circular variable filter unclassified inu//linin -- elu ... · sensor consists of two 180-degree...

154
1 AD-A109 89A BOSTON COLL CHESTNUT HILL MA SPACE DATA ANALYSIS LAB F/6 20/6 ANALYSIS OF PROJECT EXCEDE II CIRCULAR VARIABLE FILTER SPECTRON--ETC(U) JAN 81 W F GRIEDER, C I FOLEY F1962R-79-C-0139 UNCLASSIFIED SC-SOAL-80-3 AFGL-TR-81-0224 NL 2:l/ll l inu//linin -- ElU---. --- El--I/ -mm--l ------ U

Upload: tranlien

Post on 27-Apr-2019

215 views

Category:

Documents


0 download

TRANSCRIPT

1 AD-A109 89A BOSTON COLL CHESTNUT HILL MA SPACE DATA ANALYSIS LAB F/6 20/6ANALYSIS OF PROJECT EXCEDE II CIRCULAR VARIABLE FILTER SPECTRON--ETC(U)JAN 81 W F GRIEDER, C I FOLEY F1962R-79-C-0139

UNCLASSIFIED SC-SOAL-80-3 AFGL-TR-81-0224 NL2:l/ll l

inu//linin-- ElU---.--- El--I/-mm--l------ U

11111111111I 5

1.4 .6

MICROCOPY RESOLUTION TEST CHART

AFGL-TR-81 -0224

A A10989 4

ANALYSIS OF PROJECT IEXCEDE II CIRCULAR VARIABUEFILlER SECTRO1B IEER DATA

William F. GrioderCarol 1. Foley

DTICSpace Data Analysis Laboratory AMEL COTLBoston College JAN 21982885 Centre StreetNewton. MA 02159

Scientific Report No. 11 January 81

Approved for public release; distribution unlimited

Air Force Geophysics LaboratoryAir Force Systems CommandUnted States Air ForceHanecom AFB Massachusetts 01731

jY01 20 c852 063

UNCLASSIFIEDSECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUNPAGE READ INSTRUCTIONSREPORT__ DOCUMENTATIONPAGE_ BEFORE COMPLETING FORM

I. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFGL-TR-81-0224 e"

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Scientific Report No. 1ANALYSIS OF PROJECT EXCEDE II CIRCULAR 1 July 1979 - 30 Sept 1981VARIABLE FILTER SPECTROMETER DATA 6. PERFORMING ORG. REPORT NUMBER

BC-S DAL- 80- 3.AU THOR(&) 8. CON'RACT OR GRANT NUMBER/aT)

William F. GriederF19628-79-C-0139

9. PERFOIIG ORGANZATJON NAkE AND! ADDRESS 10. PROGRAM ELEMENT PROJECT, TASKsLb o AREA 6 WORK UNIT NUMBERS• oston Colege885 Centre Street 62101FNewton, MA 02159 - 767010AF

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Geophysics Laboratory 1 January 1981Hanscom AFB, Massachusetts 01731 1, NUMBER OF PAGES

Contract Monitor: Mr. John A. Sandock/OPR 1 14914. MONITORING AGENCY NAME a ADDRESS(if different fro.; Controlling Office) 15. SECURITY CLASS. fol this report'

Unclas si fied15. DECLASSI FI CATION DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT ( j the abstract entered in Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

19, KEY WORDS (Continue on reverse aide if necessary and identify by block number)

Infrared Spectrometers Artificial Auroral ExperimentInfrared Aurora Infrared Cryogenic SpectrometersInfrared Atmospheric Emissions

20. ABSTP CT (Continue on reverse side If necessary and identify by block number)

EXCEDE II is the fourth in a series of research experiments conducted byAir Force Geophysics Laboratory (AFGL) to study the infrared emission pro-cesses induced by rocketborne electron accelerators. The excitation of theupper atmosphere by the electron beam simulates aurora induced processes butprovides the advantage that the dosing is more precisely quantified than inthe natural auroral case. In addition, optical/infrared instruments carried

(Cont.)

DD I JAN 73 1473 UNCLASSIFIED -

i SECURITY CLASSIFICATION OF THI5 PAGE 'When Date Entered)

i .. ~~- . .. . "- .- - " - - -. ., -., . . , - . 1

SECURtTY CLASSIFICATiON OF TVIS PAGE(When Data Entered)

20. Abstract (Cont.)

on-board the same payload with the accelerator provide controlled viewinggeometry of the induced emissions and measurements do not suffer from long pathatmospheric attenuation as would be the case for some ground based observa-tions.

'The EXCEDE II payload was launched from Pad 4, Poker Flat Research Range,Alaska on 25 October 1979 at 0546:40 UT hours. The payload reached a -i28 kmapogee at -187 seconds after launch. Although some difficulties wereencountered with electron gun arcing the experiment was successful and datawere obtained for gun on and off conditions throughout the flight (O'Neil1980).

The primary purpose of this report is to describe in detail the tech-niques used to process and analyze the data measured with the two CVF spectrom-eters on the EXCEDE II payload. Part A of the report deals with the LN2 CVFspectrometer (designated NS-6-4), Part B describes techniques employed withthe LH CVF spectrometer (designated HS-3B-I) and Part C presents recommenda-tions for final data processing of the IIS-3B-l CVF.

UNCLASSIFIEDii SECURITY CLASSIIlCATION OF THIS PAG(PIRPfl Dota 3i~oe.dE)

P RE FACE

EXCEDE II is an Air Force Geophysics (AFGL) research program to study

auroral infrared emission processes using a rocketborne electron accelerator

to generate artificial aurorae. The effort is sponsored by Defense Nuclear

Agency (DNA). The EXCEDE concept was originally proposed by Dr. A. T. Stair

of AFGL in 1971 and since that time four successful experiments have been

conducted. These experiments have been directed by Mr. 1,xbert O'Neil also

of AFGL.

Accesri ion For

NTIS CXJt X

I-II. t.17

- -e. -, . -, .. .

TABLE OF CONTENTS

Page

PREFACE iii

LIST OF ILLUSTRATIONS v

LIST OF TABLES vi

1.0 INTRODUCTION I

Part A

LN2 CVF Spectrometer

2.0 DESCRIPTION OF NITROGEN CVF (NS-6-4) 3

2.1 NS-6-4 CVF Calibration Parameters 5

2.1.1 Wavelength Calibration 52.1.2 Radiance Calibration 5

2.2 Telemetry Signal 62.3 Data Processing 8

2.3.1 Error Analysis 92.3.2 Data Base 11

Part B

LIi CVF Spectrometere

3.0 DESCRIPTION OF HELIUM CVF (HS-3B-l) 14

3.1 Calibration Parameters 14

3.1.1 Wavelength Calibration 163.1.2 Radiance Calibration 16

3.2 Telemetry Signal 173.3 Data Processing 19

3.3.1 Data Reduction 223.3.2 Data Base (HS-3B-l) 29

3.4 Discussion 30

Part C

4.0 RECOMMENDATIONS 32

5.0 ACKNOWLEDGEMENTS 3

6. 0 REFERENCES 34

Appendix A - NS-6-4 Spectral Scan Data 48

Appendix B - 11S-3B-1 Spectral Scan Data 58

Appendix C - 1S-3B-1 Phase Angle Data 63

Appendix D - Survey of NS-6-4 Data 68

Appendix E - Survey of IIS-3B-1 Data 99

iv

LIST OF ILLUSTRATIONS

Figure Page

2.0-1 Schematic of a typical circular variable filter (CVF) 35

spectrometer

2.1-1 CVF brightness calibration (NS-6-4) 36

2.3-1 Sample spectra from EXCEDE short wavelengt. CVF 37

spectrometer during electron gun operation

3.1-1 CVF brightness calibration (HS-3B-1) 38

3.3-1 Principles of optically chopped CVF signal production 39

3.3-la Example of HS-3B-1 CVF telemetered data 40

3.3-2 Example of fit to chopper reference data 41

3.3-3 Demodulation of scan 1210 42

3.3-4 Example of unfiltered spectral radiance profile 43

3.3-5 Smoothing filter frequency response characteristics 44

3.3-6 Example of smoothed spectral radiance profile 45

3.4-1 Frequency response of HS-3B-1 CVF electronic filter 46

3.4-2 Effects of chopper second harmonic and sampling 47

o.

v

LIST OF TABLES

Page

2.0-1 NS-6--4 CVF Performance Parameters 4

2.1-1 NS-6-4 CVF Brightness Calibration 7

2.3-1 Accelerator Operation 12

3.0-1 HS-3B-l CVF Performance Parameters is

3.1-1 HS-3B-l CVF Brightness Calibration 1

vi

INTRODUCTION

EXCEDE II is the fourth in a series of research experiments con-

ducted by Air Force Geophysics Laboratory (AFGL) to study the infra-

red emission processes induced by rocketborne electron accelerators.

The excitation of the upper atmosphere by the electron beam simulates

aurora induced processes but provides the advantage that the dosing is

more precisely quantified than in the natural auroral case. In addition,

optical/infrared instruments carried on-board the same payload with

the accelerator provide controlled viewing geometry of the induced

emissions and measurements do not suffer from long path atmospheric

attenuation as would be the case for some ground based observations.

The other EXCEDE experiment programs were PRECEDE, EXCEDE II Test,

and EXCEDE: SWIR (O'Neil 1976).

The EXCEDE II payload incorporated four electron guns programmed to

function in different combinations and capable of producing a 10 ampere

electron beam when activated simultaneously. The optical/infrared

instruments on-board the payload were primarily for measuring spectral data

and included; liquid nitrogen (LN2) interferometer, LN2 circular

variable filter (CVF) spectrometer, liquid helium (LHe) CVF spectrometer,

LN2 radiometer, ultraviolet/visible spectrometer, a camera and five

photometer units. In addition the payload contained several ionospheric

probes and diagnostic sensors to measure ion and electron densities and

fields. The optical/infrared instruments viewed the beam region through-

out the flight at a stablized zenith angle to local vertical of 45 .

The EXCEDE II payload was launched from Pad 4, Poker Flat Research

Range, Alaska on 25 October 1979 at 0546:40 UT hours. The payload reached a

_,128 km apogee at -187 seconds after launch. Although some difficulties

were encountered with electron gun arcing the experiment was successful and

data were obtained for gun on and off conditions throughout the flight

(O'Neil 1980).

The primary purpose of this report is to describe in detail the

LL1

techniques used to process and analyze the data measured with the two CVF

spectrometers on the EXCEDE II payload. Part A of the report deals with

the LN2 CVF spectrometer (designated NS-6-4), Part B describes techniques

employed with the LH CVF spectrometer (designated HS-3B-I) and Part C

presents recommendations for final data processing of the IIS-3B-I CVF.

Processed data for this instrument presented in this report is preliminary.

.!2

PART A

LN2 CVF SPECTROMETER

2.0 Description of Nitrogen CVF(NS-6-4).

Construction details and method of operation of the rocketborne

CVF spectrometer have been reported by Rogers, 1976, and Wyatt, 1978.

The CVF instruments were fabricated by the Electrodynamics Laboratory

of Utah State University. In brief the monochromator portion of thesensor consists of two 180-degree circular variable (wedge) filters

mounted so that the bandpass interference layers rotate just above the

detector field stop which performs the function of a spectrometer

slit (see Figure 2.0-1). The srectrometer scans a continuous wave-

length region depending on which half of the filter is rotating over the

detector. Spectral resolution (AX) depends on slit width and f number.

Pertinent figures of merit for the EXCEDE NS-6-4 instrument are given

in Table 2.0-1.

Two important parameters for CVF data processing are the start

times of the beginning of each spectral scan and the speed of rotation

of the CVF. Two assumptions made are that the speed of rotation is

constant throughout the flight and that the wavelength of radiation

being measured is linearly proportional to time (or filter position).

One consequence of this CVF mode of operation is that since the payload

is constantly changing altitude the spectra obtained are associated with

different altitudes. Each part of a spectral scan is for a different

altitude and thus altitude must be computed for every spectral data

point.

3

-.

|

Table 2.0-1

PERFORMANCE PARAMETERS

FOR CVF NS-6-4

Wavelength Coverage (pm) 2.1 to 3.5 , 3.25 to -.4

Spectral Resolution (pm) 0.05 @ 2.7 .m , 0.08 e 4.3 ;m

Detector Type InSb

NESR (w-cm2 -sr -Pm- 1 2.4 10

Dynamic Range 2 x 10 a

Half Angle Field of View (deg) 1.871

Spectral Scan Rate -2/sec

reference S

4

2.1 NS-6-4 Calibration Parameters

Radiance and wavelength calibrations for the NS-6-4 CVF were

accomplished by both AFGL and Utah State University (Wyath 1978) prior to

rocket launch. These calibrations showed good agreement so those of AFGL

were used for this work.

2.1.1 LI'avelength Calibration

The NS-6-4 CVF had two halves designated long (subscript 1)

and short (designated s) which refers to long wavelength and short

wavelength. The AFGL calibration equations were adjusted using the

data and known emission features such as the CO2 (v3 ) peak at 4.28,.m.

The appropriate equations are

Xn(s) = 1.693 + (3.916 x 10- Pn (2-1)

6.79 4P ( 46.37n

P 1.flx 100 (2-2)nl N

Where n = number of the data point in the scan

N = Total number of data points in the scan

Pn= percentage of n data point of total scan

For the long half of the filter.

Xne. 4 -0.292 +(5.860 x 10- Pn (2-3)

59.42 <P /97.82n

In the NS-6-4 the short half of the filter was scanned first.

2.1.2 Radiance Calibration

Radiance computations were done in units of megarayleighs per

micron (MR/Um) or brightness (B) since these units were used in

calibration and permit direct physical interpretation of the results.

In some cases the term "existence" is also used (Wyath 1978). To

convert telemetry volts (VTM) contained in the data channels the

following calibration equations apply

B = M(col)N FVT)/AX megarayleighs/micron (2.4)

where the resolution (AX) is given by

A>, 0.013 +(1.4 875 x 0-2 )XSq

AX 0.0256 + (1.20 x lo-2)X

and

HIGH GAIN F(VTM) = 6.5 x 10-3 Vm , VTM _<10 volts (2.6)

F(VTM) = 0.556 VTm , V TM i1.8 volts

LOW GAIN (2.7)

IF = 0.51991.11277TM) VTM TM

The values of M(col)N depends upon wavelength and are given in

Table 2.1-1. M are set to zero for values of X outside the tabled(col)N

limits. The AFGL calibration was truncated based on data at 2.10, 3.50

and 3.25, 5.40 microns. These data are plotted in Figure 2.1-1 and show

the wavelength overlap around 3.25 microns. This fact provided a conveni-

ent region to check consistency in calibration between the long and short

wavelength filter halves. Notice the brightness scale on Figure 2.1-1 is

103 MR/am. Thus the calibration peak at 2.95 wm is 8228 MR/,na.

2.2 Telemetry Signal

The EXCEDE II employed four telemetry (TM) links with ground

receiving and recording systems. All data for the CVF instruments was

contained in TM Link 3 tape (recorder 2 original) track S of the

range tape. IRIG B time code to be used with these data was on track

3 station MUX (the normal 13 IRIG B track was reported to be spotty.)

The data was pulse code modulated (PCM which is described by Space

Data Corporation (1979). Data for each instrument coded in several

PCM words was "read", reformatted and recorded on separate digital tapes

along with time in a format compatible with the AFGL CDC 6600 computer.

Flight data was digitized from T+40 sec (0457:20 UT hours) to

T 340 sec (0553:50 UT) which was loss of signal. Data for the NS-6-4 CVF

instrument were in words 2 and 26, 3 and 27, and 4 and 28 of all

frames. Words 2 and 26 are high gain, 3 and 27 are low gain and 4 and 28

are the reference. The high and low gain contain the spectra and the

reference contains the start pulse of each spectral scan, in addition

to other wavelength reference pulses (of lower amplitude than the

6

TABLE 2.1-1

M(col)N vs. Wavelength NS 6-4

x M(col)N x M(col)N A M(col)N

um MR im MR MR

Short Wavelength Half Long Wavelength Half

2.10 3.03 x 102 3.25 3.01 x 102 4.85 2.44 x 102

2.15 3.03 3.30 2.93 4.90 2.38

2.20 2.95 3.35 2.91 4.95 2.35

2.25 2.77 3.40 2.95 5.00 2.32

2.30 2.56 3.45 2.88 5.05 2.31

2.35 2.40 3.50 2.84 5.10 2.29

2.40 2.28 3.55 2.81 5.15 2.28

2.45 2.24 3.60 2.83 5.20 2.28

2.50 2.27 3.65 2.85 5.25 2.30

2.55 2.38 3.70 2.88 5.30 2.35

2.60 2.51 3.75 2.93 5.35 2.48

2.65 2.60 3.80 2.98 5.40 2.83

2.70 2.94 3.85 3.00

2.75 3.60 3.90 3.01

2.80 4.01 3.95 3.03

2.85 4.30 4.00 3.05

2.90 4.57 4.05 3.05

2.95 4.68 4.10 3.03

3.00 4.43 4.15 3.09

3.05 4.15 4.20 3.14

3.10 3.81 4.25 3.08

3.15 3.42 4.30 2.97

3.20 3.16 4.35 2.91

3.25 2.91 4.40 2.85

3.30 2.74 4.45 2.83

3.35 2.66 4.50 2.76

3.40 2.69 4.55 2.74

3.45 2.72 4.60 2.72

3.50 2.79 4.65 2.70

4.70 2.63

4.75 2.57

4.80 2.51 x 102

... ...-- 'i

start pulse) that were not used in the data processing. A review of

these words showed a one data point lag in the start pulses between

words 4 and 27. To avoid this confusion only word 4 was used to

locate the scan start times.

Criteria for scan start was the first data point of value 20

counts or less following the peak (>900 counts) of the start pulse.

A listing of these start times (with other parameters is given in

Appendix A).

The high and low gain spectral data were contained in words 2 +26

and 3+27 were converted to TM volts using the equation

" C-12 (2-8)TM=100

Where C = number of counts (Space Data Corp. 1979).

2.3 Data Processing

The CDC digital tapes described in section 2.2 were processed

using the scan start times (Appendix A) and the calibration equations

to form a data base of one record per spectral scan. The seven

parameters per data sample are

Parameter Content

1 wavelength - microns

2 time after launch - seconds

3 altitude - km

4 high gain TM voltage - volts

5 high gain brightness - MR/Am

6 low gain TM voltage - volts

7 low gain brightness - MR/Nm

These parameters were computed for every data point. Payload altitude

was computed with an eighth order fit to radar range data and utilized

time after launch as the independent variable. The trajectory equation

and coefficients are

8

i=8h a0 + a.T

a0 = -.539640306E+02 a5 = .14806951461:-07a, = .2741505348E+01 a - .449.3(969{5.-l0

a2 = -.2947169205E-ol a. = .7464427803E-13

a3 = .3475921337E-03 a8 = -.5216526696E-16

a4 = -.2907943273E -05

where

h = payload altitude -km

T = time after launch - seconds

The brightness data was plotted on semilog scale for each gain

as a function of wavelength and altitude. All scans were plotted.

The data was also plotted on a linear scale but otherwise in the same

format. A sample brightness spectra is shown ir Figure 2.3-1. The

data shows Wu Benesch spectra between 2 and 3 microns and the prominent

4.28 micron CO In the 3.4 micron region the filter short and long

half responses overlap and indicates good agreement in the absolute

brightness calibration. Notice that every spectral data point occurs

at a different altitude because of payload motion as reported previously.

Below 250 MR/pm the presence of noise equivalent to 1 count in the

onboard digitization process is evident. This effect is described

in the next section of this report.

2.3-1 Error Analysis

For the NS-6 CVF the uncertainty in establishing counts is I

count, therefore from Equation (2-8)

min AV = 0.01 volts

Thus for high and low gain F(VTM) is 6.5 x 10-5 and 5.56 x 10- 3

respectively see Equations (2-6) and (2-7). For the short half the worst

case uncertainty occurs at 2.95 micros (see Figure 2.1-1) and the

uncertainty for high gain is 0.53 ,R/vm. For the long half the worst

case high and low gain uncertainty occur at 3.25 microns and are .03 MR/urm

and 24.7 MR/um respectively. These values represent error bars (+ and

-) of the measured data and in general are given by

AB = M cl) F(.01) (2-10)- AA

A9

where

F(.1 ) = factor for V = 0.01 volts

M(col)

AA = Figure 2.1-1.

The percentage error represented by the one error count depends only on the

number of counts measured, viz,

E xB 100 C-1 x 100% (2-11)

It is desirable to merge the low gain data with the high gain data when

the high gain saturates. However as will be shown below problems of accuracy

are incurred. High and low gain volts are related throt<,.i the electrons gain

factor G as follows

VH = GV (2-12)

where

G = gain factor

VH high gain volts

VL = low gain volts

From Equation (1) the high gain counts (CH) and low gain counts (CL) are substi-

tuted in Equation (10).

C I + 12(G-1) CHC = + - - ) + 12 (2-13)

if the .witcft from high gain to low gain is done using equation (11) the error

due to 1 count at the switch over to low gain is found by substituting (11) in

(9) which yields

switch =2-14)H

If we choose to switch at C 900 the error after the switch due to I count

uncertainty is 8.3% assuming G = 75 where just prior to the switch the error is

unly 0.11% due to I count uncertainty. Ihis discrepancy at the switchover point

is undesirable and consequently the high and low gain data was not merged but

treated separately.

10

Li

2.3.2 Data Bases

In view of the incompatibility of high gain low gain data merge described

above, no attempt was made to merge the two channels. Instead high and low

gain channels were used to generate individual data bases. Samples from these

data bases are given in Appendix D. High gain channels show the effects of

one count digitization noise when the guns (accelerators) are not in operation,

superimposea on a background signal caused by a small ofFset voltage in the

system (see scan 116, 119, 121, etc.). The spectral structure of the background

mirrors the system responsivity characteristic (see Figure 2.1-1).

In the region of 100 km (scans 139, 153, 159) there appears to be a substantial

signal enhancement probably due to instrument covers floating through the CVF

field of view.

Periods for gun-on operation are given in Table 2.3-1. The correlation

of signal enhancement with periods of gun-on operation can be observed by

inspecting scans 237, 276, etc.

*1l

Table 2.3-1

ACCELERATOR OPERATION

(;un Oi Gun OffTi me * Time* Gun

(seconds) (seconds) Number

115.495 11b.052 1

135.845 136.104 4

138.651 139.695 4

141.636 144.148 4

153.254 156.745 4

159.277 161.547 4

173.220 174.538 4

176.485 176.728 4

179.274 100.335 4

188.113 191.242 4

193.916 197.811 4

208.083 209. 383 4

211.335 212.549 4

213.885 214.625 3

222.984 226.814 4

228.779 232.681 4

240.424 240.325 3

243.302 244.273 3

243.032 244.285 4

248.724 248.928 3

24o.246 250.139 4

257.881 281.735 3

257.885 261.743 4

283.607 263.925 1

263.704 264.331 4

263.704 266.7 3

266.859 267.620 4

277.882 279.193 1

275.363 279.224 3

12

Table 2.3-1 (Cont.)

Gun On Gun OffTime* Ti me* Gun

(seconds) (seconds) Number

275.367 279.228 4

281.083 282.047 1

281.189 282.750 4

234.525 235.032 1

283.684 285.088 3

286.929 290.859

292.863 293.236 4

292.759 244.156 1

298.149 296.72 2

292.863 296.723 3

298.581 298.795 1

13

PART B

H CVF SPECTROMETERe

3.0 Description of Helium CVF CHS-3B-1)

The HS-3B-1 CVF (see specifications Table 3.0-1) is basically similar to

the nitrogen CVF except a tuning fork optical chopper was added that periodi-

cally interupted the incoming radiation to the sensor at a frequency of ap-

proximately 106 Hz. The sensor electrical output was filtered with an elec-

tronic filter cenrtered at ]00 Hz and passband approximately 50 Hz wide. This

technique produc. an amplitude modulated waveform whose envelope contained

the observed spectral radiance information. Both a high and low gain channel

were included f,;r the modulated signal. The basic problem in processing the

Helium CVF data was to demodulate and rectify the output signal then apply

calibration factors to deduce the observed spectra in MR/um.

Also unlike the Nitrogen CVF the long half of the HS-3B-l CVF consisted

of two filter segments in order to achieve the long wavelength response. How-

ever since the long half wavelength calibration applied throughout the spectral

region the brightness calibrations at the joint wavelengths was simply set to

zero and the long half of the CVF was treated as if it were continue

3.1 Calibration Parameters

Radiance and wavelength calibrations were accomplished by both AFGL

(Condron and Austin, private communications) and USU (Wyatt, 1979). Agreement

of these data was adequate however the AFGL calibration data were used because

the information was more detailed. In addition the AFGL wavelength data was

also slightly modified (shifted) to agree with certain known emission features

in the data such as CO2 14.97 pm. However the shift was less than a wavelength

14

-.. . . . . -2 "- -. -

Table 3.0-1

PERFOR MANCE PARAMETERS FOR CVF HS-3B-l

Wavelength Coverage (im) 3.9 to 6.8 , 12.7 to 22.3

Spectral Resolution (pm) 0.1 P 5.3 um , 0.4 15 4m

Detector Type Si (As)

-2 -1 -1NESR (w-cm -_sr- rm- ) 1.08 x i0 -

Dynamic Range 8 x 104*

Half Angle Field of View (deg) 1.973

Spectral Scan Rate -0.8/sec

reference 7

1.5

• -.

resolution element of the instrument.

3.1.1 Wavelength Calibration

The HS-3B-l filter halves are designated long wavelength (subscript .

and short wavelength (subscript 4). The short half was scanned first (in

time). The adjusted calibration equations for wavelength for each half are

given by

X = (2.388 E-l) P n 1.097 pm (3-1)

55 _5 Pn -5 97%

x (7.38 E-2) Pn + 3.333 jm (3-2)

4.0 _ P n -< 44 .4

where Pn is the percentage into the scan (Pn = 100 n/N).

The wavelength resolution elements at any wavelength determined by

the CVF filter are given for each filter half by,

(1.8667 E-2) X + 6.21E-2 1m (3-3)

A = (5.482 E-3) X + 3.12E-1 um

3.1.2 Radiance Calibration

During actual radiance (brightness) calibration of the HS-3B-1 CVF the

sensor output was a continuous analog signal and demodulation and rectifi-

cation of the signal was accomplished using a phase sensitive amplifier

(PAR). Since the telemetry signal was PCM this technique was not possible

so a computerized demodulation and rectification scheme had to be formula-

ted to accomplish these tasks which included the laboratory calibration data.

This formulation is derived in section 3.3.1 of this report. However, the

1,6

' .- ..- - . - ' ...... - -2 . " .- - - .: °- .' -. . .,

final result to convert demodulated rectified telemetry volts VTM to spec-

tral radiance is given here

Bn = Gi M(col)V TMI/AX MRIm (3-4)

where Bn = brightness (radiance) of data point n

G . = channel gain (high gain = 1, low gair = 100)1

M o calibration factor in MR/volt (see Table 2.1-1)(col)-

AX = resolution (see equation (3-3))

The adjusted laboratory calibration data for M(col) is given in Table 3.1-1

in units of MR/volt. Notice that the values are zero at 17.50 and 17.70 Lm

where the long wavelength filter point occurs. Other values in the original

data near the mask regions are located have also been adjusted to eliminate

the tendency to "spike" when the mask passes over the sensor. A plot of

the final calibration is shown in Figure 3.1-1 in units of MR/um - volt and

derived using the data in Table 3.1-1 and equation 5-3.

3.2 Telemetry Signal

All aspects of the HS-3B-1 PCM telemetry were identical with CVF

NS-6-4 (see section 2.2 of this report) except that since the HS-3B-1 CVF

was optically chopped one additional channel of data was required (compared

to the NS CVF) for the chopping frequency. The spectral data was contained

in PCM words 5 + 29 (low gain) and words 6 + 30 (high gain). The spectral

reference (start pulse) was on words 7 + 31 and the chopper sequel on word

46. Spectral scan start times are determined in the same manner as the NS

instrument, see Appendix B for the listing of IIS-3B-I start times.

17

TABLE 3.1-1

M(col)N vs. Wavelength HS 3B-1

X M(co1) N x M(Col) N x M(col) N

jim MR/volt Pi N:R/volt MB :R/volt

Short Wavelcr.'t:h Half Long Wavelcngth Ialf

3.70 0 11.90 0 18.50 .8375

3.80 0 12.10 0 18.70 .8225

3.90 7.91 12.30 0 18.90 .821

4.00 4.54 12.S0 0 19.10 .843

4.10 4.335 12.70 1.53 19.30 .869

4.20 4.20 12.90 1.26 19.50 .8825

4.30 4.155 13.10 1.16 19.70 .902

4.40 3.885 13.30 1.15 19.90 .9235

4.50 3.61 13.50 1.09 20.10 .8985

4.60 3.41 13.70 1.05 20.30 .875

4.70 3.255 13.90 1.025 20.50 .8935

4.80 3.14 14.10 .9635 20.70 .920

4.90 3.08 14.30 .8545 20.90 .9405

5.00 2.97 14.50 .836 21.10 .951

5.10 2.85 14.70 .8855 21.30 .964

5.20 2.75 14.90 .8905 21.50 .9805

5.30 2.70 15.10 .835 21.70 .9805

5.40 2.625 15.30 .7925 21.90 .9805

5.50 2.57 15.50 .7665 22.10 .9805

5.60 2.50 15.70 .763 22.30 .9805

5.70 2.50 15.90 .804 22.50 0

5.80 2.51 16.10 .853 22.70 0

5.90 2.49 16.30 .8765 22.90 o

6.00 2.473 16.50 .8205

6.10 2.42 16.70 .716

6.20 2.33 16.90 .735

6.30 2.265 17.10 .7545

6.40 2.285 17.30 .8725

6.50 2.30 17.50 0

6.60 2.215 17.70 0

6.70 2.14 17.90 .9005

.6.80 2.125 18.10 .813

6.90 0 18.30 .8765

18

,.. ,

3.3 Data Processing

The idea of chopped systems accompanied by phase sensitive demodula-

tion and detection to reduce DC drift and improve signal to noise is well

known (Schwartz, 1959) and widely used by electronic engineers. However

for actual digital CVF data such as that of NS-3B-l sor.e special problems

occur and so a brief review of the fundamentals will be presented prior

to describing the actual data reduction techniques used for CVF HS-3B-1.

Figure 3.3-1 illustrates how the HS-3R-l VF modulated signal was pro-

duced. Since the CVF selectively passes the incident spectral radiance as

it rotates at a constant rate the incident spectral radiance can be repre-

sented as a function of time instead of wavelength. This is shown in the

top plate of Figure 3.3-1. The incident spectral radiance is periodically

interupted by a mechanical chopper which itself radiates some lower level

since it is cooled. The chopped signal as seen by the CVF sensor is shown

in the second plate of Figure 3.3-1. The sensor output is assumed propor-

tional to this incident radiance. If we assume for the moment that the

chopper radiance is negligible and that the frequency bandwidth of the in-

cident spectral radiance is small compared to the chopper frequency then

the sensor output can be estimated by the Fourier series

s(t) =.S() + 2 sin n7/2 cos nwt]

where s(t) = chopped spectra signal

S M = infrared spectra (unchopped)

Wc = radian chopping frequency

If we now assume that there is no incident spectral signal and the

chopper radiance is not negligible then the signal output from the chopper

I 9

radiance alone can be written in a similar manner except that there will

be a 1800 phase difference

b 1 R + 2 sin n/2cos((t) 2() L 2 n 2 Cos (nc +

n=l

where b(t ) = chopped chopper signal

R(X) = chopper unchopped radiance

Sc = radian chopper frequency

Clearly the phase angle 7r can be omitted simply by changing the + sign in

front of the surmation to -.

For the case of both incident spectral radiance and non zero chopper

radiance the total sensor output signal is the sum of s(t) and b(t)

Ct) A) ())+~S(ARQ)) sin(t)/

g(t!=s(t)+b sin nr/2 1cos nu (3-6)g~t=s~)*(t)=2 (;), (A ))(A)-R01) n 7r/ o ~

If we now A.C. Couple this output signal to remove the DC term =--S + R(,X) ()M

then filter with a narrow bandpass filter centered a; the fundamental chop-

ping frequency w we get for n=lc

9()R2o t (3-7)g(t) =- (S (A) - RCA)) cos %t(37

This result is the modulated waveform of the EXCEDE sensor output showm in

plate 3 of ikigure 3.3-1. This sensor output was digitized on the payload and

telemetered and recorded in PCM format. Actual data is shown in Figure 3.3-1A.

The sinusoidal waveform of the chopper reference (also digitized and

telenetered) in plate 4 of Figure 3.3-1 is simply expressed as

h(t) = A cos (C t + Ae) (3-8)

where h(t) = A.C. Component of the chopper signal.

20

AO = phase difference between data and chopper signals.

A = amplitude of the chopper signal.

The phase difference Ae is included in this equation to account for such

things as mechanical lag in sensing chopper position which would produce

a phase difference between the sensor signal and the chopper reference.

In principle the demodulation and extraction of the spectra S

from equation (3- is done by forming the product of h(t) and g(t), which

expanded and simplified yields

2A (S(X)-RX)P = g(t)hrt) Tr cos W t cos(wct + AO)

(3-9)A (S A-R( )[(A) [osAe + cos(2w t + A6)]

We now filter the product P with a low pass filter with cutoff frequency

less than 2wc and greater than the highest data frequency in the spectral

radiance. Solving for S(^ yields

S =R + 'T P3,0S) =R) A cos Ae

where P' represents the low pass filtered product of h(t) and g(t).

Equation (-10) shows that the chopper radiance background is added to

the incident signal and clarifies why it is necessary to keep the chopper

radiance small (cold). Also if either the chopper amplitude A or the

phase angle difference Ae between spectral data and chopper reference are

modulated with time in any manner false components will be introduced into

the reduced spectra.

Notice from Equation 0-7) that if the incoming radiation S(X) is less

than the chopper radiation R then g(t) is negative and the product term

in Equation C3-10) will also be negative resulting in a quantity of radiation

being subtracted from R M to give S( X) just as it should be. If one

attempted to retrieve the spectra S( ) by simply reconstructing the envelope

of g(t) this possibility would not be detected and an error in S(A would

result. On the other hand multiplying by chopper signal and filtering as

explained, preserves all the phase properties of the signal. It is crucial

however, to derive an accurate representation of the chopper data character-

istics.

3.3.1 Data Reduction

Several problems arise in attempting to apply the principles derived

above to the EXCEDE chopped CVF PCM data. For one thing all the data

channels were sampled (on the payload) serially so that the chopper refer-

ence data points were not time coincident with the spectral data points.

In addition the chopper was sampled at 512 Hz - just half the spectral data

sample rate. Thus forming the correct product P (Equation (3-9) of the

chopper and spectral data needed for demodulation was not possible. Con-

sequently it was elected to fit the digital chopper data for each spectral

scan with a least squares technique to derive an analog equation to be used

in forming the product term in Equation (3-s. The mean value of the chopper

rfefrence signal data was found and subtracted from the data set. Ai estinated

frequency (f c) of the signal was found by counting zero crossings during

each scan and dividing by two times the product of the total number of data

points and the sampling interval, viz.

N0 N0fsfc 2N TO t 2NTOT (3-11)

22 TOT TOT

where fc = chopper frequency - Hz

N = number of zero crossing in the scan

NTOT = total number of data points in the scan (1/2 number spectral datasamples)

At = sampling interval

fs = 1/At = sampling frequency = 512 Hz.

Since the total number of chopper data points N is known precisely (1/2TOT

the number of spectral data points) for each scan and the sampling frequency

is considered invariant the error Af in determining f is at most due toC c

the error of missing one zero crossing and thus

Af = (1)512 = 0.42 Hzc 2(616)

(The value 616 for NTOT was estimated based on 1232 data points in a typical

spectral data scan - see Appendix A).

Knowing the frequency the assumed chopper sinusoidal signal equation

derived below was least squares fitted to the data in each spectral scan.

h(t) = Acos(w t-O ) = Acosw ct cose + A sinw t sine (3-12)c cc c c c

" h(t) = b cos wct + c sin wtct

where h(t) = chopper signal

A = amplitude

ec = phase angle relative to the scan start

b = A cos 0c

c = A sin ec

As a result of the fit the constants b and c are found and the phase

angle is determined by (see Figure 3.3-2 for typical data fit)

ec= +tan- I (c) (3-13)

23

.. " .. ... .. .. . . L. ... : .- . . -.. - -. -. -- - - - . "

Finally setting the amplitude A=l the chopper signal equation in digital

form is

h(n) = cos [27f c(n-l)At - (el (3-14)

n = 1,2,3 ...... NTOT

where h(n) = chopper equation

fc = chopper frequency - Hz

n = data point number

At = sample interval = i-- sec. for the spectral data1024

0 = phase angle relative to the scan start

NTOT = total data points in the scan.

In actual practice tie frequency f was computed by the fit. Appendix CC

contains a tabulation of the pihase angle and f c0 for the actual data derivedc

as discussed above for each spectral scan. Included in this tabulatioa is

the "goodness of fit" parameter chi squared. The lower the number the better

the fit. A typical example of the calculated chopper reference (solid line)

using Equation 3-14) compared to the actual chopper dat. (points) is shown in

Figure 3.3-2. As long as the chopper reference data amplitude kas relatively

constant (which was not always the case) the fit with Equation 0-14) was

excel lent.

Clearly Equation C3-i4) permits calculating the necessary value of the

chopper reference for any spectrai data point n and thus satisfies the re-,

quirements needed for evaluating the product P in Equation (3-9) (which implied

Is=J). When there is a phase difference between the spectral data and the

chopper defined by 0 -0- LA ,) where 0 and 0 are the phase differences fromC s S c

the start of scan for spectra and chopper respectively, Equation (3-7) becomes

g(t) = .-(S )-R(L)) cos(Wct-6)

24

'. -' * " .. .. . .. . .

It was found by inspection of the data that the chopper lagged the spectral

data by 1/3 a spectral data point (120) so that 20 = -120.

An example of the product P for scan 1211 formed by multiplying each

spectral data point in the scan by a numerical value computed for the chop-

per using Equation 3-14 for the same n (constant A=I and the appropriate

phase angle e taken from Appendix C) is shown in Figure 3.3-3, both the highC

and low gain channels are shown. The product was evaluated in telemetry

units of counts for the spectral data g(t) while h(t) is dimensionless.

Prior to forming the product the mean of the modulated spectral data was

determined and subtracted from each data value of g(t). Theoretically the

mean of the modulated wave should be zero. Note that all prominent count

values, in Figure 3.3-3, are positive except for a few spurious data points

in the high gain channel where the signal was saturated. In addition the

noise values oscillate about zero as it should. The envelope of the data

in Figure 3.3-3 contains the desired spectral information. All that is re-

quired to derive the spectrum is to extract the envelope and apply calibra-

tions for wavelength and brightness. Ripple on the high gain is explained later.

Typically envelope detection is done by smoothing or filtering.

Clearly the only useful data points of the waveforms shown in Figure 3.3-3

are the peak values since only they represent the observed spectrum. Since

filtering of digital data is a somewhat complicated process especially with

large data bases and when Fourier transforms are involved it was decided

to attempt to derive the envelope data by a deciration technique prior to

filtering.

Using the concept of referring phase angles of both the chopper reference

and spectral data to the beginning of the scan and acknowledging that 'ie~e

phase angles could be different the product tern of F'quation c-_t can he

rewritten z,

P A(s-R )oS(6 ) + cos[2wt-(0+6 s) ] (3-15)

since c -s = A6 is constant the maximum value of the product P occurs whenC s

the cos[2w t-(6 +0s)] = +1. Thus the data point number n defining the maximumC CS sp

value is

2[2-i(n -1) f At] - (6c s) = 2(i-l) 7

p C Cs

i=1,2,3,... NTO T

Therefore solving for n yieldsP

(i-i) , + (C + S)/2n 1 + 2 -- fct (3-16)p 2

Since 0 is arbitrary it is clear that values of n computed with Equation (3-1o)c p

could take on non-integer values which do not exist in the digital data base,

viz. data points are numbered in integer steps from 1 at scan start to NTOT at

the end of the scan. Assuming the sampling rate f is invariant (1024 samples/

see) and equal to the reciprocal of the sample interval time .t Equation C)-1)

is rewritten as follows

r (i-I) + +6 V2 )/31

no = round off integer value l + 2ffc s (3-17)

i '1,2,3... NTOT

ihe envelope data base was determined for each scan by choosing only data

points aefined with Equation (3-171 The data point difference An0 = 5 and thus

the data base was reduced by a factor of 5 by this decimation process and con-

tained only the estimated envelope data.

Once the envelope data base was generated in this manner the spectral

data in counts was converted to volts using the relationship

C PVTM 100 100 (3-IS)

where V = telemetry volts

C = counts

26

-.. - . . . ..... .. . ..... . . . .. . . . .. ..... - .

This equation differs slightly from that used for the NS instrument (Fquation

(2-3)) because the A.C. coupling of the IS sensor output removes the 12 count

D.C. offset. The decimated envelope data base derived by Equation (3-16 was

units of counts. These data were converted to volts simply by dividing by 1U,

in accordance with Equation (3-14.

Returning to the hasic relationship for dtriving t1 :e product p in Equation

(3-1 , we must recall in subsequent discussion that we have already assumed

the amplitude A of the chopper reference signal to be constant and equal to I

and also that the phase difference A. between chopper reference and spectral

data to be +120. Finally we make the assumption1 that chopper radiance R A

is negligible compared to the spectrum since it is cooled. In addition we

have used n0 in choosing the envelope instead of n so solving for the spectrumo p

S(X) yields

S -p

() =cosA0 + Cos2[2 f(n_-l)At - _.)/2] (3-19)

The units of S are counts. Notice the denominator z2 for small , . It waq

decided to first generate a data base where the spectra was not filtered but

in the correct units of MR/om then filter the data set in units ef radiance.

This precaution was taken in the event the voltage calibration was not linear.

The unfiltered spectral radiance was thus calculated from the unfiltered

decimated data base where V S()TM 100

B = Gi M(col ) V TM/AX (3-20)

where B unfiltered spectral radiance MR/vm

P = decimated product term (unfiltered) in units of

M(col ) = ca iibration term - MIR/volt

AX = calibration term - vm (see Equation (3-3))

VTM = decimated spectra term expressed in volts

27

G. = gain factor (high gain = 1, low gain = 100)1

Equation $-21) was given previously in Equation C3-4) of this report.

Figure 3.3-4 shows a sample unfiltered spectral radiance profile derived

by the techniques described above. The ripple on the spectra is caused by

a chopping feed-through effect (viz cos 2wct term in Equation 0-9)) which was

intentionally not filtered before initial exam.ination of the spectral data.

The spectral data shows the emission features of CO2 at 4.28 and 14.97 ijm

and NO in the 5 to 6 um region. However the need of filtering to remove

the chopper effect is evident.

As a first approach a simple nonrecursive filter was used for initial

data smoothing. The filtered brightness B at point n is computed asn

follows

B'= aBn 2 +bB bBn+1 + aB 2 ] (3-21)Bn [ 2 b n " 1 + ' Bn l n2

The transfer function of this filter is (Hamming, 1979)

f = 2a cos 2w + 2b cos w + c (3-22)

where w = 7 f/f

f = 1/2 At = fs/2 Nyquist frequency

fs = sampling frequency after decimating = 205 Hz

f = physical frequency

For this case we desire good low pass characteristics, so using the condi-

2 tions

H(o) = 1

~l (0)_ = 0 (3-23)dw

d 2H(O) = 0

dw 2

28

leads to the following values

a = -1/16

b +1/4

c = +5/8 (3-24)

A plot of the frequency response of this filter is shown in Figure 3.3-5.

The decimated data base was processed using Equation (3-21) to produce

initial smoothed data. Spectral scan 1210 (Figure 3.3-6) illustrates the

effect of the smoothing and the improvement of spectral radiance features

are shown in Figure 3.3-6 as compared to Figure 3.3-4.

3.3.2 Data Base (HS-3B-l)

An "abridged" data base was generated for selected spectral scans from

the HS-3B-l CVF using the procedures outlined above. These data are given

in Appendix E. In general the spectra show emission enhancement during

periods of "gun" (accelerator) on times but in addition there seems to be a

background enhancement (scan 1067) at times when the guns are off. This is

attributed to the possibility of instrument covers floating through the CVF

field of view. The fine structure in some of the enhanced emissions (see

5.8 m of scan 1204) is due in part to the effects of chopper second harmonic

and sampling which is explained in more detail in the next section of this

report.

It should be noted that the spectral data shown in Appendix E consist

of merged results from both the high and low gain channels. A signal voltage

of 4.2 volts was used as the criterion for merging the two gain channels.

29

3.4 Discussion

The ripple (-40 Hz) supperimposed on the demodulated waveform in

Figure 3.3-3 is clearly an error source since it falls within the digital

filter passband (see Figure 3.3-5). Power spectral density analyses of these

signals do not indicate the presence of the 40 Hz ripple, however, the

chopper second harmonic (212 11z) is evident in the PSDs of both the spectral

and chopper data. This indicates that the chopper second harmonic is leaking

into the signals due to poor frequency cutoff characteristics of the system

electronic filter on-board the payload. Inspection of the electronic charac-

teristic in Figure 3.4-1 confirms this possibility. A simple trigonometric

exercise demonstrates the point. Assume the chopper fundamental waveform

is added to the second harmonic waveform approximately 900 out of phase and

with reduced amplitude "a".

h(t) = cos ct + as in(2. ct-) (3-35)

where p = small phase angle -9'

h(t ) = chopper waveform

f = chopper frequency 106 Hzc

Sc= 2Tr(n-1) fc/fs

f = sampling frequency 512 lz

n data point number

a = amplitude -1

Setting a = 0.2 and evaluating Equation(3-3j for n=54 to 154 we produce the

simulated chopper waveform in Figure 3.4-2 (scale factors have been introduced

for ease of comparison). Comparing this to a portion of the actual aavcform

indicates obvious similarity. Note that the ripple frequency in the chopper

is only -20 Hz (rather than 40 Hz as it is in the data) because sampling of the

30

X.......... .. ' b-- -

chopper was only 512 Hz compared to 1024 Hz in the case of the spectral data.

As pointed out the ripple cannot be removed from the data without more sophis-

ticated filtering techniques which are beyond the scope of this preliminary work.

There is also an inherent error in the spectral data due to a one

count uncertainty due to digitization. One count is eqvvalent to 10 milli-

volts by Equation 3-18. From Equation 3-20 the noise radiance for this

voltage in high gain (G=l) is

B = 0.01 M / AA (3-36)nun (col)

where M (col ) / AX, is the calibration factor in MR/volt (see Figure 3.1-1) and

AA is the resolution. From the figure the calibration factor depends on

wavelength showing values of 2.23 .IR/m-volt at -15 vim and 16.9 MR/)im-volt

at -5.3 pm. This produces a noise of

Bnois e = 0.02 MR/um at 15 pim

B noise = 1.7 MR/pm at 5.3 vim

These values are well below the signal levels encountered (see Appendix E).

An additional error is introduced by the decimation process because of

the necessity to round off the computed peak value data point number to the

integer value. This causes a cyclical error every 5 data points of about

10%.

31

PART C

4.0 RECOMMENDAT IONS

Data processing techniques of Circular Variable Filter Spectrometers

have developed in the past 5 years to a point where spectral results can be

accepted with good confidence. However, limitations in interprering

processed spectra are imposed by a variety of design parameters. For instance

leakage due to imperfect out-of-band rejection of the CVF can contaminate low

spectral signals. The best blocking possible with a CVF is probably four

orders of magnitude. Non-constant CVF rotation can cause wavelength errors

comparable with the spectral resolution of the CVF. In the case of the EXCEDE

HS-3B-I poor rejection properties of the electronic filter caused chopper

second harmonic to contaminate the data.

Specifically we recommend that the EXCEDE data and techniques presented

here be considered preliminary and reviewed for adequacy in terms of the

physics involved. The helium instrument (HS-3B-l) data should be reprocessed

by more sophisticated techniques to reduce as much as possible the effects

of second harmonic contamination.

32

5 0 ACKNOWLEDGEMENTS

We wish to acknowledge the many helpful suggestions made by Robert

O'Neil of AFGL and the Principal Investigator, Dr. E. Richard Hegblom of

Boston College. We also thank Mary Kelly for typing this manuscript.

......

6.0 REFERENCES

1. O'Neil, R.R., Lee, E.T.P., Stair, A.T., Ulwick, J.C., (1976)

EXCEDE II, AFGL-TR-76-0308.

2. O'Neil R.R., Stair, A.T., Bart, D., Kemp, J., Frogsham, G.T., Shepherd,

R.E., EXCEDE Spectral; Artificial Auroral Experiment, EOS Vol. 61, No.

17, April 1980, p. 325.

3. O'Neil, R.R., August 1980 "Preliminary Results of EXCEDE experiment

AFGL-TM-41.

4. Rogers, J.W., (1976) LWIR (7-24 pm) Measurements From the Launch of

A Rocketborne Spectrometer Into an Aurora (1973), AFGL-TR-76-0274, ERP

No. 583, HAES Report No. 51.

5. Wyatt, C.L., (1978) Circular Variable Filter Spectrometer NS-6-4, Utah

State University Report (unpublished).

6. Space Data Corporation (1979) EXCEDE II A51.970 Flight Results SDC TM-

1686.

7. Wyatt, C.L., (1979) Circular Variable Filter Spectrometer Model HS-3B-l

Utah State University Report (unpublished).

8. Scwantz, M., (1959) Information Transmission, Modulation, and Noise

McGraw Hill, p. 159.

. 9. Hamming, R. W. (1977) Digital Filters, Prentice Hail, p. 49.

34

w

crU

4-4

8 ~wv

0- C

oo -3i

D V ILD0

Jt

0

00

z -r

1 0 1,, , . , , ,, , , i , , , , - i,,,, ,,, 1,,,, ,,, ,,,

NS'-6 CVFSYSTEM RFSPONSE

f:5.25 pm

:Z= 5. 40 p

S Long 40

CQ0

4

%.: I Short 4

z= i

2.10! 0 3,50 pm

Ef,1111tl 11 1 I1111 , 1 r,. 5 1 31 1 9 .

1 3 4 5 6WRVELEN'Th [MICRONS)

Figure 2,1-1, CVF brightness calibration (NS-6-4)

4

sO

I-4

V>

c o raCI -- C1:

E4 4~co 0

- ~u C)

00

rc41

co~

*1 4~:jI~LIC.- x C rx-

C LLLUJ4LLLLLLLLLLLLLLLUJLLLL Li.LL

CD CD)

CNOI 3I W/dW ONLU1OUN

5 J[J . .. .. . .r . ... .-

HS-3B CVFI-- rSYSTEM RESPONSE -

.i-

CJL

C)- -

I.- -j

,"I1 2 . 5 _ 2 2 .3 2

0 --

. . MAS1 K sh rt ! A S K t_

r3.9 6.8

3 .LS 15 23 25

Figure 3.1-1 CVF Brightness Calibration ([IS-3B-1)

38

I I

SPECTRA

SI I

spectra signal

0chopper signal

CHOPPED SIGNAL.1t I ! II ! I

phase change

0

FILTERED SIGNALI I

.,I Iii

4.4

CHOPPER FREQUENCY

I I

TI ME

Figure 3.3-,1. Principle of optically chopped CVF observationshowing phase reversal wheon source radiance isle's thmi copperl r':idi ,•wc.

L. . . . ... ..... - .... * -.. Y 7_. .-

C)v

cEz

047

-JL

0 0CC.

400

CHOPPER FIT

B= 194.0954

C= -144.2404

FREQ 106.555

400CJ

co 0 --

S-4000.00 0.02 0.04 0.06 0.08 0.10

TIME SEC FROM 294.05

Figure 3.3-2. Example of least squares fit (sinusoid) to chopper signal

(solid squares) for spectral scan 1210. Also shown are

frequency and constants determined as a result of the best

fit.

41

.....o/

c4 -Ak

4-4

o Pzi

0

C,

424

InI

4?4

NOM2IW/ W- 3NUIOU8

CD 0 0 CD0

o! 41

C-4

z

0,0

I--

0 r-

U) CD LjLi

C- X

~,U)Cc

co.u.:~ .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _;z~u i:

1.00 1 §ix

BW 4

I [

0.10t

-11_

0.0

0iur 2S 5so7 100

Frequency - z

3.3-5 Frequency response of smoothing filter u-sedafter decimating data base tu a, samplingfrequency of 205 liz EXCEDF. information band-width is, S0 Hiz.

N03N/W - - ICU

*C CD_ _ _ _ __ _ _ _ _ 0CD

CLLI-r

rd a)

w ......... -

4.

4-)* 0

0.S 44U~0

00

NE

SU) (jC. ~'I- U, x

cc -

U) I* Ito

w W1~ (2

hiDG

LO 0 LOoCM

o 03W/W 330 I

-101

-10 .

< I\

-2010 30 50 70 100 300 500 700 iOWC

Freqluency - lilz

Figure 3.4-1 Characteristics of the electronicfilter for CVF HS-3B-1

of

,10

0.4

0.2 CHOPPER DATA -

NORMALIZED "]90,0t SCAN 1095

0.

0.40 0.42 0.44 0.46; 0,48 0.50 03.52 0.54 0.56 0.58 0.60TIME (SEC) FROM 154.092

1.0/

z

0.8

0

-j

= 0.4

CHOPPER0.2

• ' MQRMON] C MODEL

0.0I I I I 1 154 64 04 04 94 104 114 124 134 144 154

DATA POINT NUMBER

Figure 3.4,-2. Comparison of chopper data with model of the formS = K] - K2 fco-s.,,t + asin(2,,ct-1)j where K1 and K2 arescale factors. and ,:t = 2-fc(ni-1)fs, and :=9 .

' ME ,S', FRO' 1.. 92

APPENDIX A

Spectral Scan Start Times and

Other Data for NS-6-4 CVF

Data in this appendix is defined as follows:

Column Title Definition

I Scan Number Number assigned to the spectral scan

2 Length Number of data points in spectral scan

3 Length sec Duration of the spectral scan inseconds

4 Time A-i, Time after launch in seconds of scanstart

Altitude Payload altitude corresponding toT.A.L.

6 Time U.T. T.A.L. in U.T. seconds

7 Clock Time U.T. T.A.L. in clock, form

~.18

.... .. .... rVUI4~C4's~~~'t~ jINJ(D74viJ rn.vn rM -, W-,' 4rr. .7 4..74 . o-, 4.7 .a a r4 4 4.'' V''~- U'u a 'I

~~. N . N .~ N . . .N ~'. . .N. . W ..N . .. . ~ 4 .O .O . C ON.O .N&NO.N .N. NN.hN O N.N N

CoNC0C.~~~~~~~~ ... ..U07001C .7 C t . . N~N7JN0.t.C .. ,L CI'C0 .CO 50 .. .. ~- ~ -

9- -C-"

1 (0....C~t.A~p .2.10.1 & .-. Co. CC 04(S CA'7S~ .. 7 I'Ll 1AtCNC COi.C.7..~C N." . 7 I if .. '..N.tt.3C.C.-C.-" .".: .45 .1.. .

cw ww Cc-

LI 2'C NN.C7 1 7 01 zI" l 4 0 4 I~N~r e Z. o Z1 ... II.7 r,3Ja7 I 4 C~N 1.1 Or -t. ff .' N 4.N'CLL .. w 1 f ~Q * .r . e. tI. .213.. N . . .C' .C .. 73. C .~O. ' .. .. .0 44

je ~ ~ ~ ~ c r.-c V, CC0 0 0e - 7!: C -C 1 f a0Clc - ;W'c err700 rc'C 0, C 'C -'0 1 t 0!- t- ". 7--r ~ (4 ~r'0 C4C 10 :.z'N'.3 -'N.% r.3r.~NO -,' 1s. '4 I AL .3I.IV 1.4 J7 LCt -1reI..I..4 00714? J? .4 " 4 V10 L:, j

LII-

4--

- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . . .. .4 .CU7 W aN ..JSJ .N .64 .'J .'.,'flJ .'. .1 .CJO . I 0 . . . .. ..7 fl. .' . fi C. ." 4 .. .I .4 .J. .

-. ~,....O6.,Ct ... ,av ICW CDC'IA 0 c Ol3..~~~3 nJ ... ~ .rc~uOJ . ,~"r 44'.6sO~~6 ..- ~.v,-rW ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ OC----- -CIt U'5UW .. . . .t. 6.vjIaNtmf -v(/t yN (,uv6/C.NJnfPrW

C 4- T ~c f 0C LL

~ a~a~rL~a CLCCLC067 ~ca or w c coa- acccc aa. c cca-c'c'c cc cccair a c./cC'CCNCt. aa a4444 40 043 4.3 40 4, 44 44 . 63 44 40 04 4 40 .3 44 44 407 44 0. 44 44 30 42 S 00 .

.0r4 . .c . . ..r...-..

L cc cc a c 'c-Oa :,ccac L"c, l Cc'Ul TcC0c CIO 'c crc"O~03O O OO C00C000 OO C,.CjO :O'J0CO O.0O C0 O4..CCOO,~S CtC :e S.L6.64 S0,C.0N..3 1 a 4.317 r/NN.it.NN !,a N a v~ *N N& a~. .2rN j'.S tj &4r' 44--.74 4r. /NPvr 4~4 4c6r 4r N NP.~

~o ~ c c wwco o f C * 'o,1% rv6src0C 11-N',,6 t40 ~ 0

C'c-.-CS ..- t't. - ~ .'Z-4 O~r ~ '3-6. N ** 4 ,ZC t.C..6 - .L..~.6. '' -

b

S. S.OCJU V'.?0Wl ~f'.CNU..- -P4rJ) -~sJ c.,4.I%5J MAWUI O U JtU~

".5 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ L SO.u4"S .NwU...Q L '0U0~0 Q 1~C O'~.~.J.

.4~~~'9 - -1 -LU&.~ --- - V - L-- --

-. b .5U U'%SM"N.St QQ t3~n..S.JU'J~ S U W ~ CC004.4 U~vn)E U'.LW.S SCO

OU t7 to. .7..7. 45.7.7 L~ n," ~~~m~%L~~~%~tu %%usWVU l vL ULnU~uuu . m l AI N% Z ~UUtrnU; %

ZJ~SS T-- C. eS. .S . .. . ..S .S. SS . . ..S.. ..~~U O C U C '~ O'O'Cum CC' N Q 0. fIf

j's~~~~~~~~~~~~~~~ ... ..U . .~i~hD V .I 31'* CffO . . ... Ifh .u . . 5. .... .-V k, . ... S S7. .l %~dC .0N .~ .3.M~ 43'~ &.roU.0 W.?OI.1 UN' CUUVo WS pi- OrN5lw

L. 4C

- - -21 - - M - - - - -,N .4,rt,& ',N -tr oO4-f ! 7l 7f11. .I.. -0.'p04-. -W9) - 4SlU..JUP-SU .L-.

'TC -----

eeoocOoooOO~~~~~~~~aO~~eC~ rcso~'0 ,O U0~0qOOJCJ.00 OJC3.0 J

Cc= N 'rrIce-*N.~~r.-7 s .st .~ .9~ ftC .4? 3~1E ~07 0\S. S.)..*S44tQC41 * 0*-. .?.. 31t S

.. 5...I 01 = S..,-w c4 ~ iS. 1

NNUro 40 SvC~ I%- 0'N 3ta7 .,..SS L ~ s' .e ~ '- C -- e

C' - m 7.r . . £e414 .~"-Lej ~oD.t4 0.SI.. ~ S 4 p.C O f <l~

Q- SS

r J o C C 'O ~ SI0 0 0 44 ~. ..... -- ~*. ~r4 4.4. ... ,. SS~lC.(JjV~I S-54f7

S. 1...~* -5.- S - . 4

C. r .370,Ca9. . . C,4~~.~ ,.a.-fll ,..-.'Lr-w a -.- v. - v-.-s s -c~ a o - ~ ~ .,ruOll.c,~0'3'9 lJJ,9. ... 5\1s, . 0t10 5. uL~0r.0 '30l-O.0. SO*SCs -. ~ ~ ~ 13~' ~ 9 ~ 9.5.G.9U V .C ~. '9.

% j---- - -'91W - -11. -0. 9w- o- .n.t~pw - - -O...,S.0. - -4 -93 -~ -iW .-? - - C--- -." PO O*

333S*3'4; su.3-

.7 CI 9 I U..'0 c 4r4 .mz.rIC441;

5. ~l'.',4-C I 43C L.-3c3 m05 J 0' C . Q S. . .0:9Z '4 .4 -Mmb-C Oce a,G. .W.tC..J~l, rI11..lc* q cn..0a.9'cl1JN..%..%Aa cr .aa. 9l ,Jt D9.4a M- a .CI , , J rlL 3,',pJ4.t.,0. C' ' at C' Ct.I C c C9..I

.0rU~ 1 Cc0f1 0f1r303 -N3Nl- Z M 1.4 N "I r

t9.C'-O43S1f.. J.Y rtC.4-r..,,rP".43.lUL.5

0.Ct a0 - vN W 3 U P P.C C OL-.4',. -. 4U.ULUft'Prt1.93U91. LrL3C .1 . 0N a P.l -aaCC .- C. ,.5S..1~1 0 .C .@ .~. .3300

C-, : V f . ' P rC ,rLfl I c ~ , rL

005-.~~4 .Cj O00-0tJ CJ C 0C0-TC0 -0.' ~r. o C oo co ~ C z C1CC0OO C CC500 C'4V 4..e-C-sCC '.'U17.ep "L:. -r9N C.eCcr rNrclU~9Csl'.9.9'.~en n .e.e..C.C.9 NN19 '

~~L 'I 'am a- 9U3lW....C9J-.C9. N

.~,o-r- ~ C C cC O ~cOCC ' 00 c coC' e0 0S 0 0,O- 13" 0'f C,OC CuC C' c- l ~cC '%C' L c- tne- c l Q ' n--cIC- C ,

*.95-US.'9

5-30. . .~ .0. .Cn ~ 5 .CCOI ..J. . .O0 $ S 4 P.0 3' 31 c d zs. ... . . . .. . .G. . . rhC. . .,. . 0 . .3 c.

9...

it, V'S.L r .t .V !lj z r -- r.'~ Clr r ~ lPU.r rf'r0c-.... Z'r''3u r.StP z.CC C C'.-l' . 3CC ~ Nlfcl 1Icl 04Iclm .L~C.. J..1.9 Ch. C. rC, c , rc Cl. C&1.3,N N 99r 5 C.~,9 C.0. c.. c-S'.t. t r3, C, St OC

.1 1 - 1 34 3 .3 3 3 3. y , i ' 1 Si '.3 3 3 z .1 3 . 3 cr.' ; c45 3 . 1 ~ 3 . 9 3 . 3 . . 5 C N 3 . 9

55.2

0' o S~nJ.1 13 L. ~ .3. C0~'I. 35.z~a. C'~.C~L.4.4J.~ CJ ', -JC 0

.'4 .~C 39l C.. 1 IF

. 111 . 7 'w

------ - - -

~~.' L!

... . ... . -

(~~~~~u... . .. . . o U o o ~ , ..3 .'~ .a-4 .C .i'.o eL 4c l4.jcw 0o rc-z VLL\rt.%a

tC3O.4..rF~~~~~~~~~~~~~~~~~~ -" -.IF1. -~ -C -SL -'zfj J -S - -IU -j -' -''04 MS t)F -ft -'U -. c c.O C..cv-.,-.SJ(t&

.- C 0'd' d' _ u''0 C 'C'C ac c. CU4rC' jI[.d O1O ' ~ v vd' d'd''IC c'O r, :'C' UI r WW J I . , ,

~ 4*'~'.*!'4*. -N'.' ..4JFN t'J*~ 'a V JNN I 4'F4 J~r~rJ ~ JrJ'a,'CJ(ae'N~d~ N.\~~t.CuC*\r.rN

-~~~~~~~~~~~~~ . .F 4 .4 .~~44 .. C .(' 4 .' .'. .'. .'4 .C ? . .l . .t .U .~4 .~U .eC ... . .4 . .

-r11i-1. *'-' 3 4*-*... _7a- .a,-., T_? Tr. 4. 4 . .T - _v ~

I.3

1'CIr S.4Sp J U U~ P.tCOd ~ '.." j' .4 t-( ~ .~,-..s4* ~ II ''-* CO0..-I.'4

Wc Macw ul'

.4m -. I 2 . T .,- 7027j J7 J I, UUUU W IU

* a. tJO~~a.,4 CIS. wwt'.'044-fl * IVIL4.4~) .44tC 4W' -- o...ca uI~c0frcbo.J04U0.44~cULc 5..*.c...t.4.t .c. .c . .u..

4.- - N 0.r

. . . . . . . . . . . . ... O .. . . . . .. . . . . . . . . . . . . .0" . . . . . . . . . .es . .s JcrcC .t- -. Jr.. IC .* .r..- . . .44 .-C . .

a gr.r.44 " .40r c m- 'm v~u~l ww 4-'sIfFc'. 4,- Uft' ccic 4fJUNC .4N - .. 4C4 '9t4 ,-- cP r'J.,j ,-. .

~4 74 -. 244 44 J4j4SJTc 45c cC4crc U-2.4*. s4z

Z V. LI' ~cc. - let C'#c. ~'; L no 'r'. C . LalC 0-'N C, o-c - C :cC1 C--' f- ..C. . - t2- -

- 54

- mm

UN 9 o0000000000Lnooooooooooo 0404s0 0%uo~rC. . t4'1 N OUtJCJF~ ugCCN 1v.3 -1 111 U ' 'WWG1- -10* I'U 0~Y NU\ .L: .. 4 ~ 'O 0. O SL YW .)t - U. 0 .C

4-. ~ ~ ~ ~ ~ ~ - -- --------------------------- 0'"c :~~ ~ 4~'*N W~4.0tOf ,LP4 '. '. ~N~N Co aZ

!U' ll m 7 4.c-5.-3'4 xo cI. KmW - aI .mW C 4KWD oazv aaC ' rll,=~L4& 4414.ifc'.u'J' &L4U'n~~r,' 'IU.'4 Up~i~fcr.I .'f.4414I~ L~fjfUU.fl.ULpUI.Il..q. XL('I.UC"flt flvb.U S 'JP VUL'4%. '

~~~~~~~~~~~ .4'& .s44 . .. ' .C 0~O6 .00'' .0 . .-

,-C IL r -'P1 -% w

~C~u ' . 0 W-N.U' a~.' -f -4U' Cr UWVI.U r W?3-* C. C

~~~~~~~~~~~~~~~~~~ .3 . .t .U.~ .3.%r.. . .. .rs3 .-c' ..r.. a t ~ .4 . ~

L.'.oo ' c' r0 Cp CC ,rrcCcr -C-c',' t, c C' C'"' zf c c C'4 "C I r~~--Ec -,C.LC'.1c C, r r ct' f' j C'' 'r' r-> 'C- c'. C'i -.

J 2 .C %4 4 1 . -1:4 * r.? -1.7 'P. t.OCN W't .W 4 ON fr.ifl z-L 0'.'..0 .. u -r j 41 r. .14 . .ac,2C' a-A 3.- 5. C

4do4-c. no ce Inor -o .1 1c 4 z= 4c", z oo 'r .! J 'eo mne Lc-cocoV kft 00r.3 V tr WOro c. L' !O . ' rL.2v- ,'ir.~I i - 14.-r. 4.urJ~'3~'..r~~rtirs.~N -.... 3r* -LCN(i4 I C '- 3't~aC r.?r. ~*.3fr'.~ ~WNP 4.w (vvC .... i.C

u aj% U C 3 e . C ~ r g ~ 3 W r ~ t r i S C ~ ~ . t ~ ~ ~ a C ~ r U r ~ t t ~ t w r

.3f = fU

C* . I

* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ,r 4. .j O 0 00 O 0 0 O C 0O 0 0 0 0 0U% O 00 00 00 00 0 fl f% 00 0L % 00 00 00 0L Voir 0

I Kt 1 U.-'C I-"~ 1r l-,Wr..3 0.t~s., . OU)0. I.W - 4 . .,t P .UCJ,. n.C,,:7 I 'N'a t- ,..-NL r.' U .3U UO~ .4 Z .0'N.NNWZ wn%,Avw WZ 6N %rLOUMN ;Z.305 r ('3K.iJ .40C.O3 UC-..M. .OIU P4-OC .u'. U'UNU. .7UJTN i')e.J0 W . L- L9 K6 L. L 6

- ~ ~ ~ - -' .' - - -3 C - - -4 .4 r 4 -4i. 4 4 '0 3 C'. C'. C - - - .. ', N r, N ... -. U 04 O '0 --7C 7 ''2 .-c

* N * tU'* U'C %~~~'.C C > . 0 . t f , .MA.sI . . t' ' .4f9 W 4 * ~ . t ~ C C QC 0'.tu h J ) J C KC

* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r C' .. 43373....37. .UU ''Ur.WU.9U( UI\'I a - - - - - - - - - . .

. C -- .. -"

*r'~~~~~.L~~~~ilL~~~~~t.C"0t~~~~~~ .4't ..CIJll .. C )4 , .4C .'~l OK .) .4 ..n- C ..4 .3 .~ .-w r . rf .C . c. .. .C .~ . . ., ..

e..- .4 --% -- - - -

. . . . . .. . .~ . o cr. ~ r . .' ...0'' G .. . ..~LU .D" . .. t .C .3 ,'

I.r , r 7 r VC, tC, Or oC..4 r" -0oc- -C,~'0,~,C. Pra nO-'O 0 'l-r~~-n ' cL a~"'.C' r- C, M C. -aN.C C~~r, .flj' C.. S. z9) 14, 4 0.0 ra W ',o J r rI.9s .7>.1 -J J O'.?4 . rjJ -T M7 r 0 4 N P ' C I4.. -T .r Uz Nt a . " I

C..?. .- ". 9 sK .0 . Cr F 00 . CC C',U , w~ a .9'.. .7'rK U.04 L4 r9'ICtc ? C' I.J ' Z*t,. .'C

.- fLL" P9 C 7 KN t' 0M . 9J.C N.- . LC a TC .7 'IV' u@ K9 C- N9 . -... * La -1C".-

2 ''. 37CI C.~.- ~ C ~ .""F ?~ 4C E'~KC~.0 ''.( '3. ' aN'p.KK CC .. 9.C~"90 33 IJ1 56KKC

q. ec -

(-- : .. ..

• ..d ..4.-

4N.r

* C. fp* -o

w N'

APPENDIX B

Spectral Scan Start Times and

Other Data for HS-3B-l CVF

Data in this appendix is defined as follows:

Co l umn Title Definition

1 Scan Number Number assigned to the spectral scan

2 Length Number of data points in spectral scan

3 Length sec Duration of the spectral scan inseconds

4 Time A-L Time after launch in seconds of scan

start

5 Altitude Payload altitude corresponding toT.A.L.

6 Time U.T. T.A.L. in U.T. seconds

7 Clock Time U.T. T.A.L. in clock form

.8

c. t. or M2t mo r' Cr e.,c~ o cet, r U -4,- tw. 0oo NPCC . CC .CCr Ot C CCfC cC.T ;-CN7 r . ,CCC5C

".~~~~~~~~~~~~~~~~~~~~~ .t -".c.K - ~"S 'd~..,.'K 'C. ."U' .Ea ... .-s,. .I .N .C N .y~ .nr r . a . . r. . . .S .. . .'. . .''-"--

- ' C '''.0 ' ' .. ?.7,. ION (L I I C ~(tCC ' 4 '' 1 3

K~~~t..*..~~~~ Z M.t L. U.~% .K.(0.K..K .tNt . . u.N .. aaaa~*,'.e -s U.~ .o,.aI s., .i Iarft 54 -

- - -. - -.- - -. - - - - - - - - - - - - - - - - -! : .3 - - - - - - - - - - - -. - - --- - - - - - - -. - - - - - - - --- - - - - - -..- - - - - - - -.- -3-U- -

~L:LILC'I(I L' I .'L~f L''S I 1.51 L'.L'S'L.LI.ILSL'5L'LLI L'~ L'~C'IISIlL' C IU' ISI' SL.C 'C"C ."L' 'LIL I I L W 41-t (IC .

t

C'.

" -f

I

r - r r

Ors~fle nCS~rU -. 40000'SL~n nC'S~ttn~ne~o'ttt~ez,0etnt .~CsSOS .' fr .'s .Sl' ... CZ. -. ''4t "

u.-~~..5 C.KI('J. m 2-1^',.s! _:;=

ZI rr

0=C'OCJOOC=3=~-- 0CC 'aD 0;Crboo:rO .' .CI .coc .OS'o cC ~ ~ , .S .5ZSC . ~ rr ~ C O'C fC" CC17.

CaUCCK~t'O'!'CC''((0- UC.K .c c? '-. .'UUC C .C '--' - X C..'(!.. '~'C.'~ ~C't* ' C 5 1. ' 5. ." C ' IN C .- L '0 l C' U . 0( 1 .5 U CI . .7 . 'C " L I. . W ' LIlI. c w . ) 5 0. '! U .S . * . 't . .I c .' ..,' -

. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

- ' ~~~ U'UU't'.UC'CC.~~~~~LA.S~r C'C .- ~.4>. .~ S.J .LI'U'4LIU'4U'.'L'C<-. T. 71A 4C,:_ z..t."... C C aUlC. CIC t r. ->C *'. -.-.

. oJC'~a 0CC m05 CuOC, 000C c0000000000 -aco noo I~-ac "oCo ZCcOO, C-C

C,

-

7. 7- -N,7 7

- - -.

-0 -o.

LLC

c.1

I" r

C' o .O CC o . _7o r..' . o ,or , o ; •7 CC-' C • o c- • c'e c , r . o U ' o , ' cr c,- c c c c,c -, or -arL r cC Cf • - - It C I ° .. . . . -. . .C

* o o o. o o oo.~o ,,oo+,oo so,,,o co, , o oCt C CC 3 CC A .3 c ,. , o , o o..o . o C .- ., Y o . o o C' .. . . .. . .

* - ... , en~ o.-o , , . to, c ro, c , .. ,, . .,.rp o..2 , .. ,o.- ,.o,..rr C",-. . o- . ,C C , .. . . . . .. . . . . .. ...

-meC -3.Ccas >, Lb Cl.'N S .i. O>. c s.-..ro- ' Mo. IA I 4.5 .2M -' -cCv f'-C. -' '

Ci

Z. S L' C SaL ~. .pr r r -, ..

Sp44.. . . J . L -. .. . .... .. . ... . . .• I E• . . . ... . . .. . . . ..

C" ... .~ . .... ...t SS ..... 'C..- if ... . .-.- - -... p., --.. +p . .. . . ...o r N . ..f.Cc - . . .. . ca . ,. rC C C ,-h- C .I.-+.,,-,, -- ... -......

,a .,r

-c J, *--:- , -

-,- -

- ---- -le -0C OC '-0C r - C -ll -' -o ~ ol C'caO ,~ -o3 -n E C -- > - -. --------

-- --- - r Z C P -2.- -.- 2C-r- -sr---C-a.-.-J-rr-.-.- - - -- - C~-C. - - - z r-C -. -- ~ ~C -, -- - - -

n -s...Prr ,r ra -- -*--r- -e -. C -lp -C .-F -f, - -- ?. -2. -2 -. C a -- ' - ---- -- n - -C F -- -- - - -

,r,,

r ~ ~ ~ ~ ~ ~ - ---. -~~. -c -.Ce- . -O~ -.-- -r- -F.C .-. tP. - 7 -I. -4 -Ca-' -C - -. - - -. -i -C4 -

...

C' I- S-- C?'c'.....4a~s ~C . tLrC. 4~~- C C O C C' CCn- +C.N FP' 'C.. Ct 5* . c.........C.CC.jNC pt C'p-a-.CC'Cr~.,~J~r~C.rC~er~~j.r.Nrcpoe.rea.~rcPCJ CC CC.C. P.C-C .' rC. C-S

Cr-C

- --

LtCft -, It tl 2-tfL t I ff ! f 1-

o LfL c-co r, C ll Lr r' C'b01r ur.LnN 00 00 C' r Oct.,k~xuk o rL coo a ~ Llr1 t'0.0 0(0 000 00C CotW'lfI-l l CN~ 000 L0C C 0CC WCrn~l U' C'~r CL CC 0 C

% ~ ~ ~ ~ ITC4h, Nr.c &o.. Ct'. a..C P0:4 cC(. CBS C~t N C'.'4."'PO Lf lo wN ncq, '.~ ~r, I :v IcC -.C -. -C-L-S-

- C~.,JN .. .C %a "''r C!E ?. CV' S~O OL ,1IfrC .. .. '.0 . .C." L-CC .C'.L . .C .t ..17.. r- .* C

S. ~'U~' ..- t' S cZ.n P r rC~ uP"Db" c,o z v7, ,fl .r' rs.t--rl r. u'C.Uf0'0. U lloccN--N c. C-0 ( C C"'CL L .5'-

ft ' I('el lllr fSS CCJ. c-;,... t-.. Cr 1 7~a. 1.Z S~ C~.L --

ZL ~ C ,JL.(JL CIL cCC LICCLI L LI' C Lfl .IC.LPLI'C't LI'CLI' C --C LIC C'LI LU>'.& C'CL CC C~L'aC c C:, I ' C

C-'CCCC''OC~~~~~~~~~~~~~~ . ..'L .C .C. C .' . .L3C .C ICp-4\ .CL .1 .~C" 00.C 0 .7fL L Oc .-.-. . . . ..

CC.? .C~4'CC.'&' C00CC V' 0. ,W 0'L ,r CCL..'~"L N ~,cC...'.opor.C 0 '-L.CVC'-L.If0CC.0..'C C>..

r~~~~~C rro o -C.0 pr C'~ 2j Z O e,,,,,(YCC ~4K'II>' r..cnoCC 0'.4tC C C N- C lC CC'' C

CC'~~~~~~~~~~~~~~ ..0C ...000 'O L .CC .0r C , C o e ( o 7 C 0 n .00 .00 .00. bC.

(Cit ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - - - -C'CN'CJCUC -X'N:C~~~o~C4 -r 00ers04.~~ - rJ. - ~ CrJCCC - ~ ~ ~ f.rt.~rS r -'J -V -rj -. L -. , -< -

-.Ll C.-C ..- r~oaCC "f: C~..a -C.o . C5o- or-o~*C .- v c-'-v-r-,.-~-.

------------

.... 00 ~ ~ ~ ~ ~ ~ ~ ~~ - -00 00 0 0 -.0=C -00 00 0 0 - CCC -0 0 0 00 0 0 0 -C C C't 0-0 -CC -O t -

.a . O C0 .CL C IC~CCC.C .C 0CC,-rC C 0-C.C i '( 0

aCCC-CP..'c~0.~S -.. C- -

I o L 'O -04C ct: IC 'i'-tC C . 'C'' . < C CC 1.r 0- 0-,, C .. t'l--........

LC4 .0..C L .C..'-.I~j.OaCC cc~~sa oor.Z. - N0-"*~'.C...C C~.OC *iC4..~ C'..61N. '

Z~C00 C S.ifC CC J .'P 'C'' ?.1.SC 0.C' S C- O(.".C .0'0..CCCC00..NC.C C'..C 'mo no '...C-a

- ~ _, P '

Ir 11

I-7

2o

IL

APPENI)IX C

Chopper Reference Phase Angle and

Other Data for [IS-3B-1 CVF

Constants A, b, and c are defined by Equation 3-12 o' the text. The

frequency (FREQ) is the best fit chopper frequency and 'rlETA is the chopper

phase angle ,i relative to the scan start. MEAN HI and LO are the spectralc

mean counts for the high and low gain. NPTS is the number of points of the

scan. CII1SQ and INTER are the goodness of fit parameter and the number of

interations required to fit the data.

o63

- - - , w - .

M LU.4.4 . . .4 144 . 44 .

o.D %D0 %OW. 4-.UO- ,Cw G-

&D0 LI C~D NU)N kO .4U)N0 0% .4%DC C'a"'O'"6 44 Y% 0 D 4O' UN~ U N -7 .t3CD O'4 0W%'OM L.4.4-T4 W5 1,0' .44 U 041 C ' .4.oPal-i.4 N~MWV% I9 U0)N NU ) NjI?)%L, C T4 , f, U ) )

S~C - 04 4

OU)-) .4..D 6U NN U 0'0 0U) 0'%U W .AUU LI 't"M4.0 O'U)WW "N.0IU ..4iUr, 4 NU'NU C.JO \L.'.4 0'N- VIO 4 1U.NN 6% U4 WUN-N~f, N a'

.. J NN N ),140.4 N.4U% 1 *N0U'L..40 **4.0 f. .U' 0 ". ,flr' # N .C'0' OMt # U'Cop,. # t.3.-.1' ..?N U) W3 .L"

~ 0a'O O''U) O'.'O') ~O'0'0 0'o~aU) )00'.' 0O'O 04' OO'N ) ) UU)N~ U U))U)U)NN U)cv'U'0 U'.0..

U) UU'UU'UU'.'.LO U'UU'UU'UIf'f'LfIi'~U ~ WU''U'ULf''Li l1U'IU)U'' U LILI'4 Lu'US LAf'L AWU'I[Ul* UN-U\ U,

z c~ .lc~r . .2 . O .ko)40jr'4 ** P C044 4L' CC41 S.14 a%4 C-0 1 0' ) ' t ").0 N-N NP, .T -

N CD, NW44... IN .4 tP- I -44.. 1N4 -1M M W4( N .4.4.4 M4 4 . 4 4 .0..44. (P-.4) WN W. W-44MM-TC 1-~~~~~a1. ~ ~ ~ ~ ~ ~ Nl VVW' -4 0,6U U' U'ISI'UtUWU 'f'UU.f'UIs'.Ut' L'fI NL.L' I'~'.1 W1. M'&f. .L'I A'lfU ' LI'A LfC. U'' I ~ J U' r N-t i r NJ

MC)W.0U4)0'.MVCVM N'.4N U'4#0 0'0-4\j .O0'* .?N O~ 0 U1)N -. 0tO0L.4O1 3:= T v tf 0 W No.4P0NtO-

4 (D0414 '.. U'.U't.-~l$1 P j acc U, -UcO01INN 0NI- '.001 1OO0I 44)O CO 'U .4N- m.UUQ -t. N- 1, OO'uL 0ILI 100 10'tN 404 N4 N4 FO.4 -4 .4 .. N N.4 (\J410N #0. N. .4.4N. N. .4 10. N.4 . T W'.T 4.2

U'.4a 'C ,4C' W 4 a, wN U'.? tOD 4 cu .m 00- Mal 0'-t, D CM- V031 .4.4U z 0. O4 w m N ~ . at.. 04b 10 Ot0C4tL "LU 0'. O'#lo C'-0L' ' 4'j ' NIfUt'44 ' ... 4ot' - r-N ~ I,-.'

3 I U II I IDW I S Ic Ic IL ID-)I r

.4U 4' 'f,'.N#IO Cl~..104U.4 N'N4cU1N 0 Oa40040 '. L'4').'OPN ~~ .

... ... ... .. .

9. It-

.IL ..4

v . .4 .4 .4 .4 .4 .4 .4 ..4 . .4. . . . . ..

PoPPP o.-.4 a*,-,r LL U ,,to1 -

C N~0VcO'u ~ Qo?. U DA .QP.w~7 P..4ICor" r 'p.40 ~ O.eL .O.O04 wC7'.- wa *iow m W.-'mw Ma~ .c'L

Ocd

W lN c c r*...?*%.M*%. ~ ~ f W)4'MPP.'.P.~0.L04 rOO M4,0P IP- c W 4 3

"N") O'O'a'rjtjf tvm" 0.4Oj 04 -4O.4 o0 f 00C'001L0C400 -u

- wtUN .rUw m ~ UW\M' UNU\C' Mmuu' IC'IpN ULI'LgAs UA W \U LU\'U ULI' U\L t UtrU'I U LI'NI U% N U LCAW LI'U\U L UN L'NI IU UIfd U

.7 ........ C . . . .

I'...

L-r.P- co'~~~v ~ ~ .'. .' I ' .. ~.~LP. I.."3 .-

- 41 .1P).).,S, ~''* ~ is * 4.1'fU IL'.rJ..±. IL YN4rs i, 4 ). N AO ..- N L' 4!

101 I S Lll NS 0%0 .C N ...... 4 i- S0 NIID i S ('.ID I S %C1,01 101 IS . 1i54 J. %0 ('IDIDL S061 ID.4 If, i~ DI w 00 CI 10 1" ID 10 , ,'

V. I S S 9 I 5 II I I

4. J ,O ,O 0. . .9N t~ 1 ,,~,N.L'' 1NiJ'0 ... CONP. .. .L'i~@.*~L'C '4f'NNf64. .4N It '. '~f~eN e.0..5. vtl a,.C. 1010 n N .0 I.D O' .1~r 00'. ' 4),v 100r D.CJN I.n . - I ~ . iP.'.N "N

LIC ''_'i t23 ~ t4..(c4 VL'' f~ a4 ""Jf..t' ~ac2 ~~ 4.

u0 . .0 . N P.' .Cn:* * 3 * * 3 1 3 3 33 3 3331X \~~~N~~ "J' iit AJiNNN~ ,'~ iiIIiiNNN i Jiiiil~~ \~ J4iiJN~~ JL'JC. JJINN

p, I-r La

.4

OD~l l4 * 0, g mcw~ ra',P "acC -lo 1014(7 CNpP 0q 4v (%%=DU~ P~LTI4 m ',J 'wnlc%. ...

-0P G NZ4 0DI PIC GI4GN 44P' 4DN 90 NI O Dt ,4 .cf ON O.F-O4000 N O.W .W WF o

4~~~~~~c~~~~~o.14 G ampO M0O C . cu''.4p"U 0 N40 '0 . O O'O ~ '0.4~~~~XY0 N DQ'com'.N0m ~ ~ a ~

o C ~ N Q~a . N 'f 44.a ~ ~ MND 44~

0,4iNc~ecj~fJCV~krw~w"CrNu o wa0i rj" m~'oa OCu"~'O cm~O N~ C~ rrtufJI jCNc vr \Nl~ ifi% e VrJQC \% .l.%CUNfL% .WW\~ . .

~ 44 ~444 a4

X~Pj~ 01) Mr.)EIS A44IEJw Z "~\I1%(tj' men( n(J ""MCEJN.J~ f rl)s~%J~N~S NC\4 ('"Ji\ (JfU( n" C MM 4N(JSJ~ 1'4t W)JfJ (jfJJ(J

USLWU MMu ML MLMLu U.o'O'MM. -1MNMMM - NLI S.D% nM MMMt\inM4MW M r %M

ax " o4 a Ni 4u.0.N M .Y 10 -t M w 4.4 .4W,#- ,4M.,N oMDMMN4.W4 n=,44OM4, . CO- %D 0 4 .-0- "4.I.-co I. U.: C C U\ Lw n"UW "f~t N Sw C WU M 0N4 I4i ??.4wM1 CDm mtkII &r&tW 14u~r (\)ICu' Cr Nru M 1 m N u4 LN I&1' 4t U U'4,

N~NLL'a ~ Nf(N) .#.IIN( Q4 '. 0 . N iN)

.4 N.i4 ON,4 N,14rxN.4 0%J.4111\I Ck*J.4P cu N.4(f)N f.)(Cj,4p.n c ~ MC .0Ci (' t(Ul tN,4,4N,4 P)

,CT4 4,'pf-l C.,o4 b.40%*NoP .. 4t 4W,4t4'J W P00HW,4Jlt W"4 I 4lJl-4\ U'P'p.-JC .0P4 -4

Ct 4U'N WP' - LC0 V)4.4 M0N N CCU Cr, NN4 -. 0 .44.44 4ENJ.4P-.D.T 2 f- D Cl' W , nr w W 4NVN-D U(YDk.4Nt (4..4..4 t'N..44 71N .44.N 74.N %I4 C . NCJ. J44\n 4 IN ..

a ( t 4)=NGLC% A N c N r v% %o ark 40 MaM a- so aN am a" 1, a 1 l a ll ma a a r. 2 a t,

P4400W 40M'4 *,u n-V&Imcv 0a n Q&m N N P 44N4 *U'.40 tw. V1 o rJ mm *m* 42 00ko 4 I cM- rL(A Ai" I rim 4P 4,4 qyuP.,)P- U 0U ,D.0UCI ,4S.,NP-j a) 4v~l " cu .cc.'DcP. c,4N LCv piF~ ..,N U 1~~ ('-

0'N''0 0P. 0I.U NcD N'W"k U4~,,U~lP.I- .~ .'O PD~~.,~~~N~ *~..... .. . .. ~ . . . .. . . . . *. . .0..Cv

- 'I Ia I I ISQIWI IDDI S% S00C I IOU *DZ

ON- ,1 0JL ,1 , cr Df r cNxr-0P-% N rrl P-d l D % l\ 0NI-xN% 0 % L1 PT C% L

2zo .4-N IJ W 0'"c-.0% .OCU00 PD'o 00 D .. IO4Ic,1 WP.I P.4ao 4 7MJ.C-?P. .4.,t ,c Sc...o'.4 0 0' .4*4(.)0D "VD OL wD

~W 0L,4')NI4 ~tTN4 4.4,VIN4. 4P. ')N-4 .c444 P~(T* t.-P 4, .- .P",4 .,4c,4 N'NO.4 .0P't~N 4.Lt 2 7sr O

En . rN~ ' ' -tN UN' 4'P 0~~f0- U..,'4''~ L~.~44 , ..- U- ~-

.4. . .. .*. . . . . . 5. . .

Go9.04 N43,eml " dw

-t- 4 '4. 404 ..* .4 .4.4 t'" le .4 *. .4 914

.4c40w.,4.40

o

.I. . .....

-4 0 N4NO'i0 w C !71 . . .m .CN N .,. I o...m I" I*-C~ (9CU NE.N..N.NN 9..?. Ct. N ' C N CO1N10 ~l

xS. NW UuAut- ArUUNr~%%rLi\tLlr" r Ldl.tN sP'r-rrL UL *4.49'.J.4LLt\L m caw m o~eLm amc

C, .4NU 00DNCu zN. .49N4 . 9.'D . '0..N .C1rucN.u.~o' . C3N o'

-'L.A 3Up)a' NcY..c V'N.C'.00... 9Q ONN ON'.P .?.S . 411' 4 N ~ ~ &~1 03oL''9' fCC).

~~~~.4 ~ ~ ~ ~ :4. ..3 .1N. .0. .O .' .. . .' .-.N .0C.1 ~ ) . D 1..0 . . ~. .N '~,4.4D

.3C.3fO~ea.- 0c t p).JUw~N0.0p ..4%IIDJ . TNN .D .4mN t IN. N. .. N. U.Nev% .I I *\ .\ 41Cj I" I C 1Ck\ N l

I I ~N. ID I' N N I. I.4U044D , tL..N .U I11'' I I I I.I I I I I

VWul rj'404 jtc' N CI c 4. ?9.4rv"4u C9.)N.N. *M.%lC -JN.N.~*.. f~'4'. IC. ft .3.3INI4J

(A '.D')~'9,.N1.N4fN.~,,.I.341J'.4C'Jl 'C4 C 2N04CN '.9"44.

0OUU 14~~0'.t'.J')0' C'Ir .4N44P..04.0 0~ C' ..4~N..N.N.4.4-N.. ~rL" .. 4?'-0'*(LT'4D. NN N91'00.4.N.CU'40'1'.04 .000NCVO

S.

L). .0.uNc.. )O 4.... 3.NN0N.''r .l3.0. ". .O ~.o1~NNT. ~~~,u

I1ooluo .'C 9'T'Nlw .Ole 2140 C.'FO'D4 %C411" ko~oe,9.) LC.4 %D' J.4'N.C 'k.0JD44 N C4Jrl.311.3300

.4 ('*Jv 0%344.)? Sea m.. ey1. W\.P4'T f)\ NO .4 av.n4N" .44 V\OP) N ').4w 9')I' tSJ..4 pn4).-4 %N..q NN' C .t4 d

C. 'CL'0''C. .4'N .4.LC9...L. .. 4-N4 .4*.4 4N.~ P~f.4 0'OQ.49" O'31' .40'OI1 11.40 .4 N c.3 J .9.). N 4.00'

tO9'N..4.4004L~.N C ' ~d~ (UN 1'C 41'C9.d N UC. NO..4. C 441. 42C. . 0 .. 1' N.l940h

I.MO N.U..a.2.9,9.9)e.j'U'-.0941.0MD.3 a UU4 N0~iM 4I~ .. 03.2.4 MN.44N 4674..010

APPENDIX D

Sample Data Base for CVF NS-6-4

This appendix contains selected spectral data developed from CVF NS-6-4

measurements. Scans and scan start times (time after launch in seconds)

follow

Scan T.A.L. Scan T.A.L.

116 96.1080 271 171.4120

119 97.5590 276 173.8840

121 98.5300 395 232.7120

126 100.9500 424 247.0380

136 105.7810 447 257.6770

139 107.2340 467 267.3540

i53 114.0030 487 277.0310

156 115.4520 -497 281.8680

159 116.9030 502 284.2890

171 122.7050 505 285.7450

174 124.1570 507 286.7110

181 127.5440 510 288.1610

223 147.8600 -512 289.1290

228 150.2780 520 292.9960

231 151.7300 -522 293.963

- indicates difficulty in detecting scan start time.

68

, - -;5 ... -- ..... , __ -"-' -* ,.i._ .:2' -.. _-L -Z2- ,

z

ccr

W L0

in 0 to

-J zJ

to cr

Cr)LL

-LJ

IICD

L6

*jjLO)

c-

LI)01a

(n s- L-4 =-

0C

01 0)wa

ini

07

cc

* 0L1-4

C1 I 10

w

2zCA

:

CC)

crrLUo

L 0 LL

01 1 -4J

N7

LI4

1.0 U.)

(n

VV

fn

ccr

.0

* S3

C

cr-

-ar

z- L)

Ccc

ot

x) C)

-LJ

In

LLi

-vi i I I i g II I I I I Iin

r, LO~

C3.

cr

cc

I-

-j

t--

070

Li

IL)

D ____73

cncr

In

Cr ?

-01-

01 CLr)L

ol cr

-Jr

cr

CC\

CLO

X C:

74

rlf

-I I-

ulL

IV_ C'

,zz

k--,

-z -

I-CIO

w V3-4.-

-j

I

-4-

700

Inl

C3 I t I I I't" I I t

tncn

-. 4.

C3:

-, C

C3

ci F II- .1

C3

to:

-j _ ____ _L _

C3L3J---

04DC

77i

Cco

Li

z CDu

00

Cj

* ~z78

- rr

2c C3U

ini

C A

xccc

01 - q-

Ln x 0

-~ V:

9-.9

a.

Ln(

Lao

C- CD

Z-)z

cr Q)

ICEI

-J (cr)LA

cc

C3o

La (iLn Li

CIO C%

LiCW8 3)W O

08

- -7

LO

Cb-4

bcf

-dd

cr e- L

-n

-4c

S-w *

lt

9 U.EC.

-4b

II 4 IW 01)l U

~1 1

cr

C

C Er)

o ccC: L)

C3MO

rn c.

m-4.LL

0C C:ICC

-7

W cr __ __ __ _

X C)

07J

07 C.J It

C NO~ U1 W Z

-82

NN

Wit-J

0

tC.-

0

LU r

0i

r-

NN

C) lb

c83

L Z

LL

C) P-

In

CI,

tUU

04 -CQ

L C)

CNNIWgW I II U

I- -4

LO)

0 LU)

eI Z

CL -

w '-4

I j I -L l l- -

C~Cb

ZN8(W W 00~r

LO)

11111 I I 1111 I ILO

-4X

cc

007

cr

CC-

-~ r

'Iii

IL-

C-:)

'086

C- (1*)

i i iI IilI F

C-3

- Cicc

-t

CLC

I-)

0) ~~ *ilI I (NO8l31W/8W) J30N~rIOU

87

- o

•i

C;

:

'0 I,.--

h88

,o. 0

-Jr c0 -

o

-~lJ

a- L ENII I I ,I [I - |I I I

'IOl~ ] 31;J[1

Li\

4 \o\

88

0r) -Jcm_ _ _ _ _ _ _ _

03 C3

-I -i 2:

cc n

-C, (0

I-i-~:

5-

LLJ0 -I3

(NMOJC!W/ W) 33NUMCU

AD-AI09 89 BOSTON COLL CHESTNUT HILL MA SPACE DATA ANALYSIS LAB F/B 20/6ANALYSIS OF PROJECT EXCEDE II CIRCULAR VARIABLE FILTER SPCCTROM--ETCIU)JAN B1 W F GRIEDER, C I FOLEY F19628-79"C-0139

UNCLASSIFIED SC-SOAL-80-3 AFGL-TR-81-0224 ML

2 2

mmmmmnn-mE...--.mI'D

3-H2

liii ~ _ Jill.2

tIN11111_2iiI

MICROCOPY RESOLUTION TESI CHARI

(an

0 It~

C-b

-J z

0

oG

-J-

LiJfn Cr)

u iu

090

Lo'

r..

of 0-

LoC

tot

iJ

-Go

o r,

I-,

C)

9=1

corC

LU

91

4-

- C

cr

-o L

o I-uj

z 6 60

(NON31/ W) 3NOIGH

-92

C4 C- L

- 0i

10

CIC

c.J93I

Ca9 3

U)

cz

- 0 0

-i

r(

cl C.

5- z-

Ni U?C-4 CL aJ

A 0 0 0

L?)

U, 0)

C-.

loo

C

0coa

C4

I. LL0

ca

-j-

ELIn0Q

U

lbILC

eN83W/W 33NIGU

Aft. I I II t Il

CCOO

-i

C!

030

C0 --

077

tjjj

LI

X CoLU

C3 C)

-jow ) 3UO~

I96

cc

U),C2D

C; I

I-n

ca,M

0-0

U3

C,,)

S-

Luj

>C - C

tNO831W/ W) 33JNUIOU8

C

U;2

C-

C--

-C-3

-er

LO U

*! 4. Uj

Li I

C3'

98

LLp

APPENDIX E

Sample Data Base for CVF HS-3B-l

This appendix contains selected spectral data developed from CVF HS-3B-l

measurements. Scans and scan start times (time after launch in seconds)

follow

Scan T.A.L. Scan T.A.L.

1047 96.1650 1111 173.7760

1048 97.3730 1159 232.9600

1049 98.5790 1171 246.9950

1051 100.9930 1180 257.8540

1055 105.8200 1188 267.5050

1056 107.0260 1196 277.1560

1062 114.2680 1200 281.9820

1063 115.4730 1202 284.3940

1064 116.6810 1203 285.6000

1069 122.7150 1204 286.8070

1070 123.9220 1205 288.0130

1073 127.5420 1206 289.2200

1090 148.0560 1209 292.8380

1092 150.4700 1210 294.0450

1093 151.6770 1211 295.251

1095 154.0910

1109 171.3120

C O rW/.4 ICNbLC

-_J

CF

CD-

uj C)

CDD

LLJZ

w -j

a-

to

-Jl

j LU

_ _ _ _ _ _ ci-c-

CCr

0 -LJ

- -4 - -4 u

100

NOdOI1W/dIW- IONUIOU~

V--

c~cn-4n

C3 0

LCLJ

CDC

CD LO

0) '-4

0)

LLi'cr

C',u

ot

C)C

LU

0o I I I I I 1 O YI 111 1 11litII 1 I1 11111 1 1

CbC1

NOd3H4W/ W- :3NUIOU

CD CM

Cl\1

D -J

LL)O - cc

fil I I I1 I ~ Iti I I I I jIfil l I j li[ I I I

cDcc

C

I-r

4~~~~- Il 1111tI-

102~

-44 V" -"

~I4 I I Ji lI I i I J llI I I I t l

zz

Lu C

C)

C)r

0

LrC)

ccc

-

-rLu -J

CL

Li

CD-

a) C C

NO~Ot/~W" NV"Q

103

0 0

C3c

:z

oLO

a: CD

C)

V-

9 cc

~1TTa aa a ieaa Ii i ~ Iaa a Lm

LO4

0) z)

CCU

0 *

U].

* L)

CDC

4 -- l

4, 3W/8- 33N -b

1014

C[ -lb C16

ui cc ' ('a

II

C-'

Icc

0 •

000 CO Lo i l 11U 1 1 llcrc

cr-

CC>

II

-j

onn

C) CI

105

11 11 1 1, l P il I I It I Il l " i I l~ )I "i I I C i

-- -CDJ

LJn

ui C)

to -

-o0LUI

-

- Icon hltl I I- ,lllA I I 11 1 1

0, i

o' 1 11 -- 1iil ill I I i, r i [ lll I I I CC)

C C

'-4

II-J

-j ccr0cc

- - I--0 ZCi

uAJ

0Lii

,[I,,l I I I gItllII I IIIJill I III lg I 1

NOO[W/I W- 3NHIOU8

lto

NO 3U4/4- 30NUIOU~l

U,

crcc

w -i

c- m .

C

cc-

jill??I I 11 1 111111 1 1 1 111111 1 I

C.0

CD

LL)

:K L)

o .to

LLI0Lii

C)J C-)L

107

- -I W- -

cr)

C31)

LLI 0z

LUJ

-J~ LUI ccr. C

-4r

o CiI 118 I I 1 111116 1 1 VIMl I I I U;

CD)

CC

-Jr

LI

Lii

C crC

oD C)i

-4-

108

Cb Cl

U?

- -D -=

-1 0

CDC

-

C"i

3Lo L)

cocc

tij

-- 44

109-

NO 131W/8JW- 3NUIO!J

-44

CD)-cn

-- mI

F-l

C-. 4

oo z Q

-4 c

0))

-4-

N03W8W 3UIC,

Lii0

NO OIW/ Th4- IONUIOU

C)

C; C4

- 4o9

o~~~~C CC______________

c a 1.0

LOJ

o CC

.. I

CCC

-4

C)

-4-

0 Li-4U

>,

cr-: 0bC ?

NOdIOIW/ IW- DnN,3CbU

V.I- V-4 V"

-4 ti lI Ic

-O

~ccc

-- 4 I-z

-. U,CM4

-J Cj 4CCI

-4j

CO~'-4

;- -4IL

LU L*

CCt'--)KL

-to-4D

112

0i0

w_ _ _ _ _ _ _ _ _ _ _ _ _ _ C b

LuJLO >1

Ll ~ ~ ~ ~ ~ ~ ~ ~ 0 I MIfI-ilIiI 111

II,,,,,Cc

-i ~C--4 - M

LU C)'4-.

-3 z

-O4I

c

LICj-

-0

~CJ Lu

Lu -)

X:Put I I I 1 1111 1 1 1 hLII I I fil ' II I I-

-4 L

-4l C

NO 3r/ '- 13b~LU

lilt F 1 II I I 1i D J I IJ IJ I jili I I I 1 11

-4

LcLJ

LUJ

_j c.J L~

M C

ccJ

C--4

CJ%

04

3 -4

c.JJ

-Ij

Lii

LiiC-i0-

114j

- 0

NMd31W/ !W- INUICI hl

-4 C

-- 4

-j

I~Ll m z z

LUj

L i l IIIflIlL-.I fi il

LNJJLI)>)

La C

-4

gUL I IIL-t L

C'b CD

NC~v~W/V'0 23!ZL

C-iiI-.I

-4r

cr,

ccJ

-4

C)

-J

cc >-

-J

I-ILU.W

cr icr

C) Cb C) c

NM3I II- 3!J1H

-11

LI AlkWWLU

-4 LIIII I 4

rr-

)

I-L

CJ

-~j

(7))

CD

-4-4

0 CC

r-J

Cc-iLJ

0Li

I- C-

-- W4

NO 131W/ ;W- 23N 10U 4

117

CD lb -

I I i l I I i l I )

Cii

~C

-- 3 4 I---]3U! ~

, 0 -

I.- "

~c J

I ItIl t I If I !lilt I I I I f ll I 1 I I ll 11111 1 1--

cc

1I11li t Iaaa u i Villaa I a 11 1 I 'I

LuL

ii

- rJ

CL

- X

N.- C - 3

118

iv---4 -4-

-4-

-4r

LL))

LL-J

LO

0 -4

o 2

* Lu

CD-

L I If IIf I ha

obCD C-- -

NO 13W/dIW- 3N ,QTU

-~ _ _ _ _ _ _ _ _ _ _ _ _ Cr)

U'

c-

CC

It.l LtLU 'l if(

-4-4

I C-

-4 C

CC.

II

-J

L -J

I- il I II.-tCIO4 LU

"'cr) cCo--' Lu4V-

-O3W/W 33

120~

NO3W/ 4- 3NHIQCd8

-cr

CD-

ClC)

CDD

CCC

uJ C

C C

Cm LI3

cacc

* 0CC

LUu

LUL

CDC

N 0, Wt 3NH 1 J-

L1 1i

N0831W/8W- 13NIOUGH

'4b Ib C~bC) CI

LLJ cJ00

U--3

0j -

M C"CC

C--I

Li ly Ip I 1 11 1 I I I i fill I I I I I

F-j

0L

LaJLJ

Q-

LJ

L)

11114 1 1 1111114 f4144 I 44444 I IL ?ILuj

- - - - - 4

NOI31W/ .- INHICI,'

Lim2

M,01W/I-~ -3HIH

C0)

v--

C; L

0C.

C3 o

cc c'Jcr-j

(0)

D -

0 X

-4 --4--

N 0 0"-owo 2

NO 31W/ L.4- ONdflO'd4

lb -1 - lb

CO)

LL-J

M CC

CC a

ccJ

ze -4

cc C->- C

co CL.

-LiJ

LUJ

cC-)

NOQIW/ IW9 3NHBZO1 24

NO 31W/LB4- 33NUlCHOl

c?-r-

CD cr-

C-J

* CC

I I I I [f t i I I I

-JJ -

cr~ 01>

I--

CC)r

Lf)LJ

LUL-J Q

XU7t. I il 11 11 1 1 1 l- r L

co:

A. 3 N

12LS

ikU

NO 131/ B.4- DONHIOH

r

CO)

CC m

0

C)I

Go

*n m

CC%

cnr

*l C),,

NO.1W/IW

126U

. . . . . . . . .. .U

NO 31/ W-IOUIH-

C) C

LL)

LL)

cz'

cc

0a)

0

C=J

clcr

jC.J CCr

co LLJ-J

-

L=

U-,U

91 11 11 11 1 l i I fill[ ' t 1.,Ll

- 0D

-4C~ C4)4-4-

NO11W8 - - -II

0D oilI I I I I fill I I I I IIH1 I I I a11 I I I y)

F Li O

ccLn urLU

CD0 LJ

C-.b

to

C3

CO"

a

I-

o

- vI-

U-1-

Lii

Lii

NO083[W/8W- 33NUIGH8

128

CD\

* . -

u-j

C.-

rI-

Coo

C.-j

0

zz

CD)LiLa

CO-

Ix~

NO 31W/ W- ONIUIOUoi

cI-)

LU Cc

LU-- j

u-J

(Dc-

co I-l

-4r

0

ccJLOI

-

cc; ck:

(0 a-

-JJ

C) C

NO431W/8- 33NUICU4

C) C

-o

11 1 1 1 I I, , ! i , I I I 111i I, I I - -

, .-

~~cc

- cc

U,C.-

"T , , , I fll i, I I I , 1 , I I Jill, I a x 4

-

1313

L i i

CCl

-JA

U,-

C

U, I litif I I I 1 111111 1 I I 1 1 L

OIL C)

NWMW/-W- 33NUI.4

1b OL C)Cr)V- (7"

cr ->* 0)j

I- Z-

CC"

crn Ml__I ____III- __VillI___I I

0))c'J

cv,

le-

>-

LQZJLiiL

-4i -4

N03-W/W 33Nb I

* 132

0u X

I t

m___ w

RHq I.4iIi i

>',

w X AI~ J~

>0

-J

> -z

5a

Id .

_ _ _ _~~ t .4.z

1 0 jy y ' i i i Ii i i F i i i i iiii I I I a l f l v l 11 it 1 1 1 11 1 it 1 1 11 i-0 ii Ai A

NS"-S CVFSYSTEM RFSPCNSE

1 5.25 .m

6 iVLg 5.40

C)t

Short

2.10 b 3,50 um

I1 2 3 4.5

WAPVELENGTH (MICRONS)

Figure 2,1-1. CVF brightness calibration (NS-6-4)

134

LL

r LLO

- 7- A -:

Cf)

0 01

- ,- 3

HS-3B Cli

SYSTEM RESPONSE

I-

40 D

2---

2 - 12.5 22 .3

long '

-MASK Lhort MASK

3.9 6.8

"5 15 23 25>! J _ " 2T, 1 . NI"-%'"S

Figure 3.1-1 CVF Brightness Caiibration CHS-3B-1)

136

SPECTRA

I I I

spectra signal

chopper signal

CHOPPED SIGNAL

I _ _.

V~~~ phase change

FILTERED SIGNAL

II I 'Nr

PI 4

CHOPPER FREQUENCY

T I

Fi-,r o 3.3-I Princi, of optical ' cho'v' c. " 0

showing phase -v whe.. )urcc r .

CHOPPER FIT

B= 194.0954C= -144.2404FREQ 106.555

a

4 4-- 4

0 J

_ 0.00 0.02 0.04 0.06 0.08 0.10TIME SEC FROM 294.05

F,,ur, 3.3-2. Example of least squares fit (sinusoid" to chopper signal(solid squares, for spectral scan 1210. Also shown are

frequency and constants determined as a result of the bestfit.

138

cc'

zU

0 1 I NfS SNI -

ccr

CE.

p.. * cm

r -4

jO Lj

NdZS~ I II bg 31?C

140-

CD 0 0

ecli

C-

07

In CD

Oz L)

Lj.J 0

60zC Cn

CD CD

M CD 0

uo. CD L

07 -

N08J -/8W

14 1-'

1 .00

7 4-

0.10-

0 25 s0 75 100 ~t

Frequency -Hz

Figure 3.3-5. Frequency response of s.moothingr filter usedafter decimating data base to a samplingfrequency of 205 Hz EXCEDE informationbadwidth is 50 Hz.

142

- - - - - --r ,.t r

o 0

0.d 00

r S r

. . . . .. . .. .. .I , , . , I ..... .... cm

It -

- Er

0r %

IIIOIu

>C-

CD inN . -