class 10 handout

Upload: pranav-kulkarni

Post on 25-Feb-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 Class 10 Handout

    1/31

    Fluid Mechanics AS102

    Class Note No: 10

    Tuesday. August 21, 2007

  • 7/25/2019 Class 10 Handout

    2/31

    Review of Last Lecture: Hydrostatics & Aerostaticsstatic pressure Eq ininertial frame

    x1

    x2

    P 12Px1

    dx1

    P 12Px2

    dx2

    P+ 12Px1

    dx1

    P+ 12Px2

    dx2

    r

    g

    dx1

    dx2

    Figure:control volumedx1dx2dx3 in inertial frame(xi)

    dx1dx2dx3 very smallsuch that

    V

    dV dx1dx2dx3 ...

    applyNewtons 2 lawto the fluid in the C.V.

    P

    xi gi=0 (1)

  • 7/25/2019 Class 10 Handout

    3/31

    Review of Last Lecture: Hydrostatics & Aerostaticsstatic pressure Eq intranslational frame

    x1

    x2

    x1

    x2

    P

    1

    2

    P

    x

    1dx

    1

    P 12Px

    2dx2

    P+ 12Px

    1dx1

    P+ 12Px

    2dx2

    r r

    g

    b

    dx1

    dx2

    Figure:control volumedx1 dx

    2 dx

    3 in translational frame(x

    i )

    applyNewtons 2 lawto the fluid in the C.V.

    (bi g

    i) + P

    xi=0 ,

    d

    dtbi

    rest in(xm)= 0 (2)

    b= biii=bj ij, g= giii=gj ij,

  • 7/25/2019 Class 10 Handout

    4/31

    Review of Last Lecture: Hydrostatics & Aerostatics

    IN GENERAL, the static pressure equation

    - for a fluidstationary in a non-inertial frame (xm)undergoingRBM

    # the component form in(xm):

    kx

    k

    i

    k

    kx

    i + a

    i g

    i

    +

    P

    xi =0 (3)

    where

    =ki

    k, r =xk i

    k, a:=b= aki

    k, g= g

    ki

    k

    r measured in the non-inertial(xm)

    memorize the above equation

  • 7/25/2019 Class 10 Handout

    5/31

    Review of Last Lecture: Hydrostatics & Aerostaticshydrostatic pressure distribution - static

    a body of liquid, say, water at rest in an inertial frame

    M

    g h

    O

    x3

    Patm

    Figure:hydrostatic pressure distribution

    assumptions: v= 0 in an inertial frame a constantPatmon the body from above the gravityg acts in the body downward

    ( a top plane surface) the liquid is incompressible with

  • 7/25/2019 Class 10 Handout

    6/31

    Review of Last Lecture: Hydrostatics & Aerostatics

    hydrostatic pressure distribution - static

    Eq(3) and the b.c. reduce to

    dP

    dx3= g , P(0) =Patm

    P=Patm+g x3 =Patm+ g h,

    P=Patm+ g h (4)

    called thehydrostatic pressure distribution(linear variation with the depth).

  • 7/25/2019 Class 10 Handout

    7/31

    Hydrostatics & Aerostatics

    forces on a submerged plane static

    M

    A

    x1

    x2 x1

    x2

    P

    Cf

    dA

    g h

    O

    Patm

    Patm

    Patm

    Figure:forces on a plane submerged: liquid on one side; air on theother side. C- plane centroid,f- pressure center

  • 7/25/2019 Class 10 Handout

    8/31

    Hydrostatics & Aerostaticsforces on a submerged plane static

    assumptions: v

    =0 in an inertial frame

    a constantPatmon the body from above the gravityg acts in the body downward

    ( a top plane surface) the liquid is incompressible with

    P=Patm+ g h theresultant forceatMondA,normal tothe plane, is

    dFR=P dA Patm dA= g h d A= gsinx2 dA

    FR

    =gsin A

    x2 dA= gsinxC

    2 A= P

    CA

    xC2 the plane centroid C; PC the gage pressure at C

    thecenter of pressure,f with(xf1, xf2):

    x

    f

    1 FR=

    A x1 dFR, x

    f

    2 FR=

    A x2 dFR ... (5)

  • 7/25/2019 Class 10 Handout

    9/31

    Hydrostatics & Aerostatics

    todays topic:

    more applications of the pressure equation bouyancy differential manometers uniform rotation

  • 7/25/2019 Class 10 Handout

    10/31

    Hydrostatics & Aerostatics

    buoyancy - static:

    acting on a solid body of arbitrary shape completely submerged

    in a homogeneous incompressible liquid

    dF2

    dF2

    gdA2

    Patm

    B

    x1

    x2

    h=x2

    Pnn

    Figure:buoyancy

  • 7/25/2019 Class 10 Handout

    11/31

    Hydrostatics & Aerostaticsbuoyancy - static:

    dF2

    dF2

    gdA2

    Patm

    B

    x1

    x2

    h=x2

    Pn

    n

    assumptions: v= 0 in an inertial frame a constantPatmon the body from above the gravityg acts in the body downward

    ( a top plane surface)

    the liquid is incompressible with

  • 7/25/2019 Class 10 Handout

    12/31

    Hydrostatics & Aerostaticsbuoyancy:

    set up the RCS(xm)withx2 downward and the origin on the

    top plane the pressure force acting on a smalldAof the body surface

    dF= Pn dA, P=Patm+ g x2 from H.P.D.

    the total pressure force acting on the surface of the body

    F=

    V

    Pn dA= Patm

    V

    ndA g

    V

    x2 ndA

    V

    ndAD. Thm.

    = V

    1 dV =0,V

    x2 ndAD. Thm.

    =

    V

    x2 dV = vol(V) i2

    F= [ vol(V) g] i2, F1 =F3 =0

    liquid weight displaced&upward or oppositetog

  • 7/25/2019 Class 10 Handout

    13/31

    Hydrostatics & Aerostaticsbuoyancy:

    thecenter of buoyancyB

    xB1 F2 =

    F on V

    x1dF2=

    V

    x1 P n2 dA

    = Patm

    V

    x1 n2 dA g

    V

    x1 x2n2 dA

    D.Thm= PatmV

    x1x2

    dV gV

    (x1 x2)x2

    dV

    = g xC1 vol(V), xC1 thecentroidof V (6)

    xB3 F2 =

    F on V x

    3dF2=

    Vx3 P n2 dA

    = g xC3 vol(V), xC3 thecentroidof V (7)

    xB1 =x

    C1, x

    B3 =x

    C3 (8)

  • 7/25/2019 Class 10 Handout

    14/31

    Hydrostatics & Aerostatics

    buoyancy:

    the Archimedes principle:the buoyant force on a submerged body is equal to the

    weightof liquid it hasdisplaced, and acts through the

    centroidof the displaced volume

  • 7/25/2019 Class 10 Handout

    15/31

    Hydrostatics & Aerostaticsbuoyancy - static:

    what about apartiallysubmerged body ?

    dF2

    g

    Patm

    Bx1

    x2

    h=x2

    Pn

    n

    Figure:buoyancy

    P=

    Patm, x2

  • 7/25/2019 Class 10 Handout

    16/31

    Hydrostatics & Aerostaticsdifferential manometers :

    PA, APB, B

    C

    g

    h1

    h2

    h3

    c d e

    f g

    Figure:differential manometer

    assumptions: v= 0 in an inertial frame the gravityg acts in the body downward the liquids are incompressible

    PB PA =?

    H d i & A i

  • 7/25/2019 Class 10 Handout

    17/31

    Hydrostatics & Aerostatics

    differential manometers :

    Pc=PA+A g h1, Pc=Pd=Pe,

    Pf =Pe+Cg h2, Pf =Pg, Pg=PB+Bg h3

    PB PA=

    PB+Bg h3 =PA+A g h1+Cg h2 (9)

    H d t ti & A t ti

  • 7/25/2019 Class 10 Handout

    18/31

    Hydrostatics & Aerostaticsuniform rotation

    a cylindrical container of water rotating at a constant

    around its axis, the water is at rest relative to the container

    Hw

    gg

    R

    x1

    x3

    x

    1

    x3H

    P0 P0

    n

    m

    M

    Figure:uniform rotation

    set(xm)in the inertial frame; attach(xm)to the rotating

    cylinder (see the sketch).

    H d t ti & A t ti

  • 7/25/2019 Class 10 Handout

    19/31

    Hydrostatics & Aerostaticsuniform rotation

    assumptions:

    incompressible liquid like water with; b=0; = i3 = i

    3; ( given and constant) g= gi3; a gas above the liquid with constantP0,

    neglect the surface tension effecteq. (3)

    P

    x1= 2x1 ,

    P

    x2= 2x2 ,

    P

    x3= g (10)

    P= 1

    2 2 (r)2 g x3 + C, (11)

    (r)2 := (x1 )2 + (x2 )

    2,

    C=? (12)

    H drostatics & Aerostatics

  • 7/25/2019 Class 10 Handout

    20/31

    Hydrostatics & Aerostatics

    uniform rotation

    how to findC? acombinationof the factors as follows

    b.c.:P=P0 on the free surface (fromt= P0n, t=

    Tn)

    volume preservation, spilling or no spilling ?

    the effect of ,R,Hw &H ...

    Hydrostatics & Aerostatics

  • 7/25/2019 Class 10 Handout

    21/31

    Hydrostatics & Aerostaticsuniform rotation

    case 1: low - liquidoccupyingr [0, R]&no spilling

    r

    x3 H

    P0

    m

    M

    Figure:uniform rotation case 1

    shape of the free surface:

    gxf3= 1

    2 2(r)2 P0+ C, r

    [0, R] (13)

    R

    0

    xf32rdr

    vol p.= R2Hw

    Hydrostatics & Aerostatics

  • 7/25/2019 Class 10 Handout

    22/31

    Hydrostatics & Aerostatics

    C P0=gHw

    1()2

    , :=

    ||R

    2gHw g xf3 = 12

    2(r)2 + g Hw[1()2], r [0, R]

    r

    x3 HP0

    m

    M

    Figure:uniform rotation case 1

    case 1 restrictions on:

    there is liquid atr =0 xf3(0) > 0

    < 1 (14)

    no spilling xf(R) H

    rHHw

    1 (15)

    Hydrostatics & Aerostatics

  • 7/25/2019 Class 10 Handout

    23/31

    Hydrostatics & Aerostatics

    uniform rotation

    case 2:

    - liquidoccupyingr [0, R]& there isspilling

    r

    x3H

    P0

    m

    M

    Figure:uniform rotation case 2

    shape of the free surface:

    gxf3 =1

    2 2(r)2 P0+ C, r

    [0, R], C=? (16)

  • 7/25/2019 Class 10 Handout

    24/31

    Hydrostatics & Aerostatics

  • 7/25/2019 Class 10 Handout

    25/31

    Hydrostatics & Aerostatics

    uniform rotation

    case 2 restrictions on:

    there is spilling

    R2Hw R

    0

    xf32rdr =... >0

    R

    2

    gHw

    2>

    H

    Hw 1 (17)

    there is liquid at r =0 xf3(0)>0

    R

    2gH

    2

  • 7/25/2019 Class 10 Handout

    26/31

    Hydrostatics & Aerostaticsuniform rotation

    case 3:

    -no liquid occupyingr

    [0, Rc)&no spilling

    r

    x3 H

    P0

    m

    M

    Rm

    Figure:uniform rotation case 3

    shape of the free surface:

    gxf3=1

    2 2(r)2 P0+ C, r

    [Rm, R]

    Rm=? C=? (19)

    Hydrostatics & Aerostatics

  • 7/25/2019 Class 10 Handout

    27/31

    Hydrostatics & Aerostatics

    uniform rotation

    case 3 continue:how to findRm&C?

    volume preservation

    R

    Rm

    xf32rdr =R2Hw

    C P0 = gR2Hw

    R2 (Rm)2

    1

    42(R2 + (Rm)

    2)

    xf3(Rm) =0

    Rm

    R =

    1

    R

    2

    gHw

    1

    Hydrostatics & Aerostatics

  • 7/25/2019 Class 10 Handout

    28/31

    Hydrostatics & Aerostatics

    uniform rotation

    case 3 restrictions on:

    Rmreal

    R2gHw 1(?) (20)

    no spilling xf3(R) H

    R2gHw

    2

    + R2gHw

    HHw(?) (21)

    Hydrostatics & Aerostatics

  • 7/25/2019 Class 10 Handout

    29/31

    Hydrostatics & Aerostaticsuniform rotation

    case 4:

    -no liquid occupyingr

    [0, Rc)& withspilling

    r

    x3H

    P0

    m

    M

    Rm

    Figure:uniform rotation case 4

    shape of the free surface:

    gxf3= 1

    2 2(r)2 P0+ C, r

    [Rm, R],

    Rm=? C=? (22)

    Hydrostatics & Aerostatics

  • 7/25/2019 Class 10 Handout

    30/31

    Hydrostatics & Aerostatics

    uniform rotation

    case 4 continue:how to findRm&C?

    spilling xf3(R) =H

    C P0=gH1 R

    2gH

    2 xf3(Rm) =0

    Rm

    R =

    1 R2gH

    2

    Hydrostatics & Aerostatics

  • 7/25/2019 Class 10 Handout

    31/31

    Hydrostatics & Aerostatics

    uniform rotation

    case 4 restrictions on:

    there is spilling

    R2Hw R

    Rm

    xf32rdr >0

    R2gH >

    1

    2

    H

    Hw(?) (23)

    Rmreal

    R2gH 1(?) (24)