cnr - bari, italy from elementary processes to plasma modeling · 1st research coordination meeting...

56
1 st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019 Roberto Celiberto Roberto Celiberto From elementary processes to plasma modeling From elementary processes to plasma modeling olytechnic of Bari, Italy Institute of Nanot CNR - Bari, Ital

Upload: others

Post on 26-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

1st Research Coordination Meeting onAtomic Data for Vapour Shielding in Fusion Devices

I.A.E.A. Vienna, March 2019

Roberto CelibertoRoberto Celiberto

From elementary processes

to plasma modeling

From elementary processes

to plasma modeling

Polytechnic of Bari, Italy Institute of NanotechCNR - Bari, Italy

Page 2: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Non-Boltzmann population

Non-Maxwellian electron energy distributionsfunction

Non-equilibrium low-temperature plasmas

State-to-state vibrational kinetics

Large sets of cross section data

Molecular plasmas

Page 3: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Vibrational kinetics of electronicallyexcited states in H2 discharges

The evolution of atmospheric pressure hydrogen plasmaunder the action of repetitively ns electrical pulse

Colonna et al., Eur. Phys. J. D (2017)

Page 4: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Input data===============================================Em/N = 200 Td;Pulse = 20 ns;Gas temperature = 1000 KGas pressure = 1 bar.Molar fractions:

===============================================

2

10

H10

eχ χ +

−= =9

H 2 10χ −= ⋅

3H H H0χ χ χ+ − += = =

Page 5: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

H2/H STATE-TO-STATE KINETICS

Ground state vibrational kinetics

Ground state vibrational kinetics Atomic level kinetics

Electron impact induced processes

Molecular ion kinetics

Page 6: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Singlets vibrational kinetics

Triplets kinetics

Negative Ions kinetics cation kinetics

Updated model

H2/H STATE-TO-STATE KINETICS

The European Physical Journal D (2017), Vibrational kinetics of electronically excited states in H2 discharges

Colonna, G., Pietanza, L. D., D’Ammando, G., Celiberto, R., Capitelli, M., & Laricchiuta, A.

1

1

1

: , ’, ”

: ,*

, ’

g

g

B B B

C DY

D

+ Σ

Π=

3 3 3, ,u g ub a c+ +Σ Σ Π

+3H

Page 7: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

✓ state-to-state

✓ radiative processes

The European Physical Journal D (2017), Vibrational kinetics of electronically excited states in H2 discharges

Colonna, G., Pietanza, L. D., D’Ammando, G., Celiberto, R., Capitelli, M., & Laricchiuta, A.

Page 8: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

✓ s ta te-to-s ta te

✓ ra dia tive proces s es

U. Fantz, D. Wünderlich, ADNDT (2006)

The European Physical Journal D (2017), Vibrational kinetics of electronically excited states in H2 discharges

Colonna, G., Pietanza, L. D., D’Ammando, G., Celiberto, R., Capitelli, M., & Laricchiuta, A.

Page 9: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

✓ state-to-state

✓ radiative processes

✓ energy profile cross section

υ = 0

semiclassical IPM - R. Celiberto et al., ADNDT (2001)

The European Physical Journal D (2017), Vibrational kinetics of electronically excited states in H2 discharges

Colonna, G., Pietanza, L. D., D’Ammando, G., Celiberto, R., Capitelli, M., & Laricchiuta, A.

1 1 12 2H ( , ) H ( , , ')g u uX v e B C v

+ +Σ + → Σ Π

1Bu+ C1Πu0→0

0→5

10→70→0

0→5

0→10

5→10

5→20Cro

ss s

ectio

n Å

2

Collision energy (eV)Collision energy (eV)

Page 10: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Ajello et al., Physical Review A (1984)

Wrkich et al., Journal of Physics B (2002)

υ = 0

✓ state-to-state

✓ radiative processes

✓ energy profile cross sections

✓ accuracy

CCC approachM.C. Zammit et al., Physical Review Letters (2016)

BEf scalingTanaka et al. Reviews of Modern Physics (2016)

Kim, J Chem Phys (2007)

The European Physical Journal D (2017), Vibrational kinetics of electronically excited states in H2 discharges

Colonna, G., Pietanza, L. D., D’Ammando, G., Celiberto, R., Capitelli, M., & Laricchiuta, A.

semiclassical IPM - R. Celiberto et al., ADNDT (2001)

Page 11: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Fast (ns-pulsed) discharges in hydrogenexcited state concentration

& singlets vibrational distributions

Fast (ns-pulsed) discharges in hydrogenexcited state concentration

& singlets vibrational distributions

0 5 10 15 200

50

100

150

200

250

E0/

N (T

d)

time (ns)

Page 12: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Fast (ns-pulsed) discharges in hydrogenexcited state concentration

& singlets vibrational distributions

Fast (ns-pulsed) discharges in hydrogenexcited state concentration

& singlets vibrational distributions

The European Physical Journal D (2017), Vibrational kinetics of electronically excited states in H2 discharges

Colonna, G., Pietanza, L. D., D’Ammando, G., Celiberto, R., Capitelli, M., & Laricchiuta, A.

… no quenching… no quenching

Page 13: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Fast (ns-pulsed) discharges in hydrogenFast (ns-pulsed) discharges in hydrogenhydrogen negative ion concentrationhydrogen negative ion concentration

The European Physical Journal D (2017), Vibrational kinetics of electronically excited states in H2 discharges

Colonna, G., Pietanza, L. D., D’Ammando, G., Celiberto, R., Capitelli, M., & Laricchiuta, A.

no quenching

Page 14: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Dense plasmas

λD = [kBTe/(4πne)]1/2 is the Debye length

H+/H RESONANT CHARGE EXCHANGE in DEBYE PLASMAS

/ Dre

Ur

λ−

= −

H + H+ → H+ + H

Resonant charge exchange for H-H+ in Debye plasmas

A. Laricchiuta, G. Colonna, M. Capitelli1, A. Kosarim, and B. M. SmirnovEur. Phys. J. D (2017)

Page 15: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

10–2 10–1 100 101 102

102

103

104

Ecmf [eV]

Cha

rge-

Exc

hang

e cr

oss

sect

ion

[a02 ]

1.4 a0

λD = ∞

3.0 a0

1.2 a0

0.9 a0

1.0 a0

H+/H RESONANT CHARGE EXCHANGE in DEBYE PLASMAS

ASYMPTOTIC APPROACH

Laricchiuta, A., Colonna, G., Capitelli, M., Kosarim, A., & Smirnov, B. M.. Resonant charge exchange for H–H+ in Debye plasmas

European Physical Journal D (2017).

H(1s) + H+

Page 16: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

. Wu, J.G. Wang, P.S. Krstic, R.K. Janev, J. Phys. B 43, (2010)

10–2 10–1 100 101 102

102

103

104

Ecmf [eV]

Cha

rge-

Exc

hang

e cr

oss

sect

ion

[a02 ]

1.4 a0

λD = ∞

3.0 a0

1.2 a0

0.9 a0

1.0 a0

H+/H RESONANT CHARGE EXCHANGE in DEBYE PLASMAS

ASYMPTOTIC APPROACH vs QUANTUM

Laricchiuta, A., Colonna, G., Capitelli, M., Kosarim, A., & Smirnov, B. M.Resonant charge exchange for H–H+ in Debye plasmas

European Physical Journal D (2017).

H(1s) + H+

Page 17: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

10–2 10–1 100 101 102

102

103

104

Ecmf [eV]

Cha

rge-

Exc

hang

e cr

oss

sect

ion

[a02 ]

λD = ∞

0.9 a0

7.0 a0

λD = ∞

5.0 a0

4.6 a0 2pxy

1s

10–2 10–1 100 101 102

102

103

104

Ecmf [eV]

Cha

rge-

Exc

hang

e cr

oss

sect

ion

[a02 ]

λD = ∞

20 a0

λD = ∞

3dm=2

1s

11 a0

15 a0

H+/H RESONANT CHARGE EXCHANGE in DEBYE PLASMAS

EXCITED STATES H*

Laricchiuta, A., Colonna, G., Capitelli, M., Kosarim, A., & Smirnov, B. M.. Resonant charge exchange for H–H+ in Debye plasmas

European Physical Journal D (2017).

n = 2, 3) + H+

2pm=1

Page 18: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Kinetic and divertor modeling

F. Taccogna, P. Minelli, D. Bruno, S. Longo, R. SchneiderChem. Phys. (2012)

Page 19: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Reduction of the Divertor Region to 1 Dimension

o Input data: - e/H+ density: np=1021 m-3

(detached divertor plasma condition) - e/H+ Temperature : Tp=5 eV

- B=1 Tesla; θ=85 °

o Simulation domain: l=0.3 mm

o Every Particle carries: - species: e, H+, H2+, H-; H, H2(X

1Σg+)

- axial position, velocities: (z, vx, vy, vz)

- quantities averaged over x,y (uniformity)

- quantum energy levels: - electronic: n=1s-3s for H

- vibrational: v=0-14 for H2

o Collision Methodology: - Plasma-Plasma (e+H2+/H-+H+/H-+e)

- Plasma-Neutral

- Neutral-Neutral relaxation (Vt/VT/VV)

o Boundary module:

- H2(v) wall relaxation-dissociation

- H wall recombinative desorption (ER/LH) -> H2(v) vibrational excitation (A-V)

- H+/H2+/ wall Auger neutralization -> H2(v) vibrational excitation (s-V)

Z

Page 20: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

20

Particle-in-Cell / Direct Simulation Monte Carlo Model of Plasma-Gas Coupling in the Divertor Region (PIC-DSMC)

Calculation of force

acting on particles

Fi = Ei + vi x Bi

Solution of Poisson’s

equation

Φ, E

Plasma source and

boundary effects

ri, vi

Plasma parameters

np, vp, Tp, …

Particle collisions viDSMC

PIC

Integration of particle

motion equations

ri, vi

Plasma source and

boundary effects

ri, vi, H(n), H2(v)

Particle collisions vi

Gas parameters

ng, vg, Tg, …

e, H+ H2+

H(n=1-3)H2(X 1Σg

+ (v=0-14))

Page 21: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Results: Plasma

non-Maxwellianbehavior

agreement with probe measurement

bulkDistance from divertor plate z(mm)

E(eV)z(mm)

dens

ity (

m-3

)−1.6 −1.2 −0.8 −0.4 0

wall

z(mm)

−0.25 −0.2 −0.15 −0.1 −0.05 0 z (mm)

−0.2 −0.15 −0.1 −0.05 0 z (mm)

−0.2 −0.15 −0.1 −0.05 0 z (mm)

Page 22: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Results: Gas

− 0.25 −0.2 −0.15 −0.1 −0.05 0 z (mm)

Page 23: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Results: MAR processes

production of precursors peaks close to the walldue to high vibrational excitation H2(v)

−0.25 −0.2 −0.15 −0.1 −0.05 0z (mm)

−0.25 −0.2 −0.15 −0.1 −0.05 0z (mm)

a) e + H2(v) → H + H−, H− + H+ → H + Hb) H+ + H2 (v) → H + H2

+, H2+ + e → H + H

Page 24: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Aerospace Sciences

Page 25: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019
Page 26: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

MotivationPlanet Speed

(km/s)Heat flux(kW/cm2)

Enthalpy(kJ/cm2)

Acceleration(g)

Jupiter 47.4 30 300 250

Saturn 26.9 1.3 257

Uranus 22.3 5.1 32.8

Modelling chemical kinetics and convective heating in giant planet entriesP. Reynier, G. D'Ammando, D. Bruno,Progress in Aerospace Sciences (2018)

Page 27: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Chemical input dataCross sections for all the processesincluded in the model.

Heavy particle collisionsH−He, He−He, H−–He, H–He+, He–HeH+–H, H+–H2, H+–He, H–H–, He–He2

+

H2–H2+

Electron interactionse-He, e-H, e-H2

Charged particle interactions

The code couples the fluid-dynamics with the kinetic chemistry (Jupiter atmosphere modeled: H2/He)

Fluid-dynamics input dataFlight data, i.e. probe velocity, gas density,gas temperature and pressure as a functionof the altitude in the atmosphere.

Processes

Page 28: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

[1] D. Bruno et al., Transport properties of high-temperature Jupiter atmosphere components, Physics of Plasmas, 17(11) (2010) 112315.[2] G. Palmer, D. Prabhu, B. A. Cruden, Aeroheating uncertainties in Uranus and Saturn entries by the Monte Carlo method, Journal of Spacecraft and Rockets, 51(3) (2014) 801–814.

Tt(K) = translational tempe-rature along thestagnation line at 180km of altitude;

Tv(K) = vibrational tempe-rapture;

X(m) = distance from the probe.

Page 29: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Convective Heat Flux

Ph. Reynier, G. D'Ammando, D. Bruno, Review: Modelling chemical kinetics and convective heating in giant planet entries, Progress in Aerospace Sciences 96 (2018) 1–22.

Page 30: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Elementary processes

Heavy particle collisions

Electron-molecule collisions

Page 31: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Collision processes of heavy particles

Inelastic processesA+BC(v, j) → A+BC(v’, j’)

Reactive processesA+BC(v,j) → B+AC(v’, j’), C+AB(v’, j’)

DissociationA+BC(v, j) → A+B+C

Page 32: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Collision processes of heavy particles

Inelastic processesA+BC(v, j) → A+BC(v’, j’)

Reactive processesA+BC(v,j) → B+AC(v’, j’), C+AB(v’, j’)

DissociationA+BC(v, j) → A+B+C

The general philosophy is to use approximated methods for cross section calculations to reduce the computational load

Quasi-classical trajectory method

Page 33: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Relaxation of He+H2

Comparison of QCT with QM Close Coupling calculations

R. Celiberto, M. Capitelli, G. Colonna, G. D’Ammando, F. Esposito,R. Janev, V. Laporta, A. Laricchiuta, L. Pietanza, M. Rutigliano, and J. Wadehra, Atoms 5, 18 (2017).N. Balakrishnan, M. Vieira, J. Babb, A. Dalgarno, R. Forrey, and S. Lepp, ApJ 524, 1122 (1999).

QCTQM

Page 34: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Reaction of H+HeH+→He+H2+

Comparison of QCT with accurate QM calculations

F. Esposito, C.M. Coppola, and D. De Fazio,JPCA 119, 12615−12626 (2015).

Page 35: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Reaction of H+HeH+→He+H2+

Normalized computational load in QCT and QM calculations

F. Esposito, C.M. Coppola, and D. De Fazio,JPCA 119, 12615−12626 (2015).

Page 36: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Electron-molecule collisions

Non-resonant collisions

Resonant collisions

Page 37: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

0.0

2.0

4.0

6.0

8.0

10

12

14

0 1 2 3 4 5 6 7 8

Pot

enti

al e

nerg

y (e

V)

Internuclear distance (a.u.)

H(1s) + H(1s)

H(n=2) + H -(1s2)

H��

(2�� , �� ����)

Dissociative attachment: H + H−

Vibrational excitation

Resonant dissociation: H + H + e

H� + �

Resonant collisions

Page 38: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

0.0

2.0

4.0

6.0

8.0

10

12

14

0 1 2 3 4 5 6 7 8

Pot

enti

al e

nerg

y (e

V)

Internuclear distance (a.u.)

H(1s) + H(1s)

H(n=2) + H -(1s2)

H��

(2�� , �� ����)

Dissociative attachment: H + H−

Vibrational excitation

Resonant dissociation: H + H + e

H� + �

Resonant collisions

V��V��

�V��(R), V��

�(R) and Γ(R)

Page 39: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

0.0

2.0

4.0

6.0

8.0

10

12

14

0 1 2 3 4 5 6 7 8

Pot

enti

al e

nerg

y (e

V)

Internuclear distance (a.u.)

H(1s) + H(1s)

H(n=2) + H -(1s2)

H��

(2�� , �� ����)

Dissociative attachment: H + H−

Vibrational excitation

Resonant dissociation: H + H + e

H� + �

Resonant collisions

−ℏ

2�

���+ ��(�) +

2Γ(�) − ! � = −#$ (�)&' (�)−

ℏ�

2�

��

���+ ��(�) +

2Γ(�) − ! � = −#$%

(�)&'%(�)

V��V��

�V��(R), V��

�(R) and Γ(R)

Page 40: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

0.0

2.0

4.0

6.0

8.0

10

12

14

0 1 2 3 4 5 6 7 8

Pot

enti

al e

nerg

y (e

V)

Internuclear distance (a.u.)

H(1s) + H(1s)

H(n=2) + H -(1s2)

H��

(2�� , �� ����)

Dissociative attachment: H + H−

Vibrational excitation

Resonant dissociation: H + H + e

H� + �

Resonant collisions

V��V��

�V��(R), V��

�(R) and Γ(R)

CO, NO, N2, O2, CO2, H2, He2+, BeH, BeH+CO, NO, N2, O2, CO2, H2, He2+, BeH, BeH+

Page 41: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Bond length, R (a.u.)

Pot

enti

al e

nerg

y (e

V)

CF (X 1Σ+) 3Σ−

1Σ+

1∆

CF molecule

75 vibrational levels

Rozum, Mason & Tennyson,J. Phys. B (2013)

CF−

Page 42: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Bond length, R (a.u.)

Res

onan

ce w

idth

, Γ(R

)(e

V)

3Σ−

1Σ+1∆

CF molecule

Rozum, Mason & Tennyson,J. Phys. B (2013)

Page 43: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Energy (eV)

Cro

ss s

ecti

on (

Å2 )

vi= 0

CF (X 1Σ+;vi) + e → CF− ( 3Σ−, v’) → C + F−CF (X 1Σ+;vi) + e → CF− ( 3Σ−, v’) → C + F−

vi= 10 v

i= 40

vi= 20

CF molecule

Dissociative attachment

Page 44: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

CF (X 1Σ+;vi) + e → CF− ( 1Σ+;v’) → CF (X 1Σ+;vf) + eCF (X 1Σ+;vi) + e → CF− ( 1Σ+;v’) → CF (X 1Σ+;vf) + e

0 = 0

0 = 10

0 = 400 = 20

Energy (eV)

Cro

ss s

ecti

on (

Å2 )

CF molecule

Resonant vibrational excitation

Page 45: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

CF (X 1Σ+;vi) + e → CF− ( 1∆; v’) → C + F + eCF (X 1Σ+;vi) + e → CF− ( 1∆; v’) → C + F + e

vi= 0

vi= 10

vi= 40

vi= 20

Energy (eV)

Cro

ss s

ecti

on (

Å2 )

CF molecule

Dissociative excitation

Page 46: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Rat

e co

effi

cien

t(10

-9cm

3 ⋅s-1

)

Temperature (eV)

vi= 0

vi= 20

vi= 5

vi= 20v

i= 40

CF (X 1Σ+;vi) + e → CF− ( 3Σ−v’) → C + F−CF (X 1Σ+;vi) + e → CF− ( 3Σ−v’) → C + F−

CF molecule

Dissociative attachment

Page 47: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Rat

e co

effi

cien

t(10

-9cm

3 ⋅s-1

)

Temperature (eV)

0 → 0

CF (X 1Σ+;vi) + e → CF− ( 1Σ+v’) → CF (X 1Σ+;vf) + eCF (X 1Σ+;vi) + e → CF− ( 1Σ+v’) → CF (X 1Σ+;vf) + e

0 → 400 → 20

0 → 5

0 → 10

Resonant vibrational excitation

Page 48: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Rat

e co

effi

cien

t(10

-9cm

3 ⋅s-1

)

Temperature (eV)

vi= 0

vi= 10

vi= 5

vi= 20

vi= 40

CF (X 1Σ+;vi) + e → CF− ( 1∆) → C + F + eCF (X 1Σ+;vi) + e → CF− ( 1∆) → C + F + e

CF molecule

Dissociative excitation

Page 49: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

CH + e− → CH* + e−

X 2Π(vi) → A 2∆(vi), B 2Σ−(vf) and C 2Σ+(vf)(R. Celiberto, R.K. Janev and D. Reiter, 2009)

BeH+ + e− → BeH+ * + e−

X 1Σ+(vi) → A 1Σ+ (vf), B 1Π (vf)(R. Celiberto, R.K. Janev and D. Reiter, 2012)

BeH + e− → BeH* + e−

X 2Σ+ (vi) → A 2Π (vf)(R. Celiberto, K.L. Baluja and R.K. Janev, 2013)

He(� + )� → He(

�* → He + He+ + )�

X 2Σ+ (vi) → A 2Σ+ (repulsive)(R. Celiberto, K.L. Baluja, R.K. Janev and V. Laporta, 2015)

Page 50: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Pot

enti

alen

ergy

(eV

)

R (a.u.)

Partridge & Langhoff, [J. Chem. Phys. (1981)]

Tung et al, [J. Chem. Phys. (2011)]

A 1Σ+

X 1Σ+

Trans. dipole moments (Partridge & Langhoff)

e + LiH (X 1Σ+,v) → e + LiH (A1Σ+,v)e + LiH (X 1Σ+,v) → e + LiH (A1Σ+,v)

LiH molecule

Page 51: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Antony_et_al; R-matrix (2004)

Born-Bethe approximation

TMMM approximation

X (v = 0) → A (v’ = 0)

Cro

ss s

ecti

on(Å

2 )

Energy (eV)

TMMM = Threshold ModifiedMott-Massey

Page 52: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

BeH

0.0

2.0

4.0

6.0

8.0

10

12

14

16

2 4 6 8 10 12 14 16

Cro

ss s

ecti

on (

Å2 )

Energy (eV)

Born

R-matrix

TM MM

X(0)→A(0)

R Celiberto,K L Baluja& R K JanevPlasma Source Science & Technology, 2013

Page 53: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

Cro

ss s

ecti

on(Å

2 )

Energy (eV)

0 → 0

0 → 10

0 → 20

X (0 ) → A (v’)

Page 54: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

10 → 27

10 → 20

10 → 10

Cro

ss s

ecti

on(Å

2 )

Energy (eV)

X (10 ) → A (v’)

Page 55: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

20 → 27

20 → 25

20 → 20

Cro

ss s

ecti

on(Å

2 )

Energy (eV)

X (20 ) → A (v’)

Page 56: CNR - Bari, Italy From elementary processes to plasma modeling · 1st Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices I.A.E.A. Vienna, March 2019

M. Capitelli – Università di Bari,Italy

D. Bruno – CNR, ItalyG. Colonna – CNR, ItalyA. D’Angola – Università della

Basilicata, ItalyF. Esposito – CNR, ItalyV. Laporta – CNR, ItalyA. Laricchiuta – CNR, ItalyP. Minelli – CNR, ItalyF. Taccogna – CNR, Italy

K. Baluja – Dely University, IndiaR. K. Janev – Macedonian Academy of

Science, MacedoniaI. Schneider – University of Pari Sud, France J. Tennyson – University College, UKJ. M. Wadehra – Wayne State University, USA