chris swank, bob golub - oak ridge national laboratoryΒ Β· 2012. 12. 31.Β Β· [1] c. swank and r....

40
Chris Swank, Bob Golub

Upload: others

Post on 23-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Chris Swank, Bob Golub

  • Geometric phase from magnetic gradients

    Gradients natural to coil geometry

    Magnetic impurities in cell walls, cell coatings, magnetic dust on coatings.

    SQUID pick up leads distort d-c fields

  • Geometry Rectangular cell Assume Spin Starts on the Left wall.

    ( )y y yB L B(0)y yB B

    β€’y rotation from small field in y β€’x rotation from vΓ—E field.

    Slower Rotation about y

    Faster Rotation about y

    0 1/ wall x

    z

    y

    y

    z

    z

    y

    x

    yB

    v E

    yB

    E

  • yB

    E

    Spin Starts

    Phase after one length

    Spin Reflects and Travels Back

    Phase after 1 round trip.

    z

    0.0005

    0.001

    0.0015

    0.002

    0.0025

    30

    210

    60

    240

    90

    270

    120

    300

    150

    330

    180 0

    x

    y spin

    0.001

    0.002

    0.003

    0.004

    0.005

    30

    210

    60

    240

    90

    270

    120

    300

    150

    330

    180 0

    yB

    E

  • Derived from 2nd order density matrix formalism Spectrum of the field-position correlation function

    field-position correlation function

    field-position volume average

  • When the diffusion equation does not accurately describe the correlation function

    Accurate description of correlation function necessary.

    Simulation of the continuous time random walk

    OR

    Exact solution of the continuous time random walk.

    Ξ»~L

  • Solution to the telegraphers equations satisfies isotropic Boltzmann transport in 1D

    [1] C. Swank and R. Golub. arXiv:1012.4006 2010.

    Valid for Diffusion Valid for Ballistic motion

    𝑝(π‘₯, 𝑑|π‘₯0, 0) =1

    𝐿 π‘’βˆ’π‘‘2πœπ‘ cosπ‘›πœ‹π‘₯0πΏβˆ’π‘–π‘ π‘›π‘‘

    2πœπ‘+𝑖

    𝑠𝑛sinπ‘›πœ‹π‘₯0πΏβˆ’π‘–π‘ π‘›π‘‘

    2πœπ‘

    ∞

    𝑛=βˆ’βˆž

    𝑠𝑛 = 1 βˆ’ 4πœ”π‘›2πœπ‘2, β€‰β€‰β€‰β€‰β€‰πœ”π‘› =π‘›πœ‹π‘£

    𝐿

    𝐻π‘₯(𝑑)π‘₯(𝑑 + 𝜏) = 𝑑π‘₯0𝐺π‘₯π‘₯0𝑝(π‘₯0, 𝑑) π‘₯𝑝(π‘₯, 𝑑 + 𝜏|π‘₯0, 𝑑)𝑑π‘₯𝐿

    0

    𝐿

    0

    𝐻π‘₯π‘₯(πœ”) =2𝐺π‘₯𝑣2πœπ‘3

    πœ‹2

    1

    12+ 𝑛2

    πœ”2 βˆ’ πœ”π‘›2 2πœπ‘4 +πœ”2

    πœπ‘2

    ∞

    𝑛=βˆ’βˆž

    http://arxiv.org/abs/1012.4006

  • Spectrum for the infinite region continuous time random walk in 2D

    The infinite region 3D spectrum

    3D

    2D

  • Therefore the solution to the restricted conditional probability is defined from

    And 3D (will be used.)

  • Define the spectrum.

    Written in terms of the 3D conditional probability.

    One can take advantage of the periodicity of the variables via Fourier series, Simplifying the integration.

  • The integration is a sum over the Fourier components of the field.

    The position autocorrelation function spectrum in different dimensions

  • X=10.2 cm Y=40 cm

  • FID Measured Relaxation is Given by:

    Where the Pulse loss is calculated from

    The error propagates like

    1

    𝑇1π‘”π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘›π‘‘=𝛾2𝐺𝑧2

    2

    2𝑆π‘₯π‘₯(πœ”0) + 𝑆𝑦𝑦(πœ”0

  • Assume vΒ² distribution

    165 neV maximum energy

    Completely ballistic motion

    xwallv

    π‘£πœπ‘¦β€‰π‘€π‘Žπ‘™π‘™

    Specular wall reflections?

  • 𝑏 = 1 π‘›π‘š

    𝑀 = .1 ΞΌπ‘š

    From AFM setting

    [M. Brown, R. Golub, J. M. Pendelbury. Vacuum Vol. 25 num 2, 1974] [V. K. Ignatovich, JINR, p4-7055, 1973] [A Steyerl, Z Physic, 254, 1972]

    𝑃(βŠ₯) ∼ 1%

  • For (small) magnetic impurities the correlation time is small

    π›Ώπœ” = βˆ’π›Ύ2𝐸

    𝑐𝐡π‘₯π‘₯ + 𝐡𝑦𝑦

    β‰ˆ 0

  • M= 0.2 𝑇

  • https://nedm.bu.edu/twiki/pub/NEDM/Collab021011Agenda/dipole_detection.pdf

    40nG sensitivity is required to detect micron sized

    magnetic saturated particles. (Byung Kyu Park)

    Cs NMOR magnetometer for testing.

    https://nedm.bu.edu/twiki/pub/NEDM/Collab021011Agenda/dipole_detection.pdf

  • 3mm OD round wire

    (Bob Golub)

  • Thin film deposition

  • Deuterium Source at NCSU PULSTAR reactor

    Correlation function studies via helium scintillation from

    Critical Dressing Studies.

    Effects of magnetic impurities/gradients

  • C. Crawford Magnetic Mirror

  • Geometric phase from magnetic gradients

    Gradients natural to coil geometry

    β–ͺ PULSTAR Experiment

    Magnetic impurities in cell walls, cell coatings, magnetic dust on coatings.

    β–ͺ Cs NMOR cells prior to fabrication

  • 3D FEM

    D(0.4)=977 cmΒ²/s D(0.45)=428 cmΒ²/s