cme-driven interplanetary shocks

26
Spectral Properties of Heavy Ions Spectral Properties of Heavy Ions Associated with Interplanetary Shocks Associated with Interplanetary Shocks at 1 AU at 1 AU SHINE 2004 SHINE 2004 Big Sky, Montana Big Sky, Montana M. I. Desai M. I. Desai University of Maryland, College Park, MD 20742, USA University of Maryland, College Park, MD 20742, USA Co-Authors: Co-Authors: G. M. Mason: University of Maryland G. M. Mason: University of Maryland C.M.S.Cohen & M. E. Wiedenbeck: SRL, Caltech, CA C.M.S.Cohen & M. E. Wiedenbeck: SRL, Caltech, CA J. E. Mazur: Aerospace Corp J. E. Mazur: Aerospace Corp J. R. Dwyer: Florida Institute of Technology J. R. Dwyer: Florida Institute of Technology R.E. Gold & S. M. Krimigis: JHU/APL R.E. Gold & S. M. Krimigis: JHU/APL C.W.Smith: University of New Hampshire C.W.Smith: University of New Hampshire Q. Hu: IGPP, UC Riverside, CA Q. Hu: IGPP, UC Riverside, CA R. M. Skoug: Los Alamos National Laboratory R. M. Skoug: Los Alamos National Laboratory

Upload: uta

Post on 18-Jan-2016

42 views

Category:

Documents


0 download

DESCRIPTION

- PowerPoint PPT Presentation

TRANSCRIPT

Page 1: CME-driven Interplanetary Shocks

Spectral Properties of Heavy Ions Spectral Properties of Heavy Ions Associated with Interplanetary Shocks Associated with Interplanetary Shocks

at 1 AUat 1 AU

SHINE 2004SHINE 2004Big Sky, Montana Big Sky, Montana

M. I. Desai M. I. Desai University of Maryland, College Park, MD 20742, USAUniversity of Maryland, College Park, MD 20742, USA

Co-Authors: Co-Authors: G. M. Mason: University of MarylandG. M. Mason: University of Maryland

C.M.S.Cohen & M. E. Wiedenbeck: SRL, Caltech, CA C.M.S.Cohen & M. E. Wiedenbeck: SRL, Caltech, CA J. E. Mazur: Aerospace CorpJ. E. Mazur: Aerospace Corp

J. R. Dwyer: Florida Institute of TechnologyJ. R. Dwyer: Florida Institute of TechnologyR.E. Gold & S. M. Krimigis: JHU/APLR.E. Gold & S. M. Krimigis: JHU/APL

C.W.Smith: University of New HampshireC.W.Smith: University of New HampshireQ. Hu: IGPP, UC Riverside, CAQ. Hu: IGPP, UC Riverside, CA

R. M. Skoug: Los Alamos National LaboratoryR. M. Skoug: Los Alamos National Laboratory

Spectral Properties of Heavy Ions Spectral Properties of Heavy Ions Associated with Interplanetary Shocks Associated with Interplanetary Shocks

at 1 AUat 1 AU

SHINE 2004SHINE 2004Big Sky, Montana Big Sky, Montana

M. I. Desai M. I. Desai University of Maryland, College Park, MD 20742, USAUniversity of Maryland, College Park, MD 20742, USA

Co-Authors: Co-Authors: G. M. Mason: University of MarylandG. M. Mason: University of Maryland

C.M.S.Cohen & M. E. Wiedenbeck: SRL, Caltech, CA C.M.S.Cohen & M. E. Wiedenbeck: SRL, Caltech, CA J. E. Mazur: Aerospace CorpJ. E. Mazur: Aerospace Corp

J. R. Dwyer: Florida Institute of TechnologyJ. R. Dwyer: Florida Institute of TechnologyR.E. Gold & S. M. Krimigis: JHU/APLR.E. Gold & S. M. Krimigis: JHU/APL

C.W.Smith: University of New HampshireC.W.Smith: University of New HampshireQ. Hu: IGPP, UC Riverside, CAQ. Hu: IGPP, UC Riverside, CA

R. M. Skoug: Los Alamos National LaboratoryR. M. Skoug: Los Alamos National Laboratory

Page 2: CME-driven Interplanetary Shocks

CME-driven Interplanetary ShocksCME-driven Interplanetary Shocks

Page 3: CME-driven Interplanetary Shocks

“Ambient”

(Desai et al. 2001, ApJ 553, L89 & 2003, ApJ, 588, 1149).

• Surveyed 72 shocks

between Oct. 1997-Oct.

2002

• 3He ions accelerated in

45 IP shocks

Pre-shock intervals provide a “proxy” for ambient particles in the IP medium

Intensity-time profiles Intensity-time profiles for an IP shockfor an IP shock

Page 4: CME-driven Interplanetary Shocks

Ambient and SEP Ambient and SEP Abundances Abundances

Ambient and SEP Ambient and SEP Abundances Abundances

Ambient Ambient

material material

comprises comprises

~30% from ~30% from

impulsive impulsive

flares, and flares, and

~70% from ~70% from

large gradual large gradual

SEPsSEPs

Gradual SEPs

Impulsive SEPs

Upstream Material

10-2

10-1

100

C N O Ne MgSi S Ca Fe

12 1416 20 24 2832 40 56

Mass (AMU)

(Desai et al. 2003 ApJ, 588, 1149).

Page 5: CME-driven Interplanetary Shocks

IP Shock compared with solar wind IP Shock compared with solar wind abundancesabundances

0

1

2

3

4

1 2 3 4 5 6Mass/Charge (AMU e-1)

m = 1.22 ± 0.23

c = 0.40 ± 0.22

cu

2 =3.34; =1.45 10P x-3

= 0.43; =0.13r p

4He C

Mg

Ne

N

O

Si

S

Fe

GI = + *[c m MIQO/MOQI]

(Desai et al. 2003 ApJ, 588, 1149).

• Shock abundances are

poorly correlated with

solar wind abundances

• No clear dependence on

M/Q

• Difficult to understand in

terms of rigidity-

dependent acceleration of

solar wind ions

Page 6: CME-driven Interplanetary Shocks

IP Shock compared with ambient suprathermal IP Shock compared with ambient suprathermal abundancesabundances

0.2

0.4

0.6

0.8

2.0

1.0

1 2 3 4 5 6Mass/Charge (AMU e-1)

m = -0.64 ± 0.05

c = 0.63 ± 0.04

=4.39;P=2.56x10-5

r = -0.92; p=7.8x10-5

cu

2

(logGI) = + *[c m MIQO/MOQI]

4He N

CO

Ne

MgSi

S

Ca Fe

(Desai et al. 2003 ApJ, 588, 1149).

• Shock abundances are

well correlated with

ambient suprathermal

abundances

• Exhibit a M/Q-dependent

depletion

• Consistent with rigidity-

dependent shock

acceleration of ambient

suprathermals

Page 7: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

10-4

10-3

10-2

10-1

100

101

102

103

10-2

10-1

100

101

22 23 24 25 26 27 28 29

1999 June (UT)

10-1

100

101

ACE/ULEIS C, O, Fe Intensities

ACE/ULEIS C/O ratio

ACE/ULEIS Fe/O ratio

S2

0.16-0.23 MeV n-1 (x10)

0.91-1.28 MeV n-1

OCFe

0.2 MeV n-1

1.0 MeV n-1

0.2 MeV n-1

1.0 MeV n-1

Ambient

(a)

(b)

(c)

Shock

Fe/O at IP shocks is Fe/O at IP shocks is

depleted relative to depleted relative to

ambient values ambient values

Larger decrease at Larger decrease at

higher energy higher energy

Page 8: CME-driven Interplanetary Shocks

Energy Spectra during an IP Energy Spectra during an IP shock: shock:

All Spectra fitted by All Spectra fitted by j = jj = j00EE--

exp(-E/Eexp(-E/E00))

Parameter Carbon Oxygen Iron

No. of Points 8 10 8

j0 4.64 0.87 9.32 1.21 3.17 1.49

1.36 0.11 1.33 0.09 1.08 0.27

E0 0.69 0.09 0.72 0.06 0.35 0.06

2 0.87 0.91 0.88

10-1 100 101

Energy (MeV n-1)

10-3

10-2

10-1

100

101

102

103 2001, day 98::0426-1719 UT

Carbon

Oxygen

IronACE/ULEIS

however and E0 are coupled; Use only 0.1-0.5 MeV n-1 to obtain the power-law indices

Page 9: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

Spectral indices of C, O, & Fe Spectral indices of C, O, & Fe Spectral indices of C, O, & Fe Spectral indices of C, O, & Fe

ACE/ULEIS: 0.1-0.5 MeV n-1

N = 72; r = 0.98;p ~ 0% N = 72; r = 0.79;p = 4.4 x10 -14%

0

1

2

3

4

0 1 2 3 4

O Spectral Index

0

1

2

3

4

0 1 2 3 4

O Spectral Index

(a) (b)

ACE/ULEIS: 0.1-0.5 MeV n-1

Differences in Fe and O indices are at odds Differences in Fe and O indices are at odds with injection of a mono-energetic seed with injection of a mono-energetic seed populationpopulation

Page 10: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

O e-folding energy vs. shock O e-folding energy vs. shock parameters parameters

O e-folding energy vs. shock O e-folding energy vs. shock parameters parameters

0.1

1.0

10

0.1

1.0

10

0 15 30 45 60 75 90

Shock Normal Angle [deg.]qBn

( ) [ Shock speed upstream km s-1]VS

10 100 1000

( )a ( )b

= 57; = -0.04; = 76%N r p = 51; = 0.09; = 52%N r p

E-folding energy is independent of local shock E-folding energy is independent of local shock parametersparameters

Page 11: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

0 1 2 3 4 50

1

2

3

4

5

(M+2)/(2M-2)

N = 60; r ~ 0.09; p ~ 51%

ACE/ULEIS 0.1-0.5 MeV n-1

Spectral index is poorly correlated with compression ratio, M

Results are at odds with predictions of simple steady-state models

2-hr. av. O spectral index vs. 2-hr. av. O spectral index vs. (M+2)/(2M-2) (M+2)/(2M-2)

2-hr. av. O spectral index vs. 2-hr. av. O spectral index vs. (M+2)/(2M-2) (M+2)/(2M-2)

Page 12: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

22 23 24 25 26 27

2001 November (UT)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

0.14

0.27

0.55

1.09

2.19

4.37

8.55

14.35

25.20

51.35

ACE ULEIS + SIS Oxygen Intensities

MeV n-1

S

S15W34

Ambient

IP shock event measured by ULEIS & IP shock event measured by ULEIS & SISSIS

IP shock event measured by ULEIS & IP shock event measured by ULEIS & SISSIS

Page 13: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

Energy spectra measured by ULEIS & Energy spectra measured by ULEIS & SISSIS

Energy spectra measured by ULEIS & Energy spectra measured by ULEIS & SISSIS

10-1

101

103

105

107

10-2

10-1

100

101

10-1 100 101 102

Kinetic Energy (MeV n-1)

10-1 100 101 102

Kinetic Energy (MeV n-1)

solid symbols = ULEISopen symbols = SIS

solid symbols = ULEISopen symbols = SIS

event #61 event #61

(a) (b)

O

C

Fe

C/O

Fe/O

Page 14: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

10-1 100 101

Kinetic Energy (MeV n-1)

10-5

10-3

10-1

100

103

10-2

10-1

100

101

10-5

10-3

10-1

100

103

10-5

10-3

10-1

100

103

10-1 100 101

Kinetic Energy (MeV n-1)10-1 100 101

Kinetic Energy (MeV n-1)

10-1 100 101

Kinetic Energy (MeV n-1)10-1 100 101

Kinetic Energy (MeV n-1)10-1 100 101

Kinetic Energy (MeV n-1)

10-2

10-1

100

101

10-2

10-1

100

101

C

O

Fe

CO

FeC

O

Fe

(a) (b) (c)

(d) (e) (f)

event #13

event #13

event #18

event #18

event #37

event #37

C/O

Fe/O

C/O

Fe/O

C/O

Fe/O

3 Classes of Fe/O energy-dependence 3 Classes of Fe/O energy-dependence 3 Classes of Fe/O energy-dependence 3 Classes of Fe/O energy-dependence

Page 15: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

Energy-dependence of Fe/OEnergy-dependence of Fe/O Energy-dependence of Fe/OEnergy-dependence of Fe/O

0.01 0.1 1.0

Fe/O (0.22 MeV n-1)

0.01

0.1

1.0

0.01

0.1

1.0

0.01 0.1 1.0

Fe/O (0.22 MeV n-1)

0.01 0.1 1.0

Fe/O (0.22 MeV n-1)

0.01

0.1

1.0

N = 68 N = 33 N = 12

ACE/ULEIS ACE/ULEIS ACE/ULEIS & ACE/SIS

(a) (b) (c)

Fe = Fe/O (0.62 MeV/n.)

Fe/O (0.22 MeV/n.)

Page 16: CME-driven Interplanetary Shocks

(Adapted from Desai et al. 2004, To appear in ApJ. Aug. 20, 2004)

FeFe vs. vs. 33He/He/44He ratio; He ratio; 33He/He/44He ratio vs. He ratio vs. BnBn

Extreme Events Only Extreme Events OnlyFeFe vs. vs. 33He/He/44He ratio; He ratio; 33He/He/44He ratio vs. He ratio vs. BnBn

Extreme Events Only Extreme Events Only

Page 17: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

10-3

10-2

10-1

100

0 30 60 90

Shock Normal Angle, qBn [ .]deg

10 -3 10 -2 10 -1 1003 /He 4 He ratio

( )b( )a

3He/4He > 2%

N= 43;r= 0.08; p = 63.7%

3He/4He > 2%

N= 43;r= 0.56; p = 1.2x10-2%

m = 0.19 ± 0.06

c = 2.05 ± 0.41

1.0

0.2

0.4

0.6

0.8

2.0

3.0

4.0

FeFe vs. vs. 33He/He/44He ratio; He ratio; 33He/He/44He ratio vs. He ratio vs. BnBn

All events All events

FeFe vs. vs. 33He/He/44He ratio; He ratio; 33He/He/44He ratio vs. He ratio vs. BnBn

All events All events

Page 18: CME-driven Interplanetary Shocks

33He/He/44He ratio vs. Injection Threshold Speed, VHe ratio vs. Injection Threshold Speed, Vinjinj = = VVSS*sec(*sec(BnBn))

33He/He/44He ratio vs. Injection Threshold Speed, VHe ratio vs. Injection Threshold Speed, Vinjinj = = VVSS*sec(*sec(BnBn))

Most IP shocks including the 3 with rising Fe/O ratios have Vinj<2*Vsw

3He/4He ratio and Fe are

poorly correlated with Vinj

Vinj > 600 km s-1

3He/4He > 2%

Conclusion: Injection Conclusion: Injection threshold speeds do not threshold speeds do not appear to play a appear to play a significant role in the significant role in the energy-dependent energy-dependent behavior of Fe/Obehavior of Fe/O

Page 19: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

FeFe vs. O spectral index & O fluence vs. O spectral index & O fluenceFeFe vs. O spectral index & O fluence vs. O spectral index & O fluence

0 1 2 3 4

Oxygen Spectral Index(0.1-0.5 MeV n-1)

101 102 103 104 105 106 107

Oxygen Fluence (#/cm2 sr MeV n-1)(0.5-2.0 MeV n-1)

1.0

0.2

0.4

0.6

0.8

2.0

3.0

4.0

1.0

0.2

0.4

0.6

0.8

2.0

3.0

4.0

N= 68;r=0.58; p = 2.4 x10-5%

m = 0.39 ± 0.05

c =-0.94 ± 0.26

N= 61;r=-0.46; p =2.0 x10-2%

m = -0.09 ± 0.02

c = 1.81 ± 0.78

(a) (b)

Page 20: CME-driven Interplanetary Shocks

Fe/O at IP shocks vs. ambientFe/O at IP shocks vs. ambientFe/O at IP shocks vs. ambientFe/O at IP shocks vs. ambient

10-2

10-1

100

Fe/O (Upstream)10-2 10-1 100

log(Fe/OShock) = c + m*log(Fe/OUpstream)

cu2 =0.53; =1.0P

=62; =0.51; =1.0 10N r p x -5

= 0.40 m ± 0.02 = 0.26 c ± 0.05

#29event

(Desai et al. 2003 ApJ, 588, 1149).

Fe/O ratios at IP Fe/O ratios at IP

shocks and ambient shocks and ambient

are well correlatedare well correlated

Page 21: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

Shock C/O & Fe/O normalized to ambient Shock C/O & Fe/O normalized to ambient values values

Shock C/O & Fe/O normalized to ambient Shock C/O & Fe/O normalized to ambient values values

• Fe/O ratios are depleted by ~30% relative to ambient values

• Energy-dependence of Fe/O is diminished when compared with ambient Fe/O - not expected from mono-energetic injection

Page 22: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

O Spectral index & Fe/O O Spectral index & Fe/O dependence at IP shocks vs. dependence at IP shocks vs.

Ambient Ambient

O Spectral index & Fe/O O Spectral index & Fe/O dependence at IP shocks vs. dependence at IP shocks vs.

Ambient Ambient

Page 23: CME-driven Interplanetary Shocks

SummarySummarySummarySummary

• Spectral parameters and energy-dependence of Fe/O are independent of local shock parameters

• 5 out of 72 events (~7%) have rising Fe/O with energy; Fe/O in other events are constant or decrease with energy

• Fe/O at IP shocks are typically ~30% lower than in the ambient population

• The O spectra and energy-dependence of Fe/O are similar at IP shocks and in the ambient population

Page 24: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

Sketch of Re-acceleration of Seed spectra at IP Sketch of Re-acceleration of Seed spectra at IP shocks shocks

Sketch of Re-acceleration of Seed spectra at IP Sketch of Re-acceleration of Seed spectra at IP shocks shocks

10-1 100 101

Kinetic Energy (MeV n -1)

10-5

10-3

10-1

100

103

OFe

Seed SpectraShock Spectra

Page 25: CME-driven Interplanetary Shocks

ConclusionConclusionConclusionConclusion

IP shocks accelerate seed spectra composed of

suprathermal ions from gradual and impulsive SEP

events by a systematic rigidity-dependent mechanism

where ions with higher M/Q are accelerated less

efficiently than those with lower M/Q

Page 26: CME-driven Interplanetary Shocks

Relevant IssuesRelevant IssuesRelevant IssuesRelevant Issues

• How common are IP shock events with rising Fe/O ratios? ~7% of events have rising Fe/O with energy

• What are the key differences between IP shocks with rising and decreasing Fe/O ratios? No appreciable differences in shock properties

• Does any particular local shock parameter play a role in determining the energy-dependent behavior of Fe/O? Cannot rule this out completely, but no

evidence that local shock properties are important

• The primary cause of rising Fe/O in IP shocks Re-acceleration of energetic ion seed spectra

that themselves have rising Fe/O with energy