class 3 - vector calculus

Upload: verbicar

Post on 14-Apr-2018

234 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Class 3 - Vector Calculus

    1/37

    AOE 5104 Class 3 9/2/08

    Online presentations for todays class: Vector Algebra and Calculus 1 and 2

    Vector Algebra and Calculus Crib

    Homework 1 due 9/4

    Study group assignments have been made and areonline.

    Recitations will be Mondays @ 5:30pm (with Nathan Alexander)

    Tuesdays @ 5pm (with Chris Rock)

    Locations TBA

    Which recitation you attend depends on which study groupyou belong to and is listed with the study groupassignments

  • 7/27/2019 Class 3 - Vector Calculus

    2/37

    Unnumbered slides contain comments that I inserted and

    are not part of Professors Devenports original

    presentation.

  • 7/27/2019 Class 3 - Vector Calculus

    3/37

    4

    Cylindrical Coordinates

    R

    er

    eez

    Coordinates r, , z

    Unit vectors er, e, ez(indirections of increasing

    coordinates)

    Position vector

    R= rer+ zez

    Vector components

    F= Frer+Fe+FzezComponents not constant,

    even if vector is constant

    r

    z

    F

    x

    y

    z

  • 7/27/2019 Class 3 - Vector Calculus

    4/37

    5

    Spherical Coordinates

    r

    er

    e

    e

    rF

    Coordinates r, ,

    Unit vectors er, e, e (indirections of increasing

    coordinates)

    Position vector

    r= rer

    Vector components

    F= Frer+Fe+Fe

    Errors on this slide in online presentation

    y

    x

    z

  • 7/27/2019 Class 3 - Vector Calculus

    5/37

    1 1

    1

    r r x y z

    x r r

    r r

    r

    r

    F F F F F F

    F F F F

    x r y r r r

    r r r

    hh r r

    hh r

    sin cos , sin sin , cos

    sin cos sin sin cos

    sin cos sin sin cos

    cos cos cos sin sin

    F e e e i j k

    F

    i e i e i e i

    r i j k

    r re i j k

    re i j k

    1

    x r

    r

    h rh

    F F F F

    sin cos sin

    sin cos cos cos sin

    r

    r re i j

  • 7/27/2019 Class 3 - Vector Calculus

    6/37

    7

    J. KURIMA, N. KASAGI and M. HIRATA (1983)

    Turbulence and Heat Transfer Laboratory, University of Tokyo

    LOW REYNOLDS NUMBER AXISYMMETRIC JET

  • 7/27/2019 Class 3 - Vector Calculus

    7/37

    8

    Class ExerciseUsing cylindrical coordinates (r, , z)

    Gravity exerts a force per unit mass of 9.8m/s2

    on the flowwhich at (1,0,1) is in the radial direction. Write down thecomponent representation of this force at

    a) (1,0,1) b) (1,,1) c) (1,/2,0) d) (0,/2,0)

    R

    er

    eez

    r

    z

    9.8m/s2

    a) (9.8,0,0)

    b) (-9.8,0,0)

    c) (0,-9.8,0)

    d) (9.8,0,0)

    xy

    z

  • 7/27/2019 Class 3 - Vector Calculus

    8/37

    Vector Algebra in Components

    1 1 2 2 3 3

    1 2 3

    1 2 3

    1 2 3

    2 3 3 2 1 3 1 1 3 2 1 2 2 1 3

    cos

    where is the smaller of the two angles

    between and

    sin where is determined by the

    right-han

    A B A B

    A B

    e e e

    A B

    e e e

    A B A B n n

    A B A B A B

    A A A

    B B B

    A B A B A B AB AB A B

    d rule

    A

    B

    n

  • 7/27/2019 Class 3 - Vector Calculus

    9/37

    3. Vector Calculus

    Fluid particle: Differentially Small Piece

    of the Fluid Material

  • 7/27/2019 Class 3 - Vector Calculus

    10/37

  • 7/27/2019 Class 3 - Vector Calculus

    11/37

    Concept of Differential Change In a

    Vector. The Vector Field.

    V

    -2

    -1

    0

    1

    2

    y/

    L

    -2

    0

    2

    -T/ U

    L0

    1

    2

    z/L

    V+dV

    dV

    V=V(r,t)

    =(r,t)Scalar fieldVector field

    Differential change in vector

    Change in direction

    Change in magnitude

  • 7/27/2019 Class 3 - Vector Calculus

    12/37

    13

    PP'

    er

    e

    ez

    d

    r

    z

    Change in Unit Vectors

    Cylindrical System

    rdd ee

    ee dd r

    0zde

    e+de

    er+de

    r

    er

    ede

    der

  • 7/27/2019 Class 3 - Vector Calculus

    13/37

    14

    Change in Unit Vectors

    Spherical System

    sin

    cos

    sin cos

    e e e

    e e e

    e e e

    r

    r

    r

    d d d

    d d d

    d d d

    r

    er

    e

    e

    r

    See Formulae for Vector

    Algebra and Calculus

  • 7/27/2019 Class 3 - Vector Calculus

    14/37

    15

    Example

    kjir zyx

    dt

    drV

    zr zr eer

    R=R(t)

    Fluid particle

    Differentially small

    piece of the fluid

    material

    V=V(t) The position of fluid particle moving in a flowvaries with time. Working in different coordinate

    systems write down expressions for the position

    and, by differentiation, the velocity vectors.

    O

    ... This is an example of the calculus of vectors with respect to time.

    dtdrV

    zrdt

    dz

    dt

    dr

    dt

    dreee

    Cartesian

    System

    Cylindrical

    Systemz

    rr

    dtdz

    dtdr

    dtdr eee

    kjidt

    dz

    dt

    dy

    dt

    dx

    ee dd r

  • 7/27/2019 Class 3 - Vector Calculus

    15/37

    16

    Vector Calculus w.r.t. Time

    Since any vector may be decomposed into scalar

    components, calculus w.r.t. time, only involves scalar

    calculus of the components

    dtdtdt

    ttt

    ttt

    ttt

    BABA

    BAB

    ABA

    BAB

    ABA

    BABA

    .

  • 7/27/2019 Class 3 - Vector Calculus

    16/37

    17

    High Speed Flow Past an Axisymmetric Object

    Shadowgraph picture is from An Album of Fluid Motionby Van Dyke

  • 7/27/2019 Class 3 - Vector Calculus

    17/37

    1

    1

    lim where is evaluated at any

    point on and the largest 0 as

    similarly for other integrals

    lim etc.

    I s s

    s s

    V s V s

    B i n

    i i in

    iA

    i i

    B i n

    i in

    iA

    d

    n

    I d

    Line integrals

    divide the path intosmall segments:

    is a typical onesi

    n

    si

    Vi

    A

    B

  • 7/27/2019 Class 3 - Vector Calculus

    18/37

    19

    Integral Calculus With Respect to Space

    D=D(r), = (r)

    n

    dS

    Surface S

    Volume R

    D(r)

    ds

    O

    r

    D(r)

    d

    Line Integrals

    s D s D sB B B

    A A Ad d d

    For closed loops, e.g. Circulation V sd

    A

    B

  • 7/27/2019 Class 3 - Vector Calculus

    19/37

    20Picture is from An Album of Fluid Motionby Van Dyke

    Mach approximately 2.0

    For closed loops, e.g. Circulation sV d.

  • 7/27/2019 Class 3 - Vector Calculus

    20/37

    21

    Integral Calculus With Respect to

    Space

    D=D(r), = (r)

    n

    dS

    Surface S

    Volume R

    D(r)

    ds

    O

    r

    D(r)

    d

    Surface Integrals

    n D n D nS S SdS dS dS Se.g. Volumetric Flow Rate through surface S S dSnV.

    For closed

    surfaces

    Volume Integrals

    D

    R R

    d d

    A

    B

  • 7/27/2019 Class 3 - Vector Calculus

    21/37

    22Picture is from An Album of Fluid Motionby Van Dyke

    Mach approximately 2.0

    n

    dS

    . n D n D nS S SdS dS dS

  • 7/27/2019 Class 3 - Vector Calculus

    22/37

    23

    In 1-D

    0S

    1grad lim dS

    n

    In 3-D

    Differential Calculus w.r.t. Space

    Definitions ofdiv, gradand curl

    0S

    1div lim dS

    D D n

    0S

    1curl lim dS

    D D n

    Elemental volumewith surface S

    n

    dS

    D=D(r), = (r)

    0

    1lim ( ) ( )

    xdf

    f x x f xdx x

  • 7/27/2019 Class 3 - Vector Calculus

    23/37

    Alternative to the Integral Definition of Grad

    We want the generalization of

    0

    0

    1lim ( ) ( )

    lim ( ) ( ) Grad

    Grad

    Grad

    rr r r r

    i j k

    i j k

    x

    df df f x x f x df dx

    dx x dx

    df f f f d

    f f fdf dx dy dz f dx dy dz

    x y z

    f f ffx y z

    continued

  • 7/27/2019 Class 3 - Vector Calculus

    24/37

    Alternative to the Integral Definition of Grad

    Cylindrical coordinates

    0

    cos sin

    cos sin sin cos

    lim ( ) ( ) Grad

    Grad

    1Grad

    r

    r i j k e k

    r i j i j k

    e e k

    r r r r

    e e k

    e e k

    r

    r

    r

    r

    r r z r z

    d dr rd z

    dr rd dz

    df f f f d

    f f f

    df dr d dz f dr rd dz r z

    f f ff

    r r zcontinued

  • 7/27/2019 Class 3 - Vector Calculus

    25/37

    Alternative to the Integral Definition of Grad

    Spherical coordinates

    sin cos sin sin cos

    1sin cos sin sin cos 1

    1cos cos cos sin sin

    1sin cos sin

    sin cos sin

    r i j k

    r re i j k

    r re i j k

    r re i j

    r i

    r r

    r

    r

    r r r

    hh r r

    h rh r

    h rh

    d dr

    sin cos cos cos cos sin sin

    sin sin cos sin

    , , Grad sin

    1 1

    Grad sin

    j k i j k

    i j e e e

    e e e

    e e

    r

    r

    r

    rd

    r d dr rd r d

    F F FdF r dr d d F dr rd r d

    r

    F F F

    F r r r e

  • 7/27/2019 Class 3 - Vector Calculus

    26/37

    27

    ndS

    (large)

    Gradient

    0S

    1grad lim dS

    n

    dS

    n

    Elemental volume

    with surface S

    ndS

    (small)

    ndS

    (medium)

    ndS

    (medium)

    = magnitude and direction of the slope in the scalar field at a point

    ResultingndS

  • 7/27/2019 Class 3 - Vector Calculus

    27/37

    28

    Gradient

    Component of gradient is the partial derivative

    in the direction of that component

    Fouriers Law of Heat Conduction

    es s

    n

    Tq k k T

    n

  • 7/27/2019 Class 3 - Vector Calculus

    28/37

    The integral definition given on a previous slide

    can also be used to obtain the formulas for the

    gradient.

    On the next four slides, the form of GradF inCartesian coordinates is worked out directly from

    the integral definition.

  • 7/27/2019 Class 3 - Vector Calculus

    29/37

    30

    0

    S

    0

    1grad lim dS

    1

    lim

    n

    i j k i j k dxdydz dxdydz dxdydz x y z x y z

    Face 2

    Differential form of the Gradient

    0S

    1grad lim dS

    n

    Cartesian system

    dy

    dx

    dz

    j

    ik

    P

    Evaluate integral by expanding the variation in

    about a point Pat the center of an elementalCartesian volume. Consider the twoxfaces:

    = (x,y,z)

    Face 1

    e1

    dS ( )2

    n i

    Fac

    dxdydz

    x

    e 2

    dS ( )2

    n i

    Fac

    dx dydzx

    adding these gives

    i dxdydzx

    Proceeding in the same way foryand z

    j dxdydzy

    k dxdydzz

    andwe get , so

  • 7/27/2019 Class 3 - Vector Calculus

    30/37

    An element of volume with a local Cartesian coordinate system having its origin

    at the centroid of the corners, O

    O .

    x

    y

    z

    x

    z

    y

    M

    Point M is at the centroid of the face perpendicular to the y-

    axis with coordinates (0,y/2, 0)

    Other points in this face have the coordinates (x,y/2, z)

    F y axis

    F x y z

    We introduce a local Cartesian coordinate system and then use

    a Taylor series to express at a point in the face

    in terms of its value and the values of its derivatives at the origin:

    ( , , ) 2

    2

    0 0 0 0 0 0 0 0 00 0 0

    2

    F F y F F x z O l

    x y z

    O l x y z

    ( , , ) ( , , ) ( , , )( , , ) ( )

    where ( ) denotes the remainder which contains the factors , ,

    in at least quadratic formcontinued

    Gradient of a Differentiable Function, F

  • 7/27/2019 Class 3 - Vector Calculus

    31/37

    2

    4

    0 0 0 0 0 0 0 0 00 0 0

    2

    0 0 0

    2

    y

    y axis

    F x y z dS

    F F y F F x z O l dxdz

    x y z

    F y x z F x z O l

    y

    z x

    2 2- z - x

    2 2

    the integral over the face ( ) :

    ( , , )

    ( , , ) ( , , ) ( , , )( , , ) ( )

    ( , , )( )

    the integ

    n j

    n

    j

    j

    40 0 00 0 0

    2

    0 0 0

    y

    y y

    y axis

    F y x z F x y z dS F x z O l

    y

    FF x y z dS F x y z dS y

    y

    ral over the face ( ) :

    ( , , ) ( )( , , ) ( , , ) ( )

    the sum of the integrals over these two faces is given by

    ( , , )( , , ) ( , , ) (

    n j

    n j

    n n 4x z O l ) ( )

  • 7/27/2019 Class 3 - Vector Calculus

    32/37

    4

    4

    4

    0 0 0

    0 0 0

    0 0 0

    y y

    x x

    z z

    FF x y z dS F x y z dS y x z O l

    y

    FF x y z dS F x y z dS y x z O l

    x

    FF x y z dS F x y z dS y x z O l z

    y

    ( , , )( , , ) ( , , ) ( ) ( )

    similarly

    ( , , )( , , ) ( , , ) ( ) ( )

    ( , , )( , , ) ( , , ) ( ) ( )

    n n j

    n n i

    n n k

    0 0

    1

    lallfac s

    x z

    F F FF F x y z dS O l

    x y z

    F F FF

    x y z

    e

    volume of the element

    Grad lim ( , , ) lim ( )

    Grad

    n i j k

    i j k

  • 7/27/2019 Class 3 - Vector Calculus

    33/37

    34

    Differential Forms of the Gradient

    These differential forms define the vector operator

    sinsin r

    e

    +r

    e

    +rer

    e

    +r

    e

    +re

    ze+

    r

    e+

    re

    ze+

    r

    e+

    re

    zk+

    yj+

    xi

    zk+

    yj+

    xi

    =grad

    rr

    zrzr

    Cartesian

    Cylindrical

    Spherical

  • 7/27/2019 Class 3 - Vector Calculus

    34/37

    35

    0S

    1lim dS

    V V ndiv

    dS

    n

    Divergence

    Fluid particle, coincident

    with at time t, after time

    thas elapsed.

    = proportionate rate of change of volume of a fluid particle

    Elemental volume

    with surface S

  • 7/27/2019 Class 3 - Vector Calculus

    35/37

    36

    Differential Forms of the

    Divergence

    A.re+

    re+

    reA

    r1+A

    r1+

    rAr

    r1

    A.z

    e+r

    e+

    re

    z

    A+

    A

    r

    1+

    r

    rA

    r

    1

    A.zk+yj+xiz

    A+y

    A+x

    A

    A.=Adiv

    rr

    2

    2

    zrzr

    zyx

    sinsinsin

    sin

    Cartesian

    Cylindrical

    Spherical

  • 7/27/2019 Class 3 - Vector Calculus

    36/37

    37

    Differential Forms of the Curl

    ArrAA

    r

    erere

    r

    1=

    ArAA

    zr

    eere

    r

    1=

    AAA

    zyx

    kji

    =A=Acurl

    r

    r

    2

    zr

    zr

    zyx

    sin

    sin

    sin

    S0 dS1

    Lim nAAcurl

    Cartesian Cylindrical Spherical

    Curl of the veloci ty vecto rV =twice the circumferentially averaged

    angular velocity of

    -the flow around a point, or

    -a fluid particle

    =Vortici ty Pure rotation No rotation Rotation

  • 7/27/2019 Class 3 - Vector Calculus

    37/37

    38

    e

    0S

    0S

    0S

    0S

    Ce

    0 0

    C

    1lim dS

    1lim . dS

    1lim . dS

    1

    lim . d

    1lim .d lim

    V V n

    e V e V n

    e V V e n

    e V V e n

    e V V s

    e

    curl

    curl

    curlh

    curl s hh

    curl

    c2

    0 0

    1lim 2 2 lim

    V

    vurl v a

    a a

    dS

    n

    Curl

    e

    nPerimeter Ce

    ds

    h

    dS=dsh

    Area

    radius a

    v avg. tangential

    velocity= twice the avg. angular velocity

    about e

    Elemental volume

    with surface S