaddition

NO

NO

MeOOC

NO

NO

MeOOC

O

The niitrone was made through HgO oxidationof pyrrolidine.

H

MeOOCOH

H

COOMe

COOMe

NO

COOMe

HMeOOC

OH

NCOOMe

OBz

4, 5

6

7

4) MsCl5) DBN

6) 144 oC

7) MeI

key step: nitrone is deprotected via a retro-1,3-dipolar cycloaddition, which triggers an intramolecular 1,3-dipolar cycloaddition via:

mesylation,dehydration

N-methylation

NO

COOMe

NCOOMeO

NO COOMe

I

NMeOOC

O

HMeOOC

OH

N

NDBN =

NO

COOMe

HMeOOC

NO COOMe

8 reductive N-O bond cleavage

9 benzoyl ester formation

8) Zn, AcOH

9) BzCl, NaOH

(±)-cocaine

NCOOMe

OBz

NCOOMe

OH

I NO COOMe

How is cocaine really produced ?

Annual production: ca 1000 tons; 2008 sales: ca. $ 77 billion the US alone ! For comparison: the 2006 sales of Lipitor (best-selling medicinal drug) were $ 14.4 billion.

N

N-methylΔ1-pyrrolidinium

ion

HNHOOC

NH2

NH

NH2

arginine

O

CoA-S2

N

OO

CoA-S NCOOMe

OBz→ [O]

The biosynthesis of cocaine

NCOOMe

OBzCoAS

OHOOC COOH

NH2SAM

SCoA

OSCoA

OSAM

NCOOMe

OBz

plants

1) ornithine decarboxylase, PLP decarboxylation with pyridoxal phosphate (PLP)

HOOC COOH

NH2

L-glutamic acid

H2N COOH

NH2

L-ornithine

1

H2N

NH2

putrescine

2) SAM, putrescine N-methyltrans- ferase

N-methylation2

HN

NH2

N-methylputrescine

NCOOMe

OBz

HN

NH2

N-methylputrescine

3) methylputrescine oxidase diamine oxidation3

NH O

N

+ H2O- H2O iminium formation

4) acetyl-CoA intermolecular Mannich reaction via:4

N

O

SCoA

5) acetyl-CoA β-ketothioester formation5

N

O O

SCoA

N

O

SCoA

(±)-cocaine

NCOOMe

OBz

N

O O

SCoA

6) [O]6 oxidation to pyrrolinium cation → intramolecular Mannich reaction → thioester hydrolysis via:

NCOOH

O

N

O

HO SCoA

7) SAM8) NADPH

7,8 methyl ester formation,reduction

NCOOH

OH

9) benzoyl-CoA9 ester formation

L-Phe CoAS

O

methylecgonine

Amphetamines run DAT in reverse

O

Me

HN

HN

methamphetamine(Crystal Meth, Tina, Ice)

mephedrone

O

Me

NH2

cathinone(Khat)

O

Me

HN

methcathinone

NH2

amphetamine(Aderall)

Me

NH2

amphetamine(active enantiomer)

Me

HN

MDMA(Extasy)

O

O

Me

HN

methamphetamine(active enantiomer)

Me

HN

pseudoephedrin

OH

Me

HN

ephedrin

OH

Me

HN

fenetyllin (Captagon)

N

NN

NO

O

Smurfs, ammonia and “shake and bake”

Me

HN

pseudoephedrin

OHH2 or 2 e-, 2 H+

Me

HN

metamphetamin

O

H2N

CHO NO2

April 1945

Walter White’s chemistry

Convallaria majalis (Maiglöckchen, lily of the valley)

strophantidine glycosides target the Na+/K+-ATPase

ricin targets the ribosome

methamphetamine targets DAT

seeds from Ricinus communis (castor bean)

Homo sapiens ssp. Heisenbergensis (the deadliest of them all)

O

OHRO OH

H

H

Me

O

O H

Me

HN

methylphenidate (Ritalin)

HN

MeO OH

Ritalin inhibits DAT and NET

Ritalin prescriptions for adults are becoming a problem in the U.S.

Antidepressants

“Melencholia I” by Albrecht Dürer (1514)

Depression can affect highly accomplished people

Abraham Lincoln was known to take “blue mass”, a highly toxic medicine containing mercury, against his depressions.

Ludwig Boltzmann killed himself in 1906probably due to depression and certainlynot because his work was ignored.

SERT is a major target for antidepressants

Many of these drugs are selective serotonin reuptake inhibitors (SSRIs).

ClCl

NHMe

sertraline (Zoloft)

NH

O

F3C

fluoxetine (Prozac)

N

N

imipramin (Tofranil)

ON

F

NC

escitalopram (Cipralex)

OH

N

OMe

venlafaxine (Effexor)

S

NH

O

duloxetine (Cymbalta)

O

Me

HNCl

bupropion (Welbutrin)

NH

F

O

paroxertin (Paxil)

O

O

A model of escitalopram bound to SERT

ON

F

NC

seen obliquely from the extracellular side

Mesembrine inhibits SERT

“Kanna" is prepared by fermenting Sceletium tortuosum and has been used, initially in South Africa, to elevate mood and decrease anxiety, stress and tension.

Sceletium tortuosum

N

OMeOMe

OH

mesembrine

The Stevens synthesis of mesembrine

A classic exercise in Mannich chemistry that also features an interesting ring expansion.

MeO

MeO

NMe

OMeOMe

HO

MeNH2

CN

O Cl Cl

J. Am. Chem. Soc. 1968, 90, 5580J. Org. Chem. 1975, 40, 3495

1-3 1) LDA,2) DIBAL-H3) MeNH2

cyclopropane formation by double alkylation,nitrile reduction,imine formation

4 4) NH4I key step: rearrangement via:

5 5) HCl, key step: Robinson-type annulation

OMeOMe

NC

Cl Cl

OMeOMe

NMe

NMe Ar

I-

HNMe Ar

H

I

OMeOMe

NO

NMe

OMeOMe

HO

Me

mesembrine

The Keck synthesis of mesembrine

An unusual synthesis featuring a nitroso-ene reaction.

J. Org. Chem. 1982, 47, 1302

MeO

MeO

Br

NMe

OMeOMe

HO

OMe

O

MeI

Ac2O

NH2OH

NMe

OMeOMe

HO

1 1) → H3O+ nucleophilic attack on the vinylogous ester→ β-elimination of water

2,3 2) NaBH43) Ac2O, py

enone reduction,acetylation

4 4) LiHMDS, TBSCl → Δ key step: Ireland-Claisen rearrangement

OMe

O Li OMe

OMe

O

OMe

OMe

OAc

OMe

OMe

OHO

OMe

OMe

5 5) SOCl2, DMF → NH2OH hydroxamic acid formation via the acid chloride

6 6) Pr4NIO4, 9,10-dimethylanthracene

key step: nitroso-Diels-Alder reaction

OHO

OMe

OMe

NHO

OMe

OMe

OH

NO

OAr

Ar =

OMeOMe

NMe

OMeOMe

HO

NO

OAr

7 7) PhMe, Δ key step: retro-Diels-Alder reaction →nitroso-ene reaction

NOH

O

OMeOMe

H

8-10 8) TiCl39) NaH, MeI10) NBS, H2O

N-O bond cleavage,N-methylation,bromohydrin formation

NMe

O

OMeOMe

HHOBr

NMe

OMeOMe

HO

NMe

O

OMeOMe

HHOBr

11,12 11) Bu3SnH, AIBN12) PCC

radical dehalogenation,oxidation

NMe

O

OMeOMe

HO

13-15 13) (CH2OH)2, p-TsOH14) LiAlH415) HCl

ketal formation,lactam reduction,ketal deprotection

NMe

OMeOMe

HO

mesembrine

The Zhang synthesis of mesembrine

A very effective, asymmetric synthesis hat hinges on a transition metal catalyzed allylation and arylation.

MeO

MeO

Br

NMe

OMeOMe

HO

MeNH2

OAcOEt

O

Org. Lett. 2009, 11, 555

NMe

OMeOMe

HO

1 1) Pd(OAc)2, BINAP, NaHMDS,

ArBr → NaHMDS,

key step: sequential α-arylation and allylation

2 2) OsO4, NaIO4 alkene dihydroxylation and cleavage

OEt

O

OAc

OMeOMe

BrArBr =

OEt

O

OMe

OMe

OEt

O

OMe

OMe

O

5 5) Li, NH3 Birch reduction

NMe

OMeOMe

HO

mesembrine

3,4 3) MsCl, THF/H2O4) MeNH2 → NaBH3CN

enol ether cleavage,reductive amination

OEt

O

NMe

OMeOMe

O

OMe

OMeO

Reserpine inhibits VMAT

Due to side effects, reserpine has been discontinued as a clinically used antidepressant.

NH

N

OMeMeOOC

H

H

reserpine

MeO

O

O

OMeOMe

OMe

H

Rauwolfia serpentinata

The Woodward synthesis of reserpine

A celebrated “classic” featuring an early applications of the Diels-Alder reaction in natural product synthesis. One of Woodward’s signature achievements, it makes extensive use of reactions that occur selectively from the convex side of polycyclic systems.

O

H

MeOOCOMe

H

NNH

MeO

HO

OMe

OMeOMe

O

O

COOMe

Cl

O

OMeOMe

OMeNaOMeCH2N2

NHMeO

NH2

J. Am. Chem. Soc. 1956, 78, 2023J. Am. Chem. Soc. 1956, 78, 2657

O

H

MeOOCOMe

H

NNH

MeO

HO

OMe

OMeOMe

1

2,3

1) endo Diels-Alder reaction

diastereoselective double Meerwein-Ponndorf-Verley reduction → lactonization,intramolecular bromoetherification

2) Al(Oi-Pr)3, i-PrOH

3) Br2

O

O

COOMe

O

O

H

H COOMe

O

H

4 elimination → Michael addition from the convex face4) NaOMe, MeOH

OO

BrH HH

The two double bonds and carbonyls are nowdifferentiated and can be elaborated separately.

O

H

OO

OMeH HH

O

H

MeOOCOMe

H

NNH

MeO

HO

OMe

OMeOMe

5,6 bromohydrin formation by bromination from theconvex face,oxidation

5) NBS, H2SO4, H2O

6) H2Cr2O7, AcOH

O

H

OO

OMeH H

Br

O

7 key step: double reductive elimination via:7) Zn, AcOH

O

H

OO

OMeH H

Br

OO

H

OMeH

Br

O

ZnO

H

COOOMeH

BrZn

O

H+

OHH

COOHOMeHO

COO

OHH

COOHOMeHO

O

H

OO

OMeH HH

H

Zn

O

H

MeOOCOMe

H

NNH

MeO

HO

OMe

OMeOMe

OHH

COOHOMeHO

8-10 methyl ester formation,acetylation,dihydroxylation from the convex face

8) CH2N29) Ac2O10) OsO4, NaClO3

OAcH

COOMeOMeHO

HOHO

11,12 key step: double diol cleavage,methyl ester formation

11) HIO412) CH2N2

H

HO

HOHO HIO4 H2O

H

H

OHO

HOHO

HO

HIO4

– HCO2H

CH2N2

MeOOC

OAc

COOMeOMe

O

H

CHO

COOMe

AcOMeOOC

MeO

H

HO

OO

H

H

O

HO

O

H

H

O

MeO

O

O

H

MeOOCOMe

H

NNH

MeO

HO

OMe

OMeOMe

MeOOC

OAc

COOMeOMe

O

H

13 key step: imine formation with methoxytryptamine→ reduction and condensation to yield the lactam

13) → NaBH4

NHMeO

NH2

OAc

H

MeOOCOMe

H

NOHN

MeO

14key step: Bischler-Napieralski reaction followed by reduction.14) POCl3 → NaBH4

OAc

H

MeOOCOMe

H

NNH

MeO

H NClHN

MeO

NHN

MeO

H

The undesired isomer was formed due to hydride delivery from the α-side.

O

H

MeOOCOMe

H

NNH

MeO

HO

OMe

OMeOMe

OAc

OAc

H

MeOOCOMe

H

NNH

MeO

H

MeO E

15,16 methyl ester and acetate hydrolysis,lactone formation

15) KOH, MeOH16) DCC, py

The minor, less favorable conformer is trapped and"clamped" in a conformation that will allow theepimerization of the crucial stereocenter.

E = COOMe

N

HN

OMe

OMeO

N

HN

OMe

O

O

H

MeOOCOMe

H

NNH

MeO

HO

OMe

OMeOMe

17

key step: epimerization via a planar intermediate:

17) PivOH, Δ

OMeO

N

O

18 lactone hydrolysis18) NaOMe, MeOH

NH

N

H

H+

NH

N

H

H

NH

N

NH

N

H

H

-H+NH

N

H

H+H

NH

MeO NH

H

OMe

MeO

O

HOH

OMeO

N

HN

OMe

O

HN

OMe

MeO

MeOOMe

O

Cl19 ester formation19) py,

reserpine

NH

MeO NH

H

OMe

MeO

O

HO

OMe

OOMe

OMe

NH

MeO NH

H

OMe

MeO

O

HOH

The Jacobsen synthesis of (+)-reserpine

Sixty years after Woodward an enantioselective synthesis that features two of Jacobsen’s signature reactions: a kinetic hydrolytic resolution and a thiourea-mediated (formal) aza Diels-Alder reaction.

Org. Lett. 2013, 15, 706

OMe

OMeOMe

Cl

O

TBSOO

TMSCHN2 H OEt

O

Br TMS

N

O

OMe

MeI

NH

NH2

MeO

NH

H

OMe

MeO

O

HO

OMe

OOMe

OMe

NH

MeO

NTs

MeO NH

H

OMe

MeO

O

HO

OMe

OOMe

OMe

1 1) BnOH (0.45 eq), Co(salen)OTf key step: Jacobsen hydrolytic kinetic resolution

5,6 5) Ti(Oi-Pr)3Cl,6) TfOH,

diastereoselective allylation,alcohol protection with a Bundle-type reagent

TBSOO

TBSO

OHOBn

2-4 2) NaH, MeI3) Pd-C, H24) (COCl)2, DMSO, Et3N

methylation,benzyl deprotection,Swern oxidation

TBSO

OMe

O

Br TMS

PMBO CCl3

NH

7 7) t-BuLi, Weinreb ketone synthesisN

O

fragment A

OMe

TBSO

OMe

PMBO

O

TBSO

OMe

PMBO

Br

NTs

MeO NH

H

OMe

MeO

O

HO

OMe

OOMe

OMe

8-10 1) HCOOEt, Et3N2) POCl33) TsF, Cs2CO3

amide formation,Bischler-Napieralski reaction,tosylation

11 11) thiourea, fragment A, AcOH key step: organocatalyzed formal aza-Diels-Alder

NH

NH2

NTs

N

MeO

MeO

Ph N NH

NHPh O

t-Bu S

NH2

thiourea

NH

H

OPMBOMe

TBSO O

N

RNthiourea

HMannich

NH

Michael

N thioureaR

N

O→ H2O

fragment A

TBSO

OMe

PMBO

O

NTs

MeO

NTs

MeO NH

H

OMe

MeO

O

HO

OMe

OOMe

OMe

12-14 12) HF•py13) DMP14) piperidine, p-TsOH

deprotection,Dess-Martin oxidation,aldol reaction

NH

H

OPMBOMe

HO

15,16 15) NaClO2, NaH2PO416) TMSCHN2

Pinnick oxidation,esterification

HO

NH

H

OPMBOMe

TBSO O

NTs

MeO

NTs

MeO

NH

H

OPMBOMe

MeOO

HO

NTs

MeO

17-19 17) n-BuLi, TFAA18) DBU, Δ19) Crabtree catalyst, H2

alcohol trifluoroacetylation,elimination,hydrogenation

NH

H

OPMBOMe

MeO

O

H

20-22 20) TfOH, 1,3-dimethoxybenzene21) Na-Hg, NaH2PO422)

PMB deprotection,tosyl deprotection,acylation

NH

H

OMe

MeO

O

H

OMe

OMeOMe

Cl

O

O

OMe

OOMe

OMe(+)-reserpine

NH

H

OPMBOMe

MeOO

HO

NTs

MeO

NTs

MeO

NTs

MeO

3 Na+

2 K+

pdb 4YHT

extracellular

intracellular

The Na+/K+-ATPase establishes ionic gradients

extracellular

intracellular

Ouabain inhibits the Na+/K+-ATPase O

OH

HO

O OH

HO

H

H

OH Me

O

O

Me

OHHO

HO

ouabain

pdb 4YHT

Cardiac glycosides (cardenolides)

O

OH

HO

O OH

HO

H

H

OH Me

O

O

Me

OHHO

HO

ouabain

O

OH

HO

HO OH

HO

H

H

OH Me

O

ouabagenin

OO

HO

HO

OHOHO

HOH

O

Me

OHO H

H

H

Me

O

O

digitoxin

HO

OO

OO

OHMe

OHHO

H

H

OHMeMe

O

Me

OHRO H

H

H

Me

O

cardenolide core

Science 2013, 339, 59-63

An elegant semisynthesis starting from a (now) widely available steroid.

The Baran synthesis of ouabagenin

MeHO

H

HHO

OH

HO

HOOH

OO

MeO

H

H

HO

HO

O

OO

O

cortisone acetateO

OOAcOHMeO

Me

H

H

H

MeHO

H

HHO

OH

HO

HOOH

OO

1

2, 3

1) NaBH4 → NaIO4

2) p-TsOH, ethylene glycol3) hν (450 W), SDS solution

cortisone acetate

adrenosterone

ketone protection,key step: Norrish-Yang reaction (type II)

ketone reduction → diol cleavage

MeHO

H

H

HO

O

OO

O

OOAcOHMeO

Me

H

H

H

O

OMeOMe

H

H

H

MeHO

H

HHO

OH

HO

HOOH

OO

6-8

4, 5 4) hν (90 W), NIS, Li2CO3

5) TiCl4 → AgOAc

key step: cyclobutanol fragmentation and iodination,selective deketalization → iodide hydrolysis

6) H2O2, NaOH7) SeO28) H2O2, NaOH

directed epoxidation,dehydrogenation,directed epoxidation

MeHO

H

H

HO

O

OO

MeO

H

H

HO

HO OO

MeO

H

H

HO

HO

O

OO

O

MeHO

H

HHO

OH

HO

HOOH

OO

12-14 reduction under Birch conditions,selective deprotectionSaegusa oxidation,olefin isomerization

11) Li, NH312) PPTS, acetone13) TMSOTf, Et3N; Pd(OAc)214) SiO2, DIPEA, perfluorotoluene

9-11 9) Al-Hg, NaHCO3 (sat.)10) PPTS, acetone11) LiEt3BH

key step: reductive opening of epoxides,diol protection,ketone reduction and boronic ester formation

MeO

H

H

HO

HO

O

OO

O

MeO

H

H

H

O

O

O

O BEt

OO

MeHO

H

HO

O

O

O BEt

O

ouabagenin

15) Co(acac)2, PhSiH3, O216) N2H4, Et3N; I2, Et3N17) Bu3SnX, Pd(PPh3)4, CuTC

18) CoCl2•6H2O, NaBH419) Barton’s base 20) HCl (conc.)

2-tert-Butyl-1,1,3,3,-tetramethylguanidine (Barton’s base)

N N

N

Bu3Sn

OO

Bu3SnX =

15-17

18-20

Mukaiyama hydration,Barton vinyl iodide synthesisStille cross coupling

reduction, olefin isomerization,deprotection

MeHO

H

HO

O

O

O BEt

O

MeHO

H

HO

O

O

O BEt

OH

OO

MeHO

H

HHO

OH

HO

HOOH

OO

SCOOCu

CuTC

Palytoxin also inhibits the Na+/K+-ATPase

HO NH

NH

O O

OH

Me OH

OHO

HO OHOH

HO

HOH

HO OH

OHOHMeOOMe

Me

O

HO

OHOHHO

OH

OH

Me

OH

OHO

OH

HO

H

OH

OH

O

OH

OHOH

OH

HO

OHOH

O

OO

O

OHH2N

OH

OH

HOOH

OH

HOHO

OHMe

OH

palytoxin

Kishi synthesis: J. Am. Chem. Soc. 1994, 116, 11205