cmb: current state & future prospects

38
CMB: Current State CMB: Current State & Future Prospects & Future Prospects Jonathan Sievers Jonathan Sievers (CITA/UToronto) (CITA/UToronto)

Upload: susane

Post on 05-Feb-2016

44 views

Category:

Documents


0 download

DESCRIPTION

CMB: Current State & Future Prospects. Jonathan Sievers (CITA/UToronto). Discovery of the Cosmic Microwave Background. The big bang was hot, so there must still be photons left from it. Predicted by Gamow & Alpher because - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: CMB:  Current State & Future Prospects

CMB: Current State & CMB: Current State & Future ProspectsFuture Prospects

Jonathan Sievers Jonathan Sievers (CITA/UToronto)(CITA/UToronto)

Page 2: CMB:  Current State & Future Prospects

Discovery of the Cosmic Microwave BackgroundDiscovery of the Cosmic Microwave Background

Predicted by Gamow & Alpher becausehelium exists (most produced in the Big Bang). Guessed it would be between 1 and 5 Kelvin. Canadians actually measured it very early (excitation temperature of gas clouds) but didn’t know what it was.

Penzias & Wilson (Bell Labs) discoveredit while building & testing antennas.3 degrees in all directions.

The big bang was hot, so there must still be photons left from it.

Not a white dielectric

Page 3: CMB:  Current State & Future Prospects

Z ~ 1100, z~100, t~400,000 yr,

light crossing 300 Mpc

Distortions in energy

< .0001 (Compton cooling of electrons)

Page 4: CMB:  Current State & Future Prospects

Basic PictureBasic Picture Initial perturbation power spectrum set some time early in Initial perturbation power spectrum set some time early in

the universe, presumably by inflation.the universe, presumably by inflation. When larger than the horizon, overdensities grow in When larger than the horizon, overdensities grow in

amplitude – as far as they know, amplitude – as far as they know, ΩΩ>1, so they collapse.>1, so they collapse. Photon energy density comparable or larger to baryons, so Photon energy density comparable or larger to baryons, so

sound speed is relativistic. When ionized, baryons lock sound speed is relativistic. When ionized, baryons lock photons in place. Pressure becomes important when photons in place. Pressure becomes important when modes cross horizon, perturbations become sound waves.modes cross horizon, perturbations become sound waves.

Ionization fraction of hydrogen very sensitive function of Ionization fraction of hydrogen very sensitive function of temperature. At ~3000K, etemperature. At ~3000K, e--+p H, photons freed from +p H, photons freed from baryons. Transition is fast, so we get a snapshot of the baryons. Transition is fast, so we get a snapshot of the universe when it is 400,000 years old.universe when it is 400,000 years old.

Amplitude of a mode is set by initial amplitude, phase at Amplitude of a mode is set by initial amplitude, phase at which we see it, and matter/energy contents of universe.which we see it, and matter/energy contents of universe.

Perturbations small, so physics is linear. We can calculate Perturbations small, so physics is linear. We can calculate the expected spectrum to high precision.the expected spectrum to high precision.

Page 5: CMB:  Current State & Future Prospects

Parameters of Cosmic Structure Formation

Òk

What is the Background curvature of the universe?

Òk > 0Òk = 0Òk < 0

closed

flatopen

Òbh2 ÒË nsÒdmh2

Density of Baryonic Matter

Density of non-interacting Dark

Matter

Cosmological Constant

Spectral index of primordial scalar (compressional)

perturbations

PÐ(k) / knsà1

nt

Spectral index of primordial tensor (Gravity Waves)

perturbations

Ph(k) / knt

As ø û8

Scalar Amplitude

A t

Tensor Amplitude

Period of inflationary expansion, quantum noise metric perturb.

üc

Optical Depth to Last Scattering

SurfaceWhen did stars

reionize the universe?

Page 6: CMB:  Current State & Future Prospects

É T=T(nê)

This is the TT (for temperature-temperature) spectrum

C` = hja2`mji

É T=T(nê) =P

`a`mY?`m(nê)

Page 7: CMB:  Current State & Future Prospects

So now…Go out and measure it!

Astronomers have gone to some odd places. DASI, ACBAR at South Pole. Boomerang launched from coastal Antarctica. CBI at 16,700 feet (5080 meters) in the Chilean desert. TOCO was on a mountain overlooking the CBI site. Makes for some great stories…

Just the CBI (the telescope I have worked on) has had to deal with:

Page 8: CMB:  Current State & Future Prospects

The CBI Adventure…(a less nice day)The CBI Adventure…(a less nice day)Two winters a year! With accompanying wo winters a year! With accompanying blizzards, windstorms, impassable roads…blizzards, windstorms, impassable roads…

Volcano (makes anice windsock).

Also, earthquakes (7.0), landmines, even a lost flamingo.

Page 9: CMB:  Current State & Future Prospects

So now…Go out and measure it!

First single-expt. measurement of first Doppler peak done by TOCO. Boomerang, MAXIMA made the first high-precision first-peak measurements, followed by DASI, then VSA. CBI, then ACBAR measured power spectrum up to ℓ~3000 (others go to ~1000, missing the fall in power past third peak). Basic framework in place before WMAP. Accurate measurement of flatness, dark matter, baryons, ns, age…

CBIACBAR Boomerang

Page 10: CMB:  Current State & Future Prospects

WMAP SatelliteFull-sky, 10’ resolution, low-noise map provides best current intensity spectrum at ℓ<600. Cosmic variance limited at ℓ<300-400 – we have all the first peak info we’re going to get.

Page 11: CMB:  Current State & Future Prospects

Data!Data!(Full disclosure: selective data set use with noisiest points removed for clarity. See also DASI, VSA…

Page 12: CMB:  Current State & Future Prospects

ParametersParametersTo get feel for parameter constraints, I take best-fitting standard Λ-CDM cosmology, then vary one parameter at a time. I adjust the overall power spectrum amplitude to the value that best goes through the data. Constraints come from shape of the power spectrum.

Page 13: CMB:  Current State & Future Prospects

How Constrained are Things?How Constrained are Things?Curvature of the universe: (needs some external limit on H0)

Universe is flat to an accuracy of 2% (40<h<100)

Physical size of Fluctuations is fixed. Curvature sets the apparent angular size. Essentially shifts spectrum to larger or smaller scales.

Page 14: CMB:  Current State & Future Prospects

How Constrained are Things?How Constrained are Things?Dark Matter density of the universe: ΩDM=0.106±0.010 (From Mactavish et al.)

Baryons oscillate, DM collapses. Baryons feel more gravity when falling with the DM rather. During expansion, DM keeps baryons from going as far as they’d like. Baryons+DM = enhanced odd peaks.

Uptick at low-ℓ happens when Λ takes over the expansion. The more DM there is, the later this happens and the smaller the bump.

Page 15: CMB:  Current State & Future Prospects

How Constrained are Things?How Constrained are Things?

Baryon density of the universe: ΩB=0.0233±0.0013 (in good agreement with deuterium, helium, lithium abundances. Especially with new neutron lifetime). More baryons means

more compression of photons before pressure halts collapse, therefore higher first peak. Baryons+DM = enhanced odd peaks. Photons diffuse on small scales before CMB happens, more baryons makes diffusion length shorter. Raises & flattens fall-off past third peak.

Page 16: CMB:  Current State & Future Prospects

How Constrained are Things?How Constrained are Things?ns: 0.98±0.04, just like inflation predicts. Stephen Hawking: “the discovery of the century, if not of all time.” ns is a tilt, raising the

spectrum at high-ℓ, while lowering it at low-ℓ, or vice-versa.

Had been discussion of a running index, dns/dln(k). Driven largely by Lyman-α forest measurements (statistics of very small gas clouds at redshift of a few). Reanalysis by MacDonald et al. has effectively killed the running index for the moment. Running is second-order in slow-roll inflation, so should be small.

ns-1 is an extremely interesting number. It’s a direct measure of slow-roll inflation parameters. We’d like to measure it well.

Page 17: CMB:  Current State & Future Prospects

How Constrained are Things?How Constrained are Things?Optical depth of universe due to re-ionization of hydrogen after stars/quasars turn on.

To good accuracy, universe went from neutral to ionized everywhere at the same time. Density of electrons goes like (1+z)3, so highest depth when universe first ionized. Electrons scatter the average CMB temperature they see, so power on scales smaller than the horizon at reionization gets damped.

Astronomers care about optical depth because it tells us when stars turned on. Current best WMAP value is zreion=17±5. Subject to change?

Page 18: CMB:  Current State & Future Prospects

How Constrained are Things?How Constrained are Things?

Optical depth, ns, Hubble constant are all degenerate in total intensity, especially at low-ℓ. But we can do better. A fundamental prediction of the standard cosmological model is that there should be a polarized component to the CMB as well. This can be used to measure the optical depth, as well as a powerful consistency check on our basic pictures.

Unfortunately, polarization is faint. No more than 1-2% of the power in the CMB fluctuations is polarized, and often quite a bit less.

Standard (E-mode) polarization comes about because velocity gradients during recombination produce intensity quadrupoles, and intensity quadrupoles+Thompson scattering makes polarization.

Which brings us to…

E-Mode polarization detections have been the dominantobservational advances since WMAP.

Page 19: CMB:  Current State & Future Prospects

PolarizationPolarization

In our plane wave perturbations, matter flows from peaks into troughs (or the reverse, depending on the phase of the wave). Velocity is always ll to k, so gradient is ll to k as well. Therefore, quadrupole is also parallel to k.

Page 20: CMB:  Current State & Future Prospects

PolarizationPolarizationIf the flow is converging, electron moves perp. to k. If diverging, electron moves parallel to k. But it never moves at an angle. This is E-mode polarization (B-mode is the polarization tilted by 45 degrees for the same k). E peaks where velocity is maximum and overdensity zero, so E out of phase with intensity spectrum. Also, waves at neither density of velocity null give rise to T and E, causing a correlation.

Page 21: CMB:  Current State & Future Prospects

Current EECurrent EEDASI (Leitch et al) was the first to measure E-mode polarization. Boomerang (2003 flight, Montroy et al.) and CBI (Sievers et al.) have multiple-bin EE detections, all have TE measurements as well. So far, everything consistent with TT predictions.

Coming soon: CAPMAP already has weak detection, further data coming soon. Quad has data in hand, BICEP just went to the South Pole.

Also, B-mode consistent with 0 signal (1.2±1.8μK in CBI. Means things work pretty well!)

Page 22: CMB:  Current State & Future Prospects

Does TT Predict EE?Does TT Predict EE?Yes! EE is in excellent agree-ment with prediction from TT.

Take the same TT curvature plot from before and then show its EE spectrum against the data. There are 0 free parameters in the EE model yet it agrees extremely well with the data (in fact Χ2 is a bit too good - but not unreasonably so). EE-only measures the angular scale of the CMB to 3%, and gets the same answer as TT. Other parameters (dark matter, baryons…) from EE agree as well, but precision isn’t great yet (~30-40% accuracies, typically).

Page 23: CMB:  Current State & Future Prospects

Back to DegeneracyBack to DegeneracyReionization electrons will also see a local quadrupole that will then cause polarized scattering, including a polarization-temperature correlation. This is expected to be the dominant effect on large scales both for EE and TE. TE already measured by WMAP, EE coming ASAP?

WMAP TE

CBI+DASI+BoomEE Polarization

Page 24: CMB:  Current State & Future Prospects

Were Initial Conditions Adiabatic?Were Initial Conditions Adiabatic?Restrict niso=3 isocurvature seed model

CBI EE, CBI EE+TE, CBI+B03+DASI EE+TE CBI+B03 TT

Add isocurvature CDM model (i.e. photons overdense=matter underdense, metric flat). Piso / Padi < 0.27 large scale, < 1.7 small scale niso = 1.1+-0.6WMAP1+B03+CBI+DASI TT+TE+EE Both polarization & temperature pick

out chiefly adiabatic components.

Page 25: CMB:  Current State & Future Prospects

B-Mode Polarization: The Holy Grail?B-Mode Polarization: The Holy Grail?Inflation predicts tensor perturbations as well as scalar ones. These fluctuations depend on the details of inflation, so everybody wants to measure them. In particular, measuring the amplitude sets the energy scale of inflation. Unfortunately, they are expected to be weak, and not measurable if inflation happened much lower than 1015GeV.

Quiet, r=0.18Planck, r=0.05 Spider

People are looking. Currently, r (the ratio of tensor to scalar amplitude)<0.36. If inflation happened >1015GeV, then r should be measurable soon, perhaps by Planck, or a ground-based expt. (Clover in the UK is the next one up – 500 bolometers, 3 frequencies. Currently being built, scheduled for 2 years from now)

Clover

Page 26: CMB:  Current State & Future Prospects

No TensorNo Tensor

SPIDER Tensor SignalSPIDER Tensor Signal

TensorTensor

Simulation of large scale polarization signalSimulation of large scale polarization signal This is what we are after!!This is what we are after!!

Page 27: CMB:  Current State & Future Prospects

EE

BB

T T

K

T/S=0.1

QUAD

ACBAR

SPIDER

l

T/S=0.01

SPIDER Angular Power SpectraSPIDER Angular Power Spectra

Page 28: CMB:  Current State & Future Prospects

3-Colour Foregrounds

30 GHz 44 GHz 70 GHz

100 GHz

SynchrotronBremsstrahlung (Free-

Free)Thermal Dust

143 GHz

217 GHz

353 GHz

545 GHz

857 GHz

T = f/dfcmb/dT in deg K, linear in sqrt(T), 1K threshold

Foregrounds will make BB tough to measure. All planned expts. have many freqs. to try to fit foregrounds.

Spinning dust?

Page 29: CMB:  Current State & Future Prospects

More Planck GoodiesMore Planck GoodiesWe’ll get other parameters much better as well, especially from ESA’s Planck Satellite (launch in ’07, supposedly).

In particular, ns to an accuracy of 0.0045, optical depth to 0.006, and running index to 0.005.

Page 30: CMB:  Current State & Future Prospects

CBI 2000+2001, WMAP, ACBAR, BIMACBI 2000+2001, WMAP, ACBAR, BIMAReadhead et al. ApJ, 609, 498 (2004)Readhead et al. ApJ, 609, 498 (2004)

SZE SZE SecondarySecondary

CMB CMB PrimaryPrimary

+Boom03; Acbar05: very nice TT, Oct05. parameters & new excess analysis as SZ

Clusters at small scalescontribute to CMB PS.Perhaps already seen byCBI, ACBAR, BIMA. Correlation with opticalwill nail down origin –I have data for CBI inhand, answer coming soon!

This will be importantfor measuring ns.

Cluster signal comes from hot gas scattering CMB photons fromlow to high frequencies, called the Sunyaev-Zeldovich effect.

Page 31: CMB:  Current State & Future Prospects

High-High-ℓℓ Signal Signal

Red line is a power spectrum with galaxy cluster signal. Accurate measurements of ns will require this to be removed. SZA has some data already, CBI being upgraded, should have blue points in a year. ACT,APEX being built, will do this very well.

Level is currently quite uncertain, will be something Planck has to worry about.

Page 32: CMB:  Current State & Future Prospects

Cosmic StringsCosmic StringsTopological defects can imprint themselves on the CMB. They are ruled out as a major component of structure formation, but rare strings may still be allowed. Can find them either by lensing of galaxies, or temperature edges in the CMB with scale ~2o, ΔT/T=8πGμβγ, string of Gμ=10-6

will have temperature of 70 μK.

String limits: Gμ<3.4e-7 from SDSS+WMAP (Wyman, Pogosian, and Wasserman) <1e-5 from WMAP alone (Lo and Wright)… Planck will make things better – smaller noise+better resolution=less CMB noise. Lo and Wright claim factor of 2, perhaps will be better. Small scale telescopes (e.g. ACT) can domuch better job if they know where to look. μK level confirmations should notbe overly difficult.

Candidate CSL-1. Alas,turns out to be a pair ofgalaxies.

Page 33: CMB:  Current State & Future Prospects

Neutrino MassesNeutrino Masses

CMB spectrum mildly sensitive to neutrino mass. Large-scalegalaxy structure more sensitive, but requires CMB input to knowwhat it should look like. Combination of current CMB+current LSSgives limit mν<0.7eV (Elgaroy et al., Spergel et al., Tegmark et al.)

Planck will give better constraints. Should give Σ (mν) to 0.2 eVwith SDSS (Eisenstein et al.). Massive neutrinos will also lens theCMB, could push limit down to 0.15 eV.

CMB feels relativistic neutrinos, can limit number of light, sterile species. Current w/ big-bang nucleosynthesis gives Nv =2.6±0.4.Planck should give 0.24, without external help.

Caveat: High precision requires getting a lot ofsmall-scale astrophysics correct. Not simple.

Page 34: CMB:  Current State & Future Prospects

And Since Inquiring Minds Want to Know…And Since Inquiring Minds Want to Know…

Red=WMAP-1Blue=Possible WMAP-3 (weeks away?)

One man’s guessas to what theupcoming WMAPTT spectrum mightlook like.

Page 35: CMB:  Current State & Future Prospects

SummarySummary CMB measures cosmological parameters with unprecedented CMB measures cosmological parameters with unprecedented

accuracy. Theory is very robust, so surprises unlikely.accuracy. Theory is very robust, so surprises unlikely. New generation of detectors coming soon, featuring large New generation of detectors coming soon, featuring large

numbers of sensitive bolometers. Planck, APEX, ACT, SPT, Spider, numbers of sensitive bolometers. Planck, APEX, ACT, SPT, Spider, Clover. First round of results should be within ~3 years.Clover. First round of results should be within ~3 years.

Many inflation models predict B-mode polarization that should be Many inflation models predict B-mode polarization that should be measurable in the next few years. If we don’t see it then, we measurable in the next few years. If we don’t see it then, we may never get it. Foregrounds are criticalmay never get it. Foregrounds are critical

Measuring nMeasuring nss different from unity also a window on inflation, and different from unity also a window on inflation, and may be coming soon as well (perhaps even pre-Planck). may be coming soon as well (perhaps even pre-Planck).

CMB also an excellent laboratory for testing new physics, CMB also an excellent laboratory for testing new physics, e.g.e.g. cosmic strings, new neutrinos… cosmic strings, new neutrinos…

Page 36: CMB:  Current State & Future Prospects

pattern shift parameter 1.002 +- 0.0043 WMAP1+CBI+DASI+B03 TT/TE/EE Evolution: Jan00 11% Jan02 1.2% Jan03 0.9% Mar03 0.4%

EE: 0.973 +- 0.033, phase check of CBI EE cf. TT pk/dip locales & amp EE+TE 0.997 +- 0.018 CBI+B03+DASI (amp=0.93+-0.09)

Lsound@dec vs As

CBI+B03+DASI EE,TE cf. CMB TT

Page 37: CMB:  Current State & Future Prospects

EE – A Separate View EE – A Separate View

Excellent check onconsistency of stan-dard cosmological model.

One example: path-ological primordial spectra with verydifferent params can mimic TT. However,EE changes dra-matically.

Page 38: CMB:  Current State & Future Prospects

Sachs-Wolfe

Acoustic Oscillations

Drag

Damping

Curvature

(31Ð)dec & Ðçlos

`pk;j / R ?=rs?

Òbh2

ø eà (`=̀D)mD

Doppler

Tensors [T=S]g

dmr ù à 5:3nt

Reionizationø eà2üc

Sound & Light in the Early Universe