class 34 ray optics - weebly · mr!r!gopie! physics!! page!2!of!22! ray!optics! nature!of!light!...

22
PHYSICS Ray Optics Mr Rishi Gopie

Upload: others

Post on 06-Sep-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

 

PHYSICS  Ray  Optics  

Mr  Rishi  Gopie  

 

   

Page 2: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  2  of  22      

Ray  Optics  

Nature  of  light  

Light  is  a  form  of  energy  which  affects  the  human  eye  in  such  a  way  as  to  cause  the  sensation  of  sight.  Visible  light  is  a  range  of  electromagnetic  waves  which  occupy  a  very  small  part  of  the  much  larger  electromagnetic  spectrum.  

 

 

Diag.  (1)  

Visible  Light  is  emitted  by  luminous  bodies-­‐  such  as  the  sun,  activated  filament  and  fluorescent  bulbs/tubes  and  candle  flies.  However  light  is  reflected  by  non-­‐luminous  bodies  –  such  as  the  moon,  a  table,  a  chair,  a  wall  etc.  

  Light  is  usually  represented  by  rays  and  each  ray  is  represented  by  a  straight  line.  An  arrowhead  placed  on  the  line  indicates  the  direction  of  the  ray.  A  collection  of  rays,  represented  by  several  lines  together,  is  called  a  beam.  Consider  three  types  of  rays/beams  

Page 3: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  3  of  22      

i) A  parallel  beam  consisting  of  parallel  rays

 Diag.  2  

ii) A  divergent  beam,  consisting  of  diverging  rays  

 Diag.  3  

Page 4: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  4  of  22      

iii) A  convergent  beam,  consisting  of  converging  rays

 Diag.  4  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 5: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  5  of  22      

The  general  properties  of  light  include  

i) The  rectilinear  propagation  of  light,  i.e.  light  travels  in  straight  lines.  This  property  is  demonstrated  by  i.  the  formation  of  shadows  –including  eclipses,  and  ii.  The  formation  of  images  in  pinhole  cameras.  

ii) The  reflection  of  light.  This  property  is  demonstrated  by  the  action  of  mirrors  in  the  formation  of  images  of  objects.  

iii) The  refraction  of  light.  This  property  is  demonstrated  by  the  action  of  rectangular  and  triangular  prisms  and  by  the  action  of  lenses  in  the  formation  of  images  of  objects.  

iv) The  dispersion  of  (polychromatic)  light.  This  property  is  demonstrated  by  rainbow  formation.                                                                          

Page 6: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  6  of  22      

RECTILINEAR  PROPAGATION  OF  LIGHT  

Consider  shadow  formation  

i) Using  an  extended  source  of  light  

 Diag.  5  

Page 7: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  7  of  22      

ii) Using  a  point  source  of  light

 Diag.  6  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 8: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  8  of  22      

The  formation  of  the  shadow  of  a  planet  is  called  an  eclipse.  Consider    

a) A  solar  eclipse  (by  the  moon  of  the  sun,  i.e.  the  formation  of  the  shadow  of  the  moon  on  the  earth  as  the  moon  comes  between  the  earth  and  the  sun  and  blocks  all  or  part  of  the  sun`s  light  from  various  locations  of  the  earth`s  surface  that  is  facing  the  sun.  

 Diag.  7                            

Page 9: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  9  of  22      

     Consider  also  

 Diag.  8  

b) A  lunar  eclipse  (by  the  earth,  i.e.  the  formation  of  the  shadow  of  the  earth  on  the  moon  as  the  earth  comes  between  the  sun  and  the  moon  and  blocks  all  or  part  of  the  Sun’s  light  from  various  locations  on  the  moon’s  surface  that  is  facing  the  sun  and  the  earth.  Also  there  is  no  moonlight  on  the  nightside  of  the  earth  although  the  moon  in  on  that  side.  

 Diag.  9  

Page 10: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  10  of  22    

Reflection  of  Light  

When  light  is  incident  on  a  surface,  some  of  the  incident  light  maybe  absorbed  by  the  surface(  and  become  internal  energy),  some  maybe  transmitted  by  the  surface  and  some  may  be  reflected  by  the  surface.  The  nature  of  the  surface  determines  which  of  these  predominates-­‐  for  instance,  a  dark,  dull,  rough,  opaque  surface  will  absorb  most  of  the  incident  light,  a  transparent  or  translucent  surface  will  transmit  a  significant  proportion  of  the  incident  light;  and  a  bright,  smooth,  shiny  surface  will  reflect  most  of  the  incident  light.  

  Most  surfaces  reflect  some  of  the  light  that  is  incident  on  them  but  because  these  surfaces  are  usually  rough  the  reflection  is  irregular  and  diffuse.  

  Some  surfaces  are  very  smooth  and  reflect  incident  light  very  efficiently  –  such  surfaces  are  called  mirrors.  

  Consider  the  laws  of  reflection  

1) The  incident  ray,  the  reflected  ray,  and  the  normal  at  the  point  of  incidence  all  lie  in  the  same  plane  

2) The  angle  of  incidence  is  equal  to  the  angle  of  reflection.  The  behaviour  of  a  mirror  depends  on  its  shape    Consider  examples:  a) A  plane  mirror  

 Diag.  10        

Page 11: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  11  of  22    

b) Curved  Mirrors  i) A  convex  mirror  

Parallel  incident  rays  are  spread  out  after  reflection,  i.e.  they  become  divergent,  also  the  application  of  the  principle  of  reversibility  of  light  indicates  that  the  mirror  gives  a  wide  field  of  view-­‐  making  it  useful  as  a  rear  view  mirror  in  a  vehicle,  say  and  as  a  security  mirror,  in  a  super  market  say.  

 Diag.  11  

ii) A  concave  mirror  Parallel  incident  rays  are  converged  to  more  than  one  focus  after  reflection  

 Diag.  12            

Page 12: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  12  of  22    

iii) A  parabolic  mirror  Parallel  incident  rays  are  converged  to  only  one  focus  after  reflection.  So  it  is  more  efficient  at  concentrating  the  reflected  rays,  than  is  a  concave  mirror.  

     Diag.  13    

Consider  a  ray  diagram  showing  the  formation  of  an  image  in  a  plane  mirror  through  reflection;  

 

Diag.  13b  

Page 13: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  13  of  22    

The  characteristics  of  such  an  image  include:  

i) It  is  a  virtual  image,  i.e.  one  which  cannot  be  produced  on  a  screen  and  its  location  (since  the  light  rays  do  not  actually  pass  through  its  location  –  they  only  appear  to  do  so.  A  real  image,  on  the  other  hand,  is  one  which  can  be  produced  on  a  screen  –  since  the  rays  actually  do  pass  through  its  location.  

ii) The  image  distance  (v)  is  equal  to  the  object  distance  (u)  iii) The  image  has  the  same  size  as  the  object  (i.e.  its  magnification  is  1)  iv) The  image  is  the  same  way  up  as  the  object,  i.e.  erect  (with  respect  to  the  object).  v) The  image  is  laterally  inverted  with  respect  to  the  object.  

 

 

Such  a  virtual  image  can  be  located  in  practice  by  employing  the  method  0f  no  parallax  (  say  using  optical  pins  –  are  as  the  object  in  front  the  mirror  and  another  as  a  search  pin  behind  the  mirror  to  locate  the  position  of  the  virtual  image.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 14: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  14  of  22    

REFRACTION  OF  LIGHT  

Principle  laws  Prisms  

Refraction  can  occur  when  light  is  incident  on  the  boundary  between  two  different  optical  media  when  light  is  incident  on  such  a  boundary  a  change  in  speed  (and  wavelength)  of  the  light  always  occur.  Refraction  occurs  once  the  light  is  incident  on  the  boundary  obliquely  (i.e.  at  an  angle  of  incidence  that  is  not  zero  degrees  or  once  the  light  is  incident  normally).  Refraction  means  that  the  light  undergoes  a  change  in  direction,  i.e.  it  is  bent  or  refracted,  in  addition  to  undergoing  a  change  in  speed  (and  wavelength)  

When  light  travels  from  a  less  dense  medium  (such  as  air)  to  a  denser  medium  (such  as  water  or  glass)  it  is  refracted  towards  the  normal  and  its  speed  (and  wavelength)  decreases.  However,  when  light  travels  from  a  denser  medium  to  a  less  dense  medium  then  it  is  bent  or  refracted  away  from  the  normal  and  its  speed  (and  wavelength)  increases.  

The  laws  of  refraction  states  that  

1) The  incident  ray,  the  refracted  ray  and  the  normal  at  the  point  of  incidence  all  lie  in  the  same  plane.  

2) The  ratio  of  the  sine  of  the  angle  of  incidence  (in  the  less  dense  medium)  to  the  sine  of  the  angle  of  refraction  (in  the  denser  medium)  is  a  constant  called  the  refractive  index    of  the  (denser)  medium  (when  the  less  dense  medium  is  air  or  a  vacuum.  This  is  known  as  Snell`s  Law.  Consider  ray  diagrams  showing  the  passage  of  light  through  a  medium  in  the  form  of  a;                                                

Page 15: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  15  of  22    

i) Rectangular  Prism  

 Diag.  14                                      

Page 16: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  16  of  22    

ii) Triangular  Prism  

 Diag.  15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 17: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  17  of  22    

From  Snell`s  law:  

Refractive  index  of  denser  medium,  n  =  sin  i/sin  r,    

Where,  i  is  the  angle  of  incidence  in  the  less  dense  medium  (such  as  air  or  a  vacuum)  r  is  the  angle  of  refraction  in  the  denser  medium  

In  a  situation  where,  in  fact  I  is  in  the  denser  medium  and  r  is  in  the  less  dense  medium  then  the  principle  of  reversibility  of  light  must  be  applied  and  the  locations  of  I  and  r  will  be  exchanged  

Then  Snell`s  law  can  be  applied  

Note  also,  that:  

Refractive  index  of  a  denser  medium,  n  

=  speed  or  wavelength  of  light  in  less  dense  medium  (such  as  air  or  a  vacuum)/  speed  or  wavelength  of  light  in  a  denser  medium  

While  both  speed  and  wavelength  change  when  waves  (such  as  light)  travel  from  one  medium  to  another  the  frequency  of  the  wave  remains  constant.  

Examples  of  observations  that  illustrate  the  refraction  of  light  include:  

i) That  a  straight  object  such  as  a  stick  or  ruler  appears  to  be  bent  when  partly  immersed  in  water  

ii) That  the  bottom  of  a  pool  of  water  (or  an  object  on  the  bottom  of  the  pool  appears  to  be  closer  to  an  observer  from  above  that  it  actually  is.  

Page 18: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  18  of  22    

 

Diag.  16  

 

 

 

 

 

 

 

 

 

Page 19: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  19  of  22    

The  Critical  Angle  (c)  is  that  angle  of  incidence,  in  the  denser  medium  that  produces  an  angle  of  refraction  equal  to  90⁰  in  the  less  dense  medium.  

Note:  n  =1/  sin  c  and  sin  c  =  1/n  

The  two  conditions  necessary  for  total  internal  reflection  to  occur  are:  

i) The  ray  (or  waves)  must  be  travelling  from  a  denser  medium  towards  a  less  dense  medium,  and  

ii) The  angle  of  incidence,  in  the  denser  medium,  must  be  greater  than  the  critical  angle.  

 

Applications  of  total  internal  reflection  include:  

i) Rotation  of  light  through  90⁰  and/0r  180⁰  using  triangular  prisms  –  for  instance  in  binoculars  and  in  periscopes  

ii) Transmission  of  light  along  “light  pipes”  in  the  process  of  fibre  optics  which  is  used  in  telecommunications  for  instance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 20: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  20  of  22    

Refraction  at  curved  surfaces  

Consider  the  action  of  a:  

Convex  or  converging  lens  

When  parallel  rays  are  incident  on  such  a  lens  they  emerge  as  converging  rays  which  are  brought  to  a  focus  (F)  in  the  focal  plane  of  the  lens  on  the  other  (i.e.  emergent)  side  of  the  lens.  

 

Diag.  17  

Concave  or  diverging  lens  

When  parallel  rays  are  incident  on  such  a  lens  they  emerge  as  diverging  rays  which  appear  to  diverge  from  a  point  (f)  in  the  focal  plane  of  the  same  (i.e.  incident)  side  of  the  lens.  

 

Diag.  18  

 

Page 21: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  21  of  22    

Consider  the  various  features  associated  with  a  lens:  

 

Diag.  19  

O  is  the  optical  centre  of  the  lens  (i.e.  the  point  that  represents  the  centre  of  its  diameter  and  the  centre  of  its  thickness).  It  is  the  point  of  intersection  of  the  principal  axis  and  the  optical  plane  or  line.  

The  principal  axis  of  a  lens  (of  which  the  line  FOF  is  part)  is  the  straight  line,  through  the  optical  centre,  that  is  perpendicular  to  its  optical  plane/line  and  to  its  focal  planes/lines.  

F  is  the  focal  point  or  principal  focus  of  the  lens  –  one  on  either  side  of  the  lens  and  both  equidistant  from  the  lens.  It  is  the  point  at  the  intersection  of  a  focal  plane/line  and  the  principal  axis.  It  is  the  point  to  which  incident  rays  which  are  parallel  to  the  principal  axis  (as  to  one  another)  would  be  converged  after  passing  through  a  converging  lens.  It  is  also  the  point  from  which  incident  rays  which  are  parallel  to  the  principal  axis  (and  to  one  another)  would  appear  to  diverge  after  passing  through  a  diverging  lens.  

  f  is  the  focal  length  of  the  lens  –  one  of  either  side  of  the  lens  and  equal  to  one  another,  if  is  the  linear  distance  between  a  focal  plane/line  and  the  optical  plane/line  of  the  lens,  (e.g.    The  linear  distance  between  the  focal  point  or  principal  focus,  F,  and  the  optical  centre,  O)  

  Parallel  rays  that  are  incident  on  a  converging  or  convex  lens  are  converged  to  a  point  in  the  focal  plane  or  line  of  the  lens,  on  the  emergent  side.  Parallel  rays  that  are  incident  on  a  diverging  or  concave  lens  emerge  as  diverging  rays  which  appear  to  diverge  from  a  point  in  the  focal  plane/line  of  the  lens  on  the  incident  side  

  Rays  incident  on  the  optical  centre  of  a  lens  pass  straight  on  (without  being  refracted.)    

Page 22: class 34 Ray Optics - Weebly · Mr!R!Gopie! PHYSICS!! Page!2!of!22! Ray!Optics! Nature!of!light! Light!is!aform!of!energywhich!affects!thehuman!eyein!such!a!wayas!to!causethesensation!of!

Mr  R  Gopie   PHYSICS  

 

Page  22  of  22    

The  thicker  a  lens  or  the  greater  the  refractive  index  of  the  material  of  which  it  is  made  the  shorter  the  focal  length  of  the  lens.  A  lens  forms  an  image  by  the  refraction  of  incident  rays  from  an  object  (as  opposed  to  a  mirror  which  forms  an  image  by  reflection  of  the  incident  rays  from  the  object).  

The  linear  distance  an  object  and  the  optical  plane  line  is  referred  to  as  the  object  distance  (symbol  u).  The  linear  distance  between  an  image  and  the  optical  plane/line  is  referred  to  as  the  image  distance  (symbol  v)  

 

The  linear  magnification  of  an  image  is  given  by:  

Magnification  =  height  of  image/height  of  object    

And  by  

Magnification  =  image  distance,  v/object  distance  ,u