chlorophyll unesco

Upload: okapi2011

Post on 01-Jun-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Chlorophyll UNESCO

    1/66

  • 8/9/2019 Chlorophyll UNESCO

    2/66

    M o n o g r a p h s  on océanographie methodology 1

    DR   F C .

      VOHRA

    School of

      Biological

      Screes

    University

      ot

      M a l a y a

    fcuala  L u m p « «

  • 8/9/2019 Chlorophyll UNESCO

    3/66

    Determinat ion

    o f

     photosynthetic

     p ig m en ts

     in

    sea-water

    Unesco

  • 8/9/2019 Chlorophyll UNESCO

    4/66

    First

     published

      in

     1966

     by the

     United Nations

    Educational,

     Scientific

     and Cultural Organization

    Place

      de Fontenoy,  Paris -

     7

    e

    2 n d  impression 1969

    Printed

     by

     Imprimerie  Rolland-Paris

    ©

      Unesco 1966

    Printed  in  France

    N S .

      68/XVIII. la/A

  • 8/9/2019 Chlorophyll UNESCO

    5/66

    Preface

    Publication by  U n e s c o of the  series of

      m o n o g r a p h s

      on o c éa no g ra phi e

      m e t h o d o

    logy follows a  r e c o m m e n d a t i o n

      ad op te d

     by the Scientific C o m m i tt ee  on O c e a n ic

    Research   ( S C O R )  at its  m e e t i ng  in Halifax in 1963.

    A s a

     forerunner

     to the series, U n e s c o

     u n d e r to o k

     to

     distribute

     to

      océanographie

    laboratories of the  world copies of the second

      a n d

     revised

     edition

     of  A

      M a n u a l  of

    Sea-Water  Analysis

      by Strickland and

      P a r s o n s  (Fisheries  R e se ar ch  B o a r d

      of

    C a n a d a ,

      1964).

      T h e

      series

     w a s

     finally

     established

     by the compilation a n d  printing

    of  the present  v o l u m e  (No. 1).  Further  v o l u m e s  in the series will be published

    following

      results

     of the current

     revision

     of various

      o c éa no g ra phi e

      m e t h o d s

     being

    undertaken  by several  institutions and international bodies.

    T h e

      present  v o l u m e

      treats

      various

      a p p r o a c h e s

      and  r e c o m m e n d a ti o n s  for

    standardization of

     determinations

     of photosynthetic  pigments ,

      especially

     chloro

    phyll in  phyto p l a nkto n .

    Standardization

      of  m e t h o d s  in  biological

      o c e a n o g r a p h y

      entails

      m o r e

     diffi

    culty

      than  in other fields. Regional

     differences

      in  a b u n d a n c e and composition of

    m a r i n e

      c o m m u n i t i e s

      call for quite a considerable

      variety

     of  m e t h o d s  w h e n  one

    is

      mea s ur ing

     standing crop and specific composition as well as productivity.  T h e

    m e a s u r i n g

     of

      p r i m ar y

     productivity

      directly

     or

     t h r o u g h

      estimation of the

      a m o u n t

    of  photosynthetic  pigments  in the  p h y t o p l a n k t o n  of a given  b o d y  of  water  is

    o n e  of the  p r i m a r y  objectives of biological  o c ea n o g r a p h y .

      P r o b l e m s

      of standar

    dization do not  appear  to be  i ns urm o unta b l e  in  this respect, and standardized

    m e t h o d s

      for  c o m p a r i s o n over a  wide  r an ge  in space a n d season are of particular

    interest.

      If data for regional charts

      were

      c o m p a r a b l e ,

      such

     charts, with regional

    distribution

     of photosynthetic

      p igm e n ts  a n d  their

     seasonal variation in the

      oce an ,

    w o u l d

      be  m o s t  helpful for the

      m a p p i n g

      of the

      w or l d

      ocean's productive areas.

    T h e

      storage

      a n d  retrieval

     system for biological data, which  is so urgently  needed

    for further progress in our attempts to  unde rs ta nd  the

      oce an  a n d

      its production

    of  living resources,

      mig ht

     also

     suitably

     include photosynthetic

      p i g m e n t

     data.

    T h e  International  C o unc i l  for the Exploration of the Sea  ( IC E S ) and the

    U n i t ed

     States National A c a d e m y of Science's  C o m m i t t e e  on

     O c e a n o g ra p h y

      h a v e

    established

      small

      gr ou p s

      of experts to consider standardization of  m e t h o d s  for

    determination  of photosynthetic

      p igm e n ts

      in sea-water. In  D e c e m b e r  1963, the

    Scientific

      C o m m i tt ee

      on

     O ce an ic R e se arch  a n d

      U n e s c o

     established

     a Joint

      G r o u p

  • 8/9/2019 Chlorophyll UNESCO

    6/66

    of Experts on Determination of Photosynthetic  Pigm e n ts  ( S C O R

      W o r k i n g

    G r o u p   N o .

      17).

     This latter

     g r o u p  m e t

     in Paris

     f r om

     4 to 6

     J u n e  1964 under

     Profes

    sor J.

      Krey' s

      ch air m an sh ip

     and their report is given in the first part of the present

    v o l u m e .

      A very important

      b a c k g r o u n d

      d o c u m e n t

      for the

      J u n e

      meeting was a

    survey  of

      existing  m e t h o d s  prepared

      by Dr.

      T .

      R .

      P a rs o ns

      (at  that  time with

    U n e s c o )  in his capacity as  c o n v e n e r  of the  I C E S  W o r k i n g

      G r o u p

      on  M e t h o d s

    for

      M e a s u r i n g

      Photosynthetic  Pigm e n ts in  S e a - W a t e r .  D r .  P a r s o n s ' survey  m a k e s

    u p

      the second part of this

     v o l u m e .

      T w o   Australian  papers , published in the

     third

    a n d

      fourth parts of the

      v o l u m e ,

      provide additional information on the  m e t h o d s

    a n d

      their

     limits.

      A l t h o u g h  written  after  the  g r o u p ' s  m e e t i ng ,  these  two  papers

    relate closely

     to its  deliberations.

    T h e

      need

      for intercomparability of

      m e t h o d s

      in  o c e a n o g r a p h y  has given

    strong

      i m pe tus

      to

      critical

     analysis,

      i m p r o v e m e n t

      of accuracy,

     simplification

      of

    m e t h o d s

      in use and invention of

      n e w  m e t h o d s .

      In

      r e c o m m e n d i n g

      that

      U n e s c o

    publish

      these

      four contributions,

      S C O R

      was convinced that

     this

      w o u l d

      help to

    achieve  world-wide  intercomparison of data, provide a reference for

      intercali-

    bration of other old

      a n d  n e w  m e t h o d s ,

      e n cou r age  further methodological studies,

    a n d

      give  guidance to those  laboratories  and

     scientists  w h o

      w o r k  in

      this  field.

    A n y

      scientific

      opinions expressed in  these  papers  are, naturally, those of

    individual

      scientists

     or  g r o u p s  of scientists, and should not be interpreted as the

    views  of

      U n e s c o .

  • 8/9/2019 Chlorophyll UNESCO

    7/66

    Contents

    1

      D etermination of

     photosynthetic

      R eport of

      S C O R - U n e sc o

      W o r k i n g

    pigments

      G r o u p

      17 9 

    2

      T h e  determination of

     photosynthetic

      T . R . Parsons 19 

    pigments  in sea-water. A survey of

    methods

    3   Comparison  of the techniques used in  G . F . H u m p h r e y  a n d  M .   W o o t t o n  3 7 

    the determination of phytoplankton

    pigments

    4

      Extraction

      of

     chlorophyll

      a

    from Nitzschia closterium  by grinding

    J.

     D . K err

      a n d

     D .

     V . S u bb a R a o

      65 

  • 8/9/2019 Chlorophyll UNESCO

    8/66

    1

    Determination

      of photosynthetic

      pigments

    Report

     of  S C O R - U n e sc o

      W o r k i n g

      G r o u p

     17

    which m et from  4 to 6 June  1964,

    Unesco , Paris

    A   m i m e o g r a p h e d issue

     of

     this

     report has

    been

     published in  S ydney, Australia,

    N o v e m b e r

     1964

  • 8/9/2019 Chlorophyll UNESCO

    9/66

    I

      Introduction

    In  D e c e m b e r  1963  S C O R

      a n d

      U n e s c o established a  w o r k i n g g r o u p with the fol

    lowing  te r m s

      of reference: to

      c o m m e n t

      on experimental results on the following

    topics

     a n d

     to  prepare a tentative standard  m e t h o d for

      p i g m e n t

     determination.

    1.

      T y p e  of

     filter

     for  r e m o v i n g

      p h y t o p l a n k to n

      f r om sea-water.

    2 .

      Suction pressure to be applied to filter.

    3 .

     Necessity for grinding or sonification.

    4 .  Extraction

     solvent.

    5. Addition of basic material, e.g.

      M g C C > 3

     or dimethylaniline.

    6.

      Desiccation of

     filters

     before extraction.

    7.

      S t e a m

      treatment of filters.

    8 . Storage of filters.

    9 .

      D u r a t i o n

     of extraction.

    10 .  R e m o v a l  of extracted residue by centrifugation or filtration.

    11.  Precision of chlorophyll  a determination at 1.0, 0.1 and 0.01  y.g

     levels

    u n d e r

      laboratory conditions.

    12.

     Extinction coefficients of chlorophylls  a, b  a n d  c.

    M e m b e r s

     of the

      w o r k i n g g r o u p

      were:

    Professor J. K r e y (Kiel),

      c h a i rm a n

     ;  Professor  I c h i m u r a

      ( T o k y o )

     ;

    Professor  K .  B a n s e  (Seattle);  D r .  S. W .  Jeffrey

      ( Sy d ney ) ;

    D r .  G .  F. H u m p h r e y  ( S y d n e y ) ;  D r .  L .  P.

     V e r n on

      ( O h i o ) .

    In subsequent

     discussion the extra

     topics listed b e l o w  were

      added.

    13 . Optical

      m e an s

      of  m e a s u r e m e n t :  b an d -w i d t h ,  interference

     filters,

     spectro

    p h o t o m e t e r  type.

    14.  B l a n k s ,  corrections, equations.

    15.

      C o m p u t e r

     cards for

      p i g m e n t

     data.

    16. Direct determination without

     solution

     processes.

    17.  Fluorescent  m e t h o d s .

    18 .  C h r o m a t o g r a p h i c  m e t h o d s .

    M o s t of these

      topics

     were considered in  c o rre s po nde nc e

      a n d

     at the Paris  meeting .

    Statements

     on s o m e of these

     topics

     ( n u m b e r ed

     differently)

     are given in

     this

     report.

    11

  • 8/9/2019 Chlorophyll UNESCO

    10/66

    D e te r mi n a t i o n of

     photosynthetic  pi g m e nts

      in

      sea-water

    Dr.

    Dr.

    Dr.

    Dr.

    Dr.

    G .

    S.

    T .

    L .

    C .

    F.

    W

    R .

    P.

    S.

    H u m p h r e y

      (Sydney)

     ;

    Jeffrey

     (Sydney)

     ;

    Parsons (Unesco,

    V e r n o n  (Ohio);

    Paris);

    Yentsch

      ( W o o d s

      H o l e ) .

    In addition to the results of

     s o m e special experiments m a d e

     in the laboratories

    of

     those present at the meeting,

     three

      m a i n documents  w e r e

      available:

    Parsons,

      T . R .   1963.  T h e

     determination

     of

     photosynthetic

     pigments

     in sea-water. A

    survey

      of

      m e t h o d s

      ( m i m e o

      N S / 8 9 J

      issued by

      U n e s c o ) .

    (This survey

      w a s

     carried out on behalf of  I C E S

      Plankton

      C o m m i t t e e . )

    H u m p h r e y ,  G .   F . ;

      W o o t t o n ,  M .

      1964 .

     Report

     to

      S C O R - U n e s c o  W o r k i n g G r o u p

    17

     :

     Determination

      of

     photosynthetic

     pigments ( m i m e o

      17 60 issued

      b y C S I R O ) .

    (These  experiments

      w e r e d o n e  for  W o r k i n g

      G r o u p

      17. A  paper  on these

    results  will  soon  be submitted for publication.)

    Ceccaldi,  H .

      J.;  Berland,  Brigitte

      1964 .

      Extractions par

     quelques

     solvants  orga

    niques à diverses concentrations, des pigments photosynthétiques de cultures

    d e

      la

      diatomée  Phaeodactylum  tricornutum (Bohlin),

      après

      rétention

      sur

    filtres

     Millipore, ou après

     lyophilisation directe  ( m i m e o

      issued by Station

    Marine  d ' E n d o u m e , Marseille).

    Invitations to attend the Paris

     meeting  w e r e

     issued to international organizations

    and to national committees for oceanic research. Present at the

     meeting  w e r e :

    Professor J.  K r e y

     (Kiel),

     chairman

     ;

    Professor

      K .  B a n s e (Seattle),

    rapporteur;

    D r .

      H .

      J. Ceccaldi (Marseille);

    Dr.  V . K. Hansen

    (IOBC,

     Ernakulam);

    II

      Report

    Preamble

    Chlorophyll a, b and c concentrations in sea-water samples are used to estimate

    the  biomass and the photosynthetic capacity of phytoplankton.  Ratios between

    various plant

     pigments

     possibly

     indicate

     the

     taxonomic

     composition

     or the

     physio

    logical state

     of the

      c o m m u n i ty .

    T h e

      following  recommendations  aim at obtaining precise  measurements of

    chlorophyll

      a, b

     and

     c

     in

      phytoplankton.

      Th e accuracy of such  measurements

    cannot

     yet be stated since the recovery of  k n o w n

      a m o u n t s

     of chlorophyll added

    to the plankton cannot  be studied. Freeze-drying

     (lyophilisation)

     might

      be

     the

    m o s t

     accurate

      w a y

     to prepare

     phytoplankton

     material for pigment measurements,

    and  should

     be

     used

     in the

     future

     to evaluate modifications of pigment

     extraction

    m e t h o d s .

    1

      Type

      of

     filters

     for  removing phytoplankton from

      sea-water

    Evidence  w a s

      presented

      showing that

     neither

     paper  n o r

     glass-fibre

     filters

     retain

    all  particulate  matter containing chlorophyll,  although

      their  efficiency

      can

     be

    raised  b y

     covering

     t h e m with  p o w d e r e d  M g C O s .

      It

     is

      rcoeaoaended

     that:

    Phytoplankton

      be  concentrated  by

     filtering

     sea-water

      samples

      t h r o u g h

    12

  • 8/9/2019 Chlorophyll UNESCO

    11/66

    Report of

      S C O R - U n e s c o

      Working  Group 17

    cellulose  or

      cellulose-derivative

      m e m b r a n e filters of 0 .45 to 0 .65 ( i pore size.

    Before filtration, th e

     filters

     should be covered with

     sufficient finely

     p o w d e r e d

    M g C O s   to

      give

      a b o u t 1 0  m g / c m

    2

      o f

     filter

     area.  W h e n   th e

     filters specified

    a b o v e  clog  with the  particular  w ate r sam p l e s u se d , p ap e r filters N o . 57 5 o f

    Schleicher  S chüll or equivalent,  covered with  M g C O s   as

      a b o v e ,  m a y

      b e

    u s e d .  I n a n y case, p or e

     sizes

     o f

     filters

     should be recorded

      w h e n

      reporting the

    data .

    2  Suction pressure  to be applied  to filter

    W e   k n o w

      of no evidence

      that

      h i g h

      suction

      pressure during

     filtration affects

    chlorophyll

      retention

      a n d detection.  Since  nitration  is not  materially  hastened

    with the

      r e c o m m e n d e d filters

     b y e m p l o y i n g full

      v a c u u m ,

      it is

      r e c o m m e n d e d  that:

    A

      suction

      o f 2 / 3 a t m b e u s e d .

    3

      Necessity

     fo r

      grinding

      or

     sonification

    D a t a w e r e

      presented showing

     that

      grinding the

     filters

     con ta in in g p h y top l an k ton

    increases  th e  a m o u n t  of p ig m en t recovered a n d reduces the t im e n eeded for

    extraction.  It is  r e c o m m e n d e d

      that:

    Filters w ith th e p l an k ton b e g r o u n d  for 1 m i n w i th a pestle

     rotating

     at ab ou t

    50 0

      r . p . m .  in the presence of the

      solvent.

    It is  further  r e c o m m e n d ed

      that:

    Since i t appears

     that ultrasonic

     tre atm e n t o f ab o u t 1

     M h z

     (1,000 kc ) reduces

    th e t im e n e e d e d for p igm e n t

     extraction

      f r o m m a r i n e

      plankton , exper iments

    s h o u l d b e  m a d e  to  c o m p a r e  th e effectiveness  of grinding with

      that

      o f ultra

    sonic

      destruction

      o f  cells  in regard to recovery of  plant  p i g m e n t s

      f r o m

    natural p lankton .

    4

      Extraction solvent

    A l t h o u g h

      m e t h a n o l  is very  efficient  in

      extracting

      p i g m e n t  from  p h y t o p l a n k t o n ,

    9 0  p er cent  acetone is favoured at present because (a)

      p ur e

     chlorophyll  a  is  m o r e

    stable

      in it; (b) the

      chlorophyll

      absorpt ion

      b a n d

      in the red is sharper in it; and

    (c) the  extinction coefficient  is higher in it. Therefore it is

      r e c o m m e n d ed  that:

    N i n e t y p e r

     cent

      acetone be used for

      extraction.  M e t h a n o l

      as a

      solvent

      for

    p l a n k t o n p i g m e n t s s h o u l d b e  further  investigated  in view of its

      superiority

    over acetone with

      Scenedesmus,

      a fresh-water green alga difficult  to

      extract.

    5  Addition o f basic material,  e.g.  M g C O a   or dimethylaniline  du r i n g

     extraction

    A d d i t i o n o f   M g C O s  as  r e c o m m e n d e d  u n d e r

     Section

      1 p r o m o t es

     effective

     filtration

    a n d

      facilitates  centrifugation.  Its presence m ig h t prevent  acidification  of the

    extract

     a n d th u s

     retard

      th e for m at ion o f

      p h e o p h y t in .

    Solutions

      o f

     dimethylaniline  b e c o m e b r o w n u p o n

      stan d in g an d m igh t cau se

    a n  erroneously high extinction.  T h e  usefulness  o f  adding dimethylaniline  or other

    basic  substances to the

      solvent,

      to prevent

      possible  b r e a k d o w n

      o f plant p i g m e n t s ,

    s h o u l d b e

     investigated.

    13

  • 8/9/2019 Chlorophyll UNESCO

    12/66

    D e te r mi n a t i o n of photosynthetic  pi g m e nts in sea-water

    6

      Desiccation of filters before

     extraction

    W e

      k n o w  of no evidence s h o w i n g  that desiccation of

     filters

     s necessary before

    extraction  of  p i g m e n t .  H o w e v e r ,  since salt

     affects

     the solubility of

     Millipore

      filters,

    filters

      sh ou l d

     be

     s u c k e d

     as dry as possible

     after

     filtration.

    7

      Steam

      treatment of filters

    T h e r e is no evidence that ste a m  treatment is  necessary to stabilize p i g m e n ts . Since

    heat facilitates isomerization and oxidation of chlorophyll, the over-all  effect of

    steam   treatment  m i g h t  be  h a r m f u l .  If it is

      used,

      its  effect  should  be investigated

    a n d  the results stated.

    8

      Storage of

     filters

    T h e r e  are  data  s h o w i n g  that dry

     filters

     containing  M g C O s  can be stored in the

    dark at +

      I

    o

      C

      or

     less

     for

      tw o

      m o n t h s  w ith ou t

     significant

     loss of p i g m e n t (the loss

    is

      p r o b a b l y less  t h a n  15 per  cent).

      H igh e s t results are

     obtained  by

     extracting  d a m p ,

    u n stor e d  filters.

    E x p e r i m e n ts

     on very  long-term (several  m o n t h s ) storage of filters are desired.

    9

      Durat ion  of extraction

    U n d e r

      Section 3, grinding of

      pl a nkt o n

      before extraction is

      r e c o m m e n d e d .

     Te n

    minutes

      of  s ubs equent  standing  m i g h t  suffice  for  o p t i m a l  extraction. Since dif

    ferent types of

     p h y t o p l a n k t o n

      m i g h t react differently

      a n d

      conditions of

      mechanical

    destruction  m i g h t be critical, it is

      r e c o m m e n d e d

      that:

    T h e  investigator  sh ou l d

      m a k e

      checks  as to the length of extraction required

    after grinding the  p lan k t on .

    A l t h o u g h extracts  ca n  be stored for several

      h o ur s

     at  r o o m

      temperature

     in the  dark

    w ith ou t

     significant

     loss of p i g m e n t ,  it is  r e c o m m e n d e d  that

     :

    Extracts  should not be stored overnight.

    10   Removal  of extract residue by

      centrifugation

      or

     filtration

    O n   the basis of  evidence  available it is  r e c o m m e n d e d  that :

    Extracts

      sh ou l d  be cleared by centrifugation;

      p r o b a b l y

      10

     m i n u t es

      at

      4 , 0 0 0

    to  5 , 0 0 0

     g

      in a

      s w i n g-ou t

      centrifuge are  needed.

    11  Precision of chlorophyll a

      determination

      at 1.0, 0.1 and 0.01 ng  levels

      under

    laboratory conditions

    W e

      are not in a position to specify the precision of chlorophyll

     determ inations

    o n  m a r i n e

      p h y t o p l a n k t o n

      u n d e r  laboratory conditions. It is unlikely that the

    precision  with  the present  procedure

      will

     be  such  that differences of 0.05 ¡xg/1

    will be significant  w h e n  c o m p a r i n g oceanic

     sa m p l es ,

      i.e. in the

     r a n g e

     0 to 1 (j.g/1.

    T h i s  holds also  for chlorophyll  b  and c.  It is  r e c o m m e n d e d  that precision be

    determined  by each  analyst.

    14

  • 8/9/2019 Chlorophyll UNESCO

    13/66

    Report of  S C O R - U n es co Working

     G r o up

     17

    12

      Optical  means  of  measurement

      —

     b a n d  width

     —

     interference filters

     —

     spectro

    photometer

     type

    It is

      r e c o m m e n d e d

      that:

    M e a s u r e m e n t s

      be

      m a d e

      with

      spectrophotometers

      with a

      b a n d

      width

      of at

    m o s t  2 to 3 m(i, allowing

     extinctions

     to be read to ±  0 . 0 0 1  units.

      T h e  w a v e

    length  setting should be calibrated frequently.

    If only chlorophyll

     a

     is  determined,

      instruments

     with interference

     filters

     with not

    m o r e

      tha n

      5 to 10

     m ¡x  half-band  width  m a y

      be

      us e d;  w o r k i n g extinction

     values

    m u s t

      be

      determined

      for

      each filter

     with

      k n o w n  a m o u n t s

      of chlorophyll

      a.

    13   Extinction

     coefficients

     of chlorophyll

     a, b

     and

     c

    T h e

      only available values of

     extinction

     coefficients  for

     crystalline

     chlorophyll

      a

    in 90 per cent acetone  were  f r om  preparations w h o s e  coefficients  at the  p e a k  in

    the

      red in ether  were  at

      least

      10 per cent  l o w e r

      tha n

      the highest values in the

    literature;  these higher values

      were

      not

      b a s e d

      on crystalline

      p i g m e n t .

      It was

    decided

      to use the  m e a n

      (99.87

      1/g

      c m )

      of the three highest available values

    in ether

      w h i c h

      are

      ba s e d

      on

     different  m e t h o d s

      of

      determining

      the

      p i g m e n t

      c o n

    centration, 102.1 (Zscheile and  C o m a r ,  1941) ,  100.9 ( Sm i th  and Benitez, 1955)

    a n d  9 6 . 6 (Strain et al.,  1963 ) .

      T h e

      value  99.8 7  1/g  c m   (ether) was used  to deter

    m i n e  the purity (86.81 per cent) of the

     crystals

      us ed  by Jeffrey  (unpublished)  in

    obtaining

      absorption curves in ether and 90 per cent acetone.

      F r o m

      this

      w o r k

    of

      Jeffrey the values given

      b e l o w

      for 90 per cent acetone

      w e r e

      calculated. It is

    r e c o m m e n d e d  that:

    A n   extinction

     coefficient  of  89 . 31  1/g  c m   at the  m a x i m u m   of

      extinction

      at

    663

      m u   is  used  for chlorophyll

     a

     in 90 per cent acetone.

    T h e  w o r k i n g g r o u p

     will ask

     D r .  H .

      Strain to

      pre pa re

     an

     extinction curve

     of chlo

    rophyll  a

      in acetone  f r o m  the

      ultra-violet  t h r o u g h

      the

      visible  range  into

      the

    infra-red.

    T o

      prepare trichromatic

     equations,

     the

     extinction

     coefficients of

     chlorophyll

     a

    in

     9 0

      per

     cent

     acetone

     at

     645

      a n d

      6 3 0

     m(i

     ha v e

      b e e n

      calculated as

      19.32

      a n d

     14.40

    1/g  c m .

    T h e

      data

     for chlorophyll

     b were

     treated

     similarly,

     a  m e a n value of

      6 0 . 2

     1/g

      c m

    (ether) being  used  to  s h o w  that Jeffrey's  crystals  were  9 4 . 1 9  per cent  p u r e .  It is

    r e c o m m e n d e d  that:

    A n   extinction

      coefficient  of 52.14 1/g c m at the  m a x i m u m   of

      extinction

    at 645

      m | j .

      is  us ed  for chlorophyll

      b

     in 90 per cent acetone.

    T o  prepare

      trichromatic equations, the

      extinction

      coefficients  of chlorophyll

      b

    in 90 per cent acetone at 663 a n d  630 my. h a v e  b e e n  calculated as  9.57  a n d 15.22

    1/g

      c m .

    T h e  extinction

     coefficient  for chlorophyll

      c

      at the  p e a k  in the red in 90 per

    cent acetone has

      been  determined

      by Jeffrey  ( 1 9 6 3 ) .  It is  r e c o m m e n d e d  that:

    A n   extinction

     coefficient  of

      19.44

      1/g

      c m

      at the

      m a x i m u m

      of

      extinction

      at

    6 3 0  mp.

     is

      used

      for chlorophyll c.

    T o  prepare  trichromatic equations, the

      extinction

      coefficients  of chlorophyll  c

    15

  • 8/9/2019 Chlorophyll UNESCO

    14/66

    Determination of

     photosynthetic pigments

     in sea-water

    in 90 per

     cent

     acetone at 663 and 645

      m ¡ ¿   h a v e

     been

     calculated

     as 0.47 and 3.48

    1/g  c m .

    1 4

      Blanks,

      correction

     and

     equations

    O n   the  basis of the  available  evidence it is

      r e c o m m e n d e d

      that:

    Bl an k s be  9 0   per

     cent

     acetone.  R e a d i n g s should be taken at  7 5 0   my. to correct

    for

      turbidity of

     the

      extract

      and

      m u s t

      not exceed 0.005 per centimetre

     of

    light  path. This reading should be subtracted

      from  the

     readings

      at

     663,

    6 4 5   and 630  m | x .

    T h e  following  trichromatic equations are

      r e c o m m e n d e d :

    chl.

     a =

      11.64

     eses

     — 2.16 ee45

     +

      0.10

     eeso

    chl.

     b =

      — 3.94 e

    66

    3

     +  2 0 . 9 7

      e

    64

    5 — 3.66 e

    6

    3o

    chl.

     c

     =

     — 5.53

     ee63

     — 14.81 ee45

     +

      54.22

     e«so

    w h e r e

     chl.

      a {b

     or

     c) is

     in (¿g/ml.

    eees,

     ee45 and

     eeso

     are the

     extinctions

    (optical

     densities, absorbances)/cm

     of

     light  path

     at

     663, 645, and 630  m ^

      after

    subtracting

      the 750  m u ,  reading.

    T h e

      equations  ha v e  been checked

     on

     mixtures

     of

     solutions  with

      k n o w n

    a m o u n t s

      of the

      three

     chlorophylls.

     The

     results

     are

      s h o w n  b e l o w :

    Found

    (ug/ml)

    6.03

    0.79

    0.41

    Chlorophyll

    Added

    (ug/ml)

    5.87

    0.74

    0.37

    a

    Recovery

    C A

    103

    106

    110

    Found

    (l¿g/ml)

    1.08

    0.53

    0.30

    Chlorophyll 6

    Added

    (lig/ml)

    0.79

    0.49

    0.24

    Recovery

    Ill

    108

    125

    Found

    (Ug/ml)

    4.87

    1.22

    0.75

    Chlorophyll

    Added

    (lig/ml)

    5.07

    1.27

    0.64

    c

    Recovery

    (

    96

    97

    117

    REFERENCES

    J E F F R E Y ,  S.  W .  1963. Purification  and

      properties

     of chlorophyll

     c

     from  Sargassum  flavicans.

    Biochem. J.,

      86 : 313-18.

    S M I T H ,   H .

      C ;

      B E N T T E Z ,

      A .

      1955.

     In:

    K .

      Paech and

      M .

      Tracey

      (eds.).

     Modern

      methods of

     plant

    analysis, vol. 4 , p. 142-96. Heidelberg,

     Springer

     Verlag.

    S T R A I N , H . H . ;   T H O M A S M a r y   R . ;   K A T Z J. J. 1963. Spectral absorption properties of ordinary

    and fully deuteriated

     chlorophylls

     a and

      b. Biochim. Biophys. Acta,

      75 :  306-11.

    Z S C H E I L E ,   F. P. Jr.;

    C O M A R

    C . L .  1941. Influence of preparative

     procedure

      on the purity of

    chlorophyll components as  s h o w n  by absorption spectra.

     Bot. Gaz.,

     102 : 463-81.

    Ill

      Tentative standard  m e t h o d  for determination

    of

      chlorophylls

     in samples of sea-water

    Concentration of

      s a mpl e

    U s e  a  v o lu m e

    1

     of

     sea-water

      w hic h  contains

      about

     1 jig

     chlorophyll

      a. Filter

    2

    thro ug h a

     filter

    3

     covered by a layer of  M g C O s .

    4

    16

  • 8/9/2019 Chlorophyll UNESCO

    15/66

    Report

     of

      S C O R - U n e s c o

      W o rkin g Gro up 1 7

    Storage

    T h e

     filter c a n b e stored  in the  d a r k  o v er silica gel at 1 °C or  less  for two  m o n t h s

    but  it is  preferable  to  extract  th e  d a m p filter  m m e di at el y a n d m a k e  th e  spectro-

    p h o t o met r i c  m e a s u r e m e n t  without delay.

    Extraction

    F o ld th e filter (plankton  inside) a n d

     place

     it in a sm all (5 to 15 m l) glass, pestle-

    type,  h o m o g e n i z e r .

      A d d

      2 to 3 m l 9 0 pe r cent  a cet o n e .

      G r i n d

      1 m i n u t e at a b o u t

    500 r .p .m .  Transfer to a

     centrifuge

      t u b e a n d  w a s h  th e  pestle  a n d h o m o g e n i z e r

    2  or 3 t im es with 90 per cent  acetone so

     that

     the  total v o lu m e  is 5 to 10 m l .

      K e e p

    10

      m i n in th e  dark  at  r o o m  temperature. Centri fuge

    5

      f or 1 0 m i n a t 4 ,0 00 to

    5 , 0 0 0

      g.

    8

      Carefully

      p o u r

      into

     a gr adu ated tube so the

     precipitate

      is not disturbed

    and  if necessary  dilute

    7

      to a convenient  v o l u m e .

    8

    Measurement

    U s e

      a spectroph otom eter with a  b an d -w i d t h  o f 3  m   y. o r

     less,

      a n d cells with a light-

    pa th  of 4 to 10 c m . *  R e a d  the

      extinction

     (optical density,  a b s o r b a n c e ) a t 7 5 0 ,

    1 0

    663,  6 4 5 , a n d 6 3 0  m¡A

     against

      a 9 0 p e r cent  a cet o n e b la n k .

    Calculation

    Subtract the

     extinction

      at 750 m jx  f r o m  the

     extinctions

      at 6 6 3 , 6 4 5 , a n d 6 3 0 m ( x.

    D ivide the a nsw ers b y the

     light-path

      in centimetres of the cells. If

      these

     corrected

    extinctions are eses,  ee45, an d ee3o the concentrations  o f

     chlorophylls

      in the 9 0 per

    cent  acetone  extract  as (¿g/ml are given by the  following  equat ions:

    chl.  a  = 1 1 .6 4

     eees

     — 2.16 ee45 + 0.1 0 eeso

    chl.  b  = — 3 . 9 4

     eses

     +  2 0 . 9 7  e

    6 4

    5 — 3 . 6 6 e

    6

    3 0

    chl.  c =  — 5.53 eee3 — 14.81 ee45 +  54.22  eeao

    If the

     values

      are

     multiplied

     b y the

      v o l u m e

      of the

     extract

     in

      millilitres

     a n d

     divided

    by  th e  v o l u m e  of the sea-water sa m p le in litres, the concentration of the chloro

    phylls

      in the sea-water is obtained as (xg/1 (=

      m g / m

    3

    ) .

    N O T E S

    1 T h e

      a m o u n t  o f chlorophyll  a  should be less than 10 ug , o therwise a second extraction with 9 0 per

     cent

      acetone

    m i g h t  be necessary.  W i t h  o c e a n w a ter a b o u t 4 to 3 litres o f s a m p l e shou ld be used; with

     coastal

      and bay  waters,

    s o m e t i m e s

      one-tenth of

      this  a m o u n t

      is

      sufficient.

    2

      U s e n o  m o r e  than two-thirds of  full  v a c u u m .

    3

      Satisfactory

     filters

     nclude

     p aper (Albet),

      cellulose

     (Celia

     ' g ro b ' ) ,

      a n d

     cellulose

     ester

      (0.43 to 0 .63 n pore

     size);

    th e filter sh o u ld b e 30 to 60

      m m

     diam eter. If

      these filters

     clog  with inorganic  detritus, use

     Schleicher

      Schull

    373.

    4 A d d

      a b o u t 1 0

     m g

      M g C O a / c m

    s

     filter surface, either a s a  p o w d e r  or as a suspension in

     filtered

     sea-water.

    3

      A sw i n g -o u t centrifuge gives better separation  than an angle  centrifuge.

    6

      If a stoppered, graduated centrifuge  tube is used, the extract  c a n b e

      m a d e

      u p to  v o l u m e  and the supernatant

    carefully

      p o u r e d

      or pipetted into  the spectrophotom eter cell.

    7   If turbid, try to  clear  b y a ddi n g a

     little

     100 p e r

     cent

      acetone or

     distilled

      water or by

     re-centrifuging.

    8  T h i s  de p e n ds  on the spectrophotometer

     cell

      u se d .  T he  v o l u m e  sh o u ld b e re ad to 0 .1 m l .

    9  Dilute

      with 90 per

     cent

      acetone if the  extinction  is bigger than 0.8.

    10

      If the 730 (i reading is

      greater

      than  0 . 0 0 5 / c m  light-path,  reduce the  turbidity  as in

      N o t e

      7 .

    17

  • 8/9/2019 Chlorophyll UNESCO

    16/66

    Det er m i nat i on  of

     photosynthetic

      p i g me n ts in

     sea-water

    I V

      Important subjects not discussed fully

    at the working group

    Accuracy

      of

      the equations

    1. Permissible

     ratios

     of pigments.

    2 . Permissible range of pigment  concentration.

    3 . Accuracy of the equations using pure chlorophyll solutions.

    W o r k

      on these is being carried out by  H u m p h r e y  and Jeffrey.

    Chromatographic methods

    F o r  the

     determination

     of the

     exact  pigment  composition

      of the sample, use

    should be  m a d e  of available chromatographic methods for pigment  separations:

    (a) small

      columns

      (Parsons);

     (b)

     thin

      layer

      methods

      ( M a d g w i c k ) ;

      (c)

     paper

    (Jeffrey).

    These

      methods

      have been  adapted  to

     pigment  analyses

     in

     cultures  where

    large quantities

     of

     pigments

     are

     present, and

     to

     sea-water samples  with

      m u c h

    lower  concentrations

      of pigments.

      For

     quantitative

      analyses, pigments

      m a y

     be

    eluted and analysed with an

      8 0

     per cent recovery.

    A   paper chromatographic  m e t h o d  has

     been

     used at sea; it is an adaptation

    of

      the

      'chromatobox'.

      Samples can be run

     even

     in the  m o s t violent

     storm,

     since

    it is not necessary to

     have

     a stable horizontal  base for the  development of the

    solvent

     front.

    Determination  of

     carotenoids

    Things

     which

     need to

     be done

     :

    1.  Search for a

      g o o d  simple  m e t h o d

      of

     separating chlorophylls

     as a group

    from

      carotenoids

     as a  group  in marine  phytoplankton,  so that a

      simple

    measure

      of

     total

     carotenoids

      m a y

      be

      m a d e .

    2 .  Accurate extinction values

     for

     fucoxanthin and peridinin.

    3 . A

     general extinction value

     for total

     carotenoids

     in marine

     algae.

    Units

    A  plea is

     m a d e

     to oceanographers to use  w a y s of expressing and evaluating data

    that

      have

      meaning  to the plant physiologist,  so that important data obtained

    with cultures

      m a y have

     application

      w h e n

      trying to explain

      a n d

      understand results

    of

     field experiments.  For example, to express photosynthetic rates in the ocean

    as

      [x moles  or  ¡x litres  C 0 2 / m g  chlorophyll a +  c, instead  of counts  C

    1 4

    / m

    3

    ,

    which has no meaning in w o r k  with cultures.

    Computer   cards

    Consideration of this  should  be left to  W o r k in g G r o u p  18: Biological  Data.

    S u c h consideration  w o u l d be helped if a  m e m b e r  of

    W G

      17 participated in  W G 1 8 .

    Direct determination

    Fluorescent

      methods

    18

  • 8/9/2019 Chlorophyll UNESCO

    17/66

    T h e

      determination of

    photosynthetic  pigments in sea-water

    A   survey

     of

     methods

    T . R . Parsons

    Office of

     Oceanography,

    Unesco, place de Fontenoy,

    Paris-7

    1

    ', France

    Present address:

    Pacific

     Océanographie

      Group,

    Nanaimo,  B . C . ,

    Canada

    Manuscript

      received 2 Ma y  1963

  • 8/9/2019 Chlorophyll UNESCO

    18/66

    Preface

    Acknowledgement

    A t

      the

      1962 meeting

      of the  International

    Counci l  for the Exploration of the Sea ( I C E S ) ,

    the Plan kton

     C o m m i t t ee

      appointed convenors

    for four small

     working g ro u p s

     to study current

    m e t h o d s  in biological

      oceanography.

      O n e   of

    these  g r o u p s  wa s to stu dy current m e t h o d s  for

    the

      measurement

      of  photosynthetic pigments

    in sea-water.

     A s c o n v e n o r

     for this

     g r o u p

     I

     have

    considered

      that

      s o m e  preparation  is  neces

    sary  in  order  to  provide  a  working group

    with material with   which  to  discuss  the

    problem

      a n d

     eventually

      decide on

     a

      standard

    procedure.  I anticipated,  therefore, asking per

    sons  to  take part  in a  meeting of a  working

    group

      on this subject

      s o m e

     time

     in

      1964

      w hen

    the preparatory  w o r k  h a d

      been

      completed.

    In organizing  the first part  of the  pre

    paratory   w ork  as  described  in the following

    presentation

      I

      a m

     grateful  to

      those persons

    w h o

      returned  the

      U n e s c o

      questionnaire

    N S / 9 / 1 1 4 / 8 9

      and to the  persons  whose

    c o m m e n t s  on the

     o rganization

      of this  work

    are reported

      in  A p p e n d i x  II.  Pending  the

    acceptance  of this  report  by the  I C E S ,  D r .

    G .

      F .  H u m p h r e y ,

      C S I R O ,

      Cronulla,  Australia,

    has

      agreed

      to

      supervise

      the

      type

      of

      experi

    ments  env isaged -in the report.

    T h e  author wishes

      to  acknowledge  the assis

    tance of   D r .   W .  S .

     W o o s te r in

     the preparation

    o f

      this

      report.

  • 8/9/2019 Chlorophyll UNESCO

    19/66

    I  Introduction

    U n d e r the

     resolution

     adopted at the

     fiftieth

     statutory meeting of the

      I C E S

      ( C . Res.

    1962/4(8)), the  w o r k  on the determination of  photosynthetic  pigments in sea-

    water  to be

     carried

     out  m a y  be

      s u m m a r i z e d

      as  follows:

    1.

     A review of  m e t h o d s normally used.

    2.  An experimental examination of various procedural  steps,

      leading

      to

    a n eventual  r e c o m m e n d a t i o n  for a standard procedure for pigment

     analysis.

    T h e  following  discussion

      pertains

     principally  to the requirements in 1

      a b o v e .

    In addition, h o w e v e r ,

     a n

     attempt has been m a d e  to identify the  p r o b l e m s requiring

    further

     experimental

      w o r k .

      Further, it has been

     a s s u m e d

     that

     the

      m o s t  immed ia t e

    need  is for a standard  m e t h o d  to be used by oceanographers  m a k i n g

      synoptic

    surveys of  large areas of  o c e a n . In order to  obtain c o m p a r a b l e results

     from

     ships

    operating in different areas or at  different times it is necessary to have a

     reliable

    universal

     procedure. Particular attention has been given,  therefore, to procedures

    which  are usable aboard ship, although they

      m a y

     not be so

     satisfactory

     for

      s o m e

    purpo s e s as  m o r e  sophisticated

      m e th o d s  w h i c h

      could be

      e m p l o y e d ,

      for

      e xam p le ,

    in a laboratory concerned with  studies on phytoplankton cultures.

    II  M e t h o d s  currently  e m p l o y e d  for the determination of

    photosynthetic  pigments in sea-water

    It is general experience

      that

     no

      analytical  m e th o d ,

      h o w e v e r  well  described,  will

    b e

      performed in

      exactly

     the  s a m e  w a y  by different analysts.

     Differences

      in  tech

    nique  w h i c h  appear to be small

      m a y

      lead  to  significant differences  in accuracy

    a n d  precision of the  m e a s u r e m e n t .  T h u s  the  following

     presentation places

      m o r e

    e m p h a s i s  on

      evaluating

     differences  in  individual techniques than on a review of

    the techniques themselves.

    T w o   basic  techniques have been  e m p l o y e d ;  extractive  spectrophotometry

    a n d  extractivefluorimetry.

     E x a m p l e s

      of the former technique as used by

      m ar i n e

    scientists are given by  K r e y  (1939), and Richards with  T h o m p s o n  (1952), and

    of the

      latter

     technique, by Kalle (1951), and Yentsch and

      M e n z el

     (1963). In ad

    dition, reviews on these and other techniques have been

     written

     (e.g.  K r e y , 1958;

    21

  • 8/9/2019 Chlorophyll UNESCO

    20/66

    Determination  of photosynthetic pi gmen ts in sea-water

    Strickland,  1960) .  Since  m o s t  workers  e m p l o y  the spectrophotometric  m e t h o d ,

    c o m m e n t

      on the fluorometric

     m e t h o d

      is  limited to the

      last

     portion of this report.

    I nfo rm a t i o n  on present  m e t h o d o l o g y  was obtained by sending forty-four

    questionnaires to representative

      m a ri n e

      scientists

     in twelve countries. A

    s u m m a r y

    o f

      s o m e

      thirty replies

     is given in  A p p e n di x  I. For the  m o s t part the various diffe

    rences

      in technique represent individual modifications of one or two  m e t h o d s

    —thus

      it  s e e m s  desirable to

      establish

      which  steps  in the

      procedure

      are

      m o s t

    sensitive to  s uc h  modifications.

    It should be noted that in

      s o m e

      cases the only  p i g m e n t  being

      determined

    is chlorophyll  a.  Since the reported precision  a n d   accuracy for the determination

    o f

      other p i g m e n t s  is  lower

      t h a n

      that for chlorophyll

     a

     ( R i cha rds with  T h o m p s o n ,

    1 9 5 3 ;

      Strickland and  P a r s o n s ,

      1960),

      and

      because

      chlorophyll

      a

      is the  m o s t

    widely

      used

      p i g m e n t

      for the estimation of standing

      crop

      or photosynthetic rate,

    the following  section  is devoted to a consideration of  p r o b l e m s

      relating

      to the

    establishment of a standard

      m e t h o d

      for chlorophyll

      a

      alone (at the end of the

    section,

      there is a suggestion for the determination of other  pigments ) .

    T h e

      s u m m a r y  of data  w h i c h  has  b e e n  presented in

      A p p e n d i x

      I  s h o w s  the

    a m o u n t

      of variation  which  has  been  introduced

     into

      the stepwise

      procedure

      for

    chlorophyll  a analysis. N o indication  is given of

      which

      individual

      variations

     are

    m o s t  c o m m o n l y

      e m p l o y e d

      and this  has

      been

      omitted for two reasons. Firstly

    the  m o s t

      p o p u l a r

      use of a piece of

      a ppa ra t us

      or  pro c ed ure  tends to be biased

    t ow ar d s  the country to  w h i c h  the

      largest

     proportion of questionnaires was sent.

    Secondly

     it

      wo u l d s e e m

     incorrect in trying to establish the

      m o s t

     reliable

     procedure

    for chlorophyll

      a

     analysis to  d r a w  attention to a piece of

      a ppa ra t us

     or procedure

    m o s t  c o m m o n l y  used  w h e n  it is the  p u r p o s e  of  this

     investigation

      to obtain an

    objective appraisal of only

      w h a t

      is best.

    Ill A

     suggested

     procedure for the  establishment of a

    standard method for the  determination of chlorophyll a

    in

      sea-water

     '

    A

      A P P A R A T U S

    1   Spectrophotometers and

      colorimeters

    Since  m a x i m u m

      sensitivity of the determination requires

      m a x i m u m   extinction

     of

    light per unit weight of  c o m p o u n d  to be analysed, the use of

     optical

      e q u i p m e n t

    with   b r o a d  w a v e - b a n d  widths ,  wide

     slit

     widths or  wave- length  settings

      which

    a r e   difficult

      to adjust, should be discouraged.

     S o m e

      types of  spectrophotometers

    m e e t  these

      requirements

      to a greater or

      lesser  degree,

      but colorimeters are of

    limited

     use in waters of low

     p i g m e n t

     concentration

      because

      the

      b r o a d  b a n d - p a ss

    o f  the filter eads to  red uc ed

      sensitivity.

      It is  im p or tan t  that the  wave- length

    setting of  s pe c tro pho to m e te rs  be routinely

      c hec ked

      (see suggestions of

      N A S C O

    report).

    2

      In

      order

      to  p e r m i t  intercomparison of  different spectrophotometers,

    1 T h e   following

      discussion  is

      ke ye d

      to the information reported in  A p p e n d i x  I.

    2

      Excerpts from  the

      N A S C O

      report and the

      S C O R - U n e s co

     intercalibration test are given at the

      e n d

      of

     this

     presen

    tation.

    22

  • 8/9/2019 Chlorophyll UNESCO

    21/66

    A   survey of

      m e t h o d s

    th e  optical

      density  at a

     given  wave- length should

      be

     standardized

      in

      te r m s

     of

    th e  resolution  of the instrument and the slit w id th th r o u gh w h ich th e

     light

     passes.

    2  Light

     path

     of

     cuvettes

    T h e  sp e ctr op h otom e te r e m p l o y e d sh ou ld

      be

     capable

      of

      a c c o m m o d a t in g

      several

    different

     sizes of cuvettes.

      W h e n

      p i g m e n t values  are  k n o w n  to  vary over  a w id e

    ra ng e ,

     light

      p ath

      lengths of  1

      c m a n d 10 c m ,  a n d possibly  a n intermediate  length,

    are required

      for obtaining

     optical

     density

      readings

      in the

     m o st accurate

      portion

    of the

      scale.

    3

      Type  of filter for  removing plankton from

      sea-water

    It

      m a y  b e seen

     in

      A p p e n d ix

      I

     that

     at

     present there

     is a

     tenfold  r a n g e

     in

      the pore

    size of

     filters e m p l o y e d

     for

     r e m o v i n g p l a n k to n

      f r o m

      sea-water.

      In addition, the

    material  of

      w h i c h

      the filters are

     c o m p o s e d

      (not stated  in

      every

      case)

      m a y

      be

    variably  soluble

     in the

     extraction  solvent  a n d ,

     in

      s o m e  cases,  m a y  h a v e

     a dele

    terious

     effect

      on th e

      light

     transmission  of the  solvent.  T h e typ e

     of

     filter e m p l o y e d

    for r e m o v i n g p h y t o p l a n k to n   f r o m  sea-water should  be standardized  therefore,

    a n d

      in

     addition  m a d e  readily available titTäTI o c e a n o g r a p h e r s

     (cf.  r e c o m m e n d a ti o n

    of the  S C O R - U n e s c o  intercalibration test a n d  N A S C O   report) .

    1

    4

      A pproxima te

      suction

     pressure

    T h e

      use of

      high

      suction

      pressure

      has

     b e e n f o u n d

      to

      d a m a g e  p h y t o p l a n k t o n

    during

      the

     course

      offiltration.A

      m a x i m u m

      suction

      pressure

      to be

     applied

     to

    p l a n k t o n filters should

      be

     determ ined  experimentally, taking  into  a c c o u n t

     the

    r e c o m m e n d a t i o n s

      of the  S C O R - U n e s c o  intercalibration  tests  a n d  the  N A S C O

    report.

    5

      Bonification  a n d

     grinding

      apparatus

    T h e r e  is

      s o m e  evid en ce (N e lson , 1 9 6 0 ; L a e ssae an d  H a n s en ,  1 9 6 1 ) that

      the use

    o f  sonification  ap p ar atu s  is  necessary  for the  com p l e te  extraction  of p i g m e n t

    f r o m   s o m e

      species

     of

     p h y t o p l a n k t o n .

      In addition it is

      n ote d

      in  A p p e n d ix  I that

    s o m e

      p e r son s

      e m p l o y

      grinding

      ap p ar atu s

      w h i c h ,

      if

      f o u n d

      as effective as sonifi

    cation,

      should

      be

     given  prior

      r e c o m m e n d a t i o n  on the

     basis

     of its

      lower  cost.

    A   t h o r o u g h

      testing of the effect of

      sonification  a n d  grinding  a p p a r a t u s

      on a

    series

     of

     natural  p h y t op la n k to n b l o o m s a n d

     a

      standard  m i n i m u m  treatment

      (for

    sonification

      ap p ar atu s ,

      in

      te r m s

      of period  of

      treatm ent, frequency a n d energy

    o f

      sonifier)

      should be determined

      if

      f o u n d

      necessary.

    B  R E A G E N T S

    1

      Solvent with which cells  a re

     extracted

    S o m e  evidence

      exists

      (L ae ssoe an d  H a n s e n ,  1 9 6 1 ;

     see

     also

      N A S C O   report)

     that

    m e t h a n o l

      is a

      better

      solvent  for the extraction  of  m a r i n e p h y t o p l a n k t o n t h a n

    1

      Excerpts

     from the

      N A S C O   report

     and the  S C O R - U n es co

     intercalibration test

     are

     given

      at the end

     of

     this

     presen

    tation.

    23

  • 8/9/2019 Chlorophyll UNESCO

    22/66

    Determination   of ph otosynthetic pigments

     in

      sea-water

    9 0 per cent acetone.

     A

     c o m p a r i so n

     of

     these  two

     solvents

      should be

      m a d e

      on

     a

    series

     of

     natural  p h y t o p l a n k t o n

      b l o o m s

      and the  best solvent  r e c o m m e n d e d

     for

    routine use.

    2  Addition of basic material during extraction

    F o r  preventing the formation of

     p h e o - p ig m e n t s

      M g C O s  is

     often

      a d d e d  during

    extraction. This should be c o m p a r e d  for effectiveness with dimethylaniline  w h i c h

    h as  b e e n

      reported  to be a

     better

      additive  for this  p u r p o s e  (Vallentyne, 1955;

    Patterson and P a r s o n s ,  1963) .

    C  P R O C E D U R E

    F o r

      discussions

     of v o l u m e  of sea-water filtered (C.l) and chlorophyll  c o n c e n

    trations

      encountered  ( C . 2 ) ,  see discussion  on

     precision

     of chlorophyll  a deter

    mi n a t i o n s  (E.4)

     bel o w .

    3

      Desiccation

     of

     filters

     prior to

      extraction

    T h e

      n e e d  for

     desiccation

      prior  to

     extraction

      should  be

     d e m o n str ated

      experi

    mentally. A standard m i n i m u m  treatment should be f o u n d

     if

     desiccation

     is

      s h o w n

    to be necessary.

    4

      Steam

      treatment  of filters

    S t e a m

     treatment of

      s a m p l es

     has

     b e e n

      e m p l o y e d

     by

     a

     n u m b e r  of scientists, presu

    m a b l y

      to

     prevent formation of chlorophyllide

      f r om

      chlorophyll by the action

     of

    chlorophyllase. Since chlorophyllide  a has

      been

      reported

     to

     h a v e  the  s a m e  spec

    t r u m  and extinction

     coefficients

     as chlorophyll a (Holt  a n d  J acob s ,

      1954) ,

     the use

    of  ste am  w o u l d  a p p e a r

      to

     be an unnecessary step.  The effect

      if

     any should

      be

    d e m on str ate d experimentally on natural populations  a n d on Skeletonema costatum

    w h i c h

      has  been  reported

     to

     h a v e

      a

     very high chlorophyllase

      activity

      (Patterson

    a n d

      P a r s o n s ,

      1963;

      Jeffrey,

      1963) .

    5  Storage of

     filtered

     sample

    T o g e t h e r

      with  C . 3 ,  covering

      the

     desiccation

      of  s a m p l es ,  the

     preservation

      of

    p l a n k t o n  s a m pl e s  for

     different  periods

     of

     time should be tested  experimentally.

    A

      m a x i m u m

      storage period  of  three  m o n t h s  w o u l d s e e m ,  if  experimentally

    possible,

     sufficient

     for  scientists on ships

      w h i c h

     do not  h a v e

     facilities

     for carrying

    out all parts of the

      procedure

      on  b oar d .

    6

      Type

      of

     container

     used to

     carry

     out

      extraction

    T h e

      facility of

     extraction, centrifugation  and

      v o l u m e

      adjustment

     in

     glass-stop

    pered

     graduated

      centrifuge

      tubes should be

      c o m p a r e d

      with other apparatus and

    a  standard  extraction  vessel  r e c o m m e n d e d .  This consideration probably

      has

    little effect

      on the

     precision

     and accuracy of the  m e t h o d  but  for

     laboratories

    starting

     p i g m e n t  w o r k

      it is

     useful

     to

     k n o w  the best pieces of  a ppa ra tus

     to

      order.

    24

  • 8/9/2019 Chlorophyll UNESCO

    23/66

    A   survey

     o f  methods

    7

      Length of extraction  time

    In c o m b i n a t io n  with items  C . 9  a n d  A . 5, covering the use

     of

     apparatus  e m p l o y e d

    to rupture

     cells,

     the  m i n i m u m  period of time required for an extraction, and the

    benefit

     if

      any

     of

     hot extractions,  should be

     f o u n d

      experimentally with  the use

    of natural populations. It is possible

      that

     a long

      extraction

      period without  the

    use

     of a ppa ra tus

     to

     rupture

     cells

     m a y  be f o u n d  equivalent

     to a

     very short extrac

    tion with such apparatus .  Equivalent extraction procedures should be  r e c o m m e n

    ded

     as alternative

     p rocedures .

    8

      Volume  for  extraction solvent

    Discussed

      u n d e r

      E . 4 ,  Precision.

    9  Methods  employed to rupture cells

    Discussed

      u n d e r

      C . 7

      and  A . 5 .

    10   Removal  of extracted material

    T h e

      use

     of

     filters

     c o m p a r e d  with

      centrifugation

     for the

     r em o v a l

      of

      extracted

    material should be

     e x a m i n e d

     with

     attention

     being paid to the

     facility

     of operation

    a n d  the

      efficiency

     of r em o v a l

     of

     extracted material.

    11

      B l a n k

      employed

     of

     0

     optical

     density

    T h e choice of a suitable  'blank' for 0 optical density should be

      m a d e

      experiment

    ally

     bet w een

     the use of the extraction

     solvent

     a n d the use of the

     solvent

     plus filter

    material and any additive

     to

     prevent peophytin formation.

    12

      W a ve - l e ng t h s

     at

     which

     measu rements  are  made

    A s  K r e y  observed in 1958 (loc. cit.), the determination of chlorophyll a by tri

    c hro m a t i c  spectrophotometry

     is

      only  slightly  affected by chlorophylls

      b

     and

     c.

    If

     all

     three chlorophylls are present

     in

     equal

      a m o u n t s

      the

      m a x i m u m

      error

     in

     the

    estimation of chlorophyll

     a

     by

     a

     single 66S my. reading

     in

     90 per cent acetone

     is

    a b o u t

      10 per cent. Since

      m o s t

     of this error

     is

     contributed by chlorophyll b which

    is generally absent  from  oceanic sea-water  sam p l e s ,

      the

     actual error in  m a k i n g

    a

      chlorophyll

     a

     estimation uncorrected

     for

     other chlorophylls

      is

     not  m o r e  than

    a b o u t

      1

     per cent. For chlorophyll  a  determinations alone, therefore,

      a

     single

    optical

      density  reading  m i g h t

      be

     r e c o m m e n d ed

      for the  m e a s u r e m e n t  of the

    p i g m e n t .

     A correction for turbidity should be introduced by  m a k i n g a  m e a sur e

    m e n t

     at

     750 mji and the establishment

     of a

     standard p r oce d u r e

     for a

      750

     my.

    correction

      should

     be

     considered along the

      Un e s

      r e c o m m e n d e d

      by

     the

      N A S C O

    report and the  S C O R - U n e s c o  intercalibration

     test.

    13

      Extraction performed

    Be cau se of the limited time and space

     available

     o n

     s o m e

      ships for the completion

    of all parts of the

      procedure

     on b o a r d it is necessary

     that

     the

     final procedure

     be

    25

  • 8/9/2019 Chlorophyll UNESCO

    24/66

    D e t e r m i n a t i o n o f  photosynthetic  p i g m e n t s in s e a - w a te r

    written  to  give  a n

      indication

      o f  wh e re  it is

      possible

      to  break  o ff a n d co m p let e

    th e

      analysis

      on shore. It is  r e c o m m e n d e d  that  this  should be considered  un d e r

    C . 5

      a n d

      C . 3 .

    D

      S T A N D A R D I Z A T I O N

    1  Extinction  coefficient  employed

      fo r

      chlorophyll  a

    T h e  choice  of a

      suitable

     extinction coefficient  for  chlorophyll

      a

      should be  m a d e

    f r o m   th e  large  n u m b e r  o f values  quoted in the  literature.  F o r  this  purpose it is

    r e c o m m e n d e d  that

      the value quoted by  S m i t h  and Benitez (1955)  which  agrees

    with the value of  Zscheile  a n d  C o m a r   (1941) of 10 2 1/g c m in

      ethyl  ether

      at

    662

      m

      (j. should be given

      p r i m a r y

      consideration.

      This value is suggested by

      S m i t h

    a n d  Benitez (1955) for use as a standard

     since

     in a n extractive  spectrophotometric

    procedure , chlorophyll

      a

      is not dried in the extracted

     state.

      Ch lo ro p h y l l

      a

      w h i c h

    has

      been dried in the extracted state w a s fo u n d b y Zscheile  a n d  C o m a r   (1941) to

    give  a lower specific  absorption  coefficient  than undried chlorophyll . T h e  specific

    absorption   coefficient  in 90 per  cent  acetone corresponding to the value quoted

    a b o v e

      in

      ethyl  ether

      h a s b e e n f o u n d b y

      V e r n o n

      (1960) to b e 91 1/g c m at

    664

      m [ i .

    1

    Fol lowing the  choice  o f a n extinction coefficient  for  chlorophyll

      a

      it should

    n o t b e

      r e c o m m e n d e d

      that

      a

      c o m m e r c i a l

      preparation of

      chlorophyll

      a

      b e us ed

    as a   p r i m ar y  standard.  S o m e

      c o m m e r c i a l

      preparation of

      chlorophyll

      a ,

      or of a

    m o r e  stable  derivative

      s u c h a s p h e o p h y t i n , m i g h t b e

      r e c o m m e n d e d ,

      h o w e v e r ,

    as a secondary standard with   which  to  c o m p a r e

      optical

     densities  as described

    a b o v e  ( A . l ) .

    2  Extinction

      coefficients

      employed

      fo r

      other

     pigments

     estimated

    Discussed

      un d e r

      F . l .

    E  C A L C U L A T I O N S O F R E S U L T S

    1

      Turbidity

     correction

    Discussed

      u n d e r  C . 1 2 .

    2  Correction  made

      fo r

      other chlorophylls

      a t  wave-length f or

      chlorophyll  a

    Discussed  un d e r  C . 1 2 .

    3

      Correction

     fo r

      degradation products

      of

      chlorophyll

      a

    It  w o u l d  be very

      useful

      to  h a v e

      s o m e

      m e a s u r e  of the

      a m o u n t

      of degradation

    p ro d u cts o f chlorophyll

      a

      present in

      m a r i n e

      s a m p l es

     since

     if  these  are appreciable

    1 If a decision is

      m a d e

     t o e m p l o y m e t h a n o l as a n

     extraction

     solvent th e  specific absorption coefficient  o f chloro

    phyll

      a  i n m e th a n o l will  have to be determined in a

      m a n n e r

      similar to  that e m p l o y e d b y  V e m o n  (1960) for the

    determination of the  specific

     absorption

     coefficient  of  chlorophyll  a  in 90 per cent  acetone.

    26

  • 8/9/2019 Chlorophyll UNESCO

    25/66

    • \

      survey

      of

      m e t h o d s

    they will cause an erroneous  over-estimation  of chlorophyll  a. At present there

    a ppea rs

     to be no reliable quantitative  m e t h o d  for su ch an estimation  to be incor

    po ra te d

      in a

     standard

     pro c ed ure  for

     chlorophyll a analysis

     of

     sea-water  samples .

    T h e

      introduction

      of

      s o m e

      technique

     at a later

     date

      w o u l d  s e e m

      advisable.

    4

      Precision of the chlorophyll

     a

      determination

    T h e   precision  of chlorophyll  a determinations is considered here in conjunction

    with

      the  a m o u n t  of sea-water

     filtered

     (C.l),  the  ra ng e  of  chlorophyll

      a

     values

    encountered  ( C . 2 ) ,  the  v o l u m e of the extraction solvent

      ( C . 8 )

      and the light  path

    length  of cuvettes  ( A . 2 ) .

    T h e

      precisions  of chlorophyll  a determinations  quoted  in  A p p e n d i x  I  (E.4)

    have been

      taken

     as

     representative

      of a

      n u m b e r

      of

     values

      q u ote d

      by scientists,

    often

      in the  a b s e n c e  of

     an explanation

      of  w h a t  the

     precision  q u ote d

      actually

    m e a n s  in statistical

      terms.

      A  m o r e

      detailed

      description  of precision  in relation

    to

      v o l u m e

      of  sea-water filtered, ight  path  of cuvettes and

     v o l u m e

      of  extraction

    solvent

      m a y

      be considered as  follows.

    T h e

      precision

      for

     chlorophyll  a determination

     at the 5 [/.g level

      reported

      by

    Strickland and P a r s o n s  (1960) is  approximate ly  ± 5 per cent.

    1

      E m p l o y i n g the

    s a m e  extinction coefficient for chlorophyll

     a

     that  w a s   used  in those

      calculations,

    the

      optical

      density reading for this

      a m o u n t

      of

      p i g m e n t

      in 10 ml of  extract and

    using  a  10  c m   cuvette  is  a b o u t  0.33. If it  m a y  be

     a s s u m e d

      that  optical  density

    readings

      d o w n

      to

      a b o u t

      0.1 can

     be

     m e a s u red

      without introducing

     a

     decrease

     in

    the precision  to

      m o r e

      than  a b o u t  ±  10 per cent, then the lower limit of

     p i gm e n t

    detection  at this  order of precision,  empl o y ing the extinction coefficient  suggested

    in D.l  a b o v e , is  a b o u t  1

      m g / m

    3

      if

      1

     litre of sea-water  is filtered for extraction of

    the residue with 10 ml of solvent and for an extinction

      read

     in a 10  c m   cuvette.

    T h e   lower  limit of

     p i g m e n t  detection

      at the order  of

     precision

      stated

      a b o v e

     can

    b e   decreased to 0.1  m g / m

    3

      if  10 litres of sea-water are filtered. It is probable , there

    fore, that  this  value represents  the  lower  limit of chlorophyll

      a

      values

      which

    s h o uld  be quoted  by persons using  extractive  s pe c tro pho to m e try  in  order  that

    all results

      m a y

      be

     considered

     to be

     c o m p a r a b l e,

      that

      is,

      obtained with

     the

      s a m e

    order of

     precision. Modifications  such as reducing

     the

     extraction solvent

      to 5

      ml

    (but maintaining a 10  c m   light  p a t h ) or filtering 20 litres of sea-water will almost

    certainly introduce

     difficulties

      a n d

      unnecessary

     delays in p ro c edure for an increase

    in the limit of detection

      b y

      a factor of only

      t w o .

      It

      m i g h t

     be considered advisable,

    therefore, that chlorophyll  a values  of less  t h a n  0.1  m g / m

    3

      should  be  reported

    a s  <

      0.1

      m g / m

    3

      and

     not as s o m e

      actual value  w h i c h  w o u l d  not be  c o m p a r a b l e

    with  p i g m e n t

      values  determined

      a b o v e

      the limit of detection  quoted here.  In the

    table

      b e low

      the l ow e r limit of chlorophyll

     a

     detection,

      a s s u m i n g

      a b o u t  ±  10 per

    cent precision,

      is

      s h o w n

      for

     various

      c o m b i n a t i o n s

      of

     cell

      lengths and

      v o l u m e s

    o f  sea-water

     filtered

     a n d

      a s s u m i n g

      10  m l  of  solvent are

      e m p l o y e d

      for the extrac

    tion.  T h e

      table e m p h a s i z es  the

     necessity

     for the use of 10

      c m

      light  paths  for the

    determination of p i g m e n ts in the range 0.1  to 1.0  m g / m

    3

    .

    1   See page  5 of reference  quoted for an explanation  of this  value.

    27

  • 8/9/2019 Chlorophyll UNESCO

    26/66

  • 8/9/2019 Chlorophyll UNESCO

    27/66

    A

      survey of  m ethod s

    matic spectrophotometry  on oceanic  p igm e n t sam p l e s .  W h e n   one considers

     that

    the  optical  density at 630

     m\x

     contributed by 1 ¡¿g of chlorophyll

      c

      in 10 ml of

    solvent  using a 10  c m   cuvette is only  a b o u t  0 . 0 2 ,  and

     that

     the value of 1 ¡xg is

    pro ba bl y

      m o r e

      tha n

     will

      no rm a l l y

      be encountered in

      ocean

      areas, it is not sur

    prising

      that

      s o m e  extraordinary ratios  of chlorophyll c : a  h a v e  been  reported

    for  o c e a n  areas (see

      accu m u l ate d

     values by

     H u m p h r ey ,

      1 9 6 1 ,  for  ex a mpl e ) w hic h

    h a v e  not  been  confirmed  with determination on  p h y t o p la n k t o n  cultures. In the

    case of estimations of plant carotenoids, the

      difficulty

      recognized by  Ri c ha rds

    with

      T h o m p s o n

      (1952) of  having  to

      e m p l o y

      specific  p i g m e n t

      unit

     is complicated

    further by the reported use of a different specific  p i g m e n t

      unit  ( A p p e n d i x

      I,

      D . 2 )

    tha n  that

     originally  defined by R ic ha rds with

      T h o m p s o n

     (1952).

    I n   view of these  c o m m e n t s  it

      w ou ld s e e m

      that

     the

     best

      w a y   to obtain  m a x i

    m u m   benefit

      from

      the extracted

      p igm e n ts ,

      other

      t h a n

      for the estimation of chlo

    rophyll

     a,

     is to read extinctions at certain other wa ve-lengths but not to interpret

    these readings in term s of absolute

      a m o u n t s

      o f

      p i g m e n t .

      T h u s it  m i g h t  b e   suggested

    that

     in addition to a reading at 750  m p i  and 665  m \ > .  for the estimation of

     chloro

    phyll a, additional  optical densities should be read at 645, 630, 510 and 480 m\i.

    Further  readings

     that

      m a y   eventually

      p r o v e

      useful  w o u l d  be at 505 and 430  m ( x .

    Ratios of  optical  densities  at these  wave-lengths

      m a y   p r o v e

      m o r e  reliable  than

    attempting to

      determine

     the pigments involved in absolute  a m o u n t s . M e a s u r e m e n t

    o f

      the entire

     spectrum

     of p i g m e n t extracts  w o u l d present the

     best solution

     to  this

    p r o b l e m  but

     this

     is  undo ubte dl y  too tedious for routine  analysis  except

      w h e n

      a

    specific

      study is being

      m a d e .

    2

      Use of a fluorometric echnique for

      routine

     determinations

    F o r   s o m e  oceanic areas (e.g. Sargasso Sea) the

      limit

     of chlorophyll  a

     detection

    o f 0 .1 m g / m

    3

      (discussed

      a b o v e  ( E . 4 )  )  m a y   not be low

     e n o u g h

      to  s h o w  seasonal

    a n d   spatial differences  in chlorophyll  a  concentrations. In  such areas it  m a y   be

    advisable to

      e m p l o y

      a fluorometric technique,  since  the  limit  of

      detection

      for

    fluorometric m e a s u r e m e n t s  of chlorophyll  a  is at

      least

      ten times lower

      t h a n

      for

    spectrophotometric

      m e a s u r e m e n t s .

      Fluorometric estimations include all chloro

    phylls,  h o w e v e r ,  and thus the  results are not strictly  c o m p a r a b l e  to a spectro

    p h o t o met r i c

      technique for chlorophyll  a  alone.

      O n

      the other  h a n d  it has  been

    fou n d  possible

      to give  s o m e  m e as u r e  of the proportion of chlorophyll

      degrada

    tion

     products by fluorimetry (Yentsch and  M e n z e l,  1963) w h i c h  has

      b e e n  m e n

    tioned here (E.3) as one  desideratum  for the spectrophotometric determination

    o f  chlorophyll

      a.

    I n

      reaching a conclusion on the

     desirability

     of using a

     fluorometric

     technique

    for chlorophyll determinations on a routine

     basis

     it

      m a y

      be advisable to suggest

    that

     a

     sufficient

      n u m b e r

     of

     spectrophotometric

     m e a s u r e m e n t s

     should

     b e

      perf o rmed

    to characterize an area of low chlorophyll content (i.e. < 0.1

      m g / m

    3

    )

      and that

    a   m o r e  detailed  description could then be presented in  te r m s  of fluorimetric

    determinations.  A  suitable  m e th o d  for the fluorimetric determination of chloro

    phyll in sea-water has  been reported by Kalle (1951) and another by  Y e nts c h

    a n d

      M e n z e l

      (1963), w hic h  is a modification of Kalle's technique.

    29

  • 8/9/2019 Chlorophyll UNESCO

    28/66

    Determination of photosynthetic pigments in sea-water

    EXCERPTS

    A N D   R E F E R E N C E S

    Excerpts

     from

      t h e

      NASCO   report

     entitled

      Recommended  Procedure

     for the

     Measurement

      ofPhyto-

    plankton  Pigments prepared by the   N A S I N R C  Committee  on

      Oceanography

      Working  Group  on

    Standardization

      a n d

      Inter

     calibrât

    i o n o f

      Biological

     Measurements

    a n d

      Sampling

     Methods ,

      28

      March

    1 9 6 3

    With

      reference

     to :

    Section

     A.l  'It is

      recommended  that

      the spectrophotometer be calibrated  frequently  using

    narrow

     band-pass filters or  D i d y m i u m  glass (or

      equivalent).'

    Section

     A.3  'Th e water samples collected  for phytoplankton  pigment

      analysis

      should be

    filtered

     through  cellulose-type  membrane filters e.g.  Millipore  R  Type

    H A

      or

      P H ,

      or

    equivalent) or

     possibly fine glass-fiber

     filters e.g.

      W h a t m a n  G F / C ,

      Gelman

      glass filters,

    or equivalent).'

    Section

      A.4

      T h e   pressure

     reduction

     should not exceed 50c m H g .

    Section

      B.I  'Methanol and diethylether extract phytoplankton pigments

     better

     than acetone.'

    Section

     C.12

      'Following

     extraction,

     acetone  solutions should be

     centrifuged

      so that the optical

    density at

      7 5 0 m j j.

      is less than  0.005/cm  of path  length  of

     light, after

      the blank has been

    subtracted; the optical density at  7 5 0   m\i  must be kept  below 0.01.'

    Excerpts from  SCOR-Unesco

      intercalibration

      test  entitled  Circular  Memorandum   to National

    Committees,

      Indian Ocean

      Investigations ,

      9 January 1962

    With

      reference to :

    Section

     A.3  Filters should be soluble in 90 per

     cent

     acetone, should  have  a pore  size of no

    more than 0.8 n, and should not be subjected  to high  vacuum  during

     filtration.

    Section

      A.4  'The reduction  in  pressure should be about

      V -

      t 0

      1

    h  of an atmosphere.'

    Section

     C.12  'If the

      optical

     density

     at 750 mi¿ is

     greater

      than

      0.005/cm

      path,

      recentrifuge,

    refilter, or dilute to reduce this reading.'

    H O L T ,   A . S . ;   J A C O B S ,   E . E . 1 9 5 4 .  Spectroscopy of plant pigments. I Ethyl chlorophyllides A and B

    a n d   their

     pheophorbides.

     Amer.

      J. Bot., 41.

    H U M P H R E Y ,  G .  F. 1961. Phytoplankton pigments in the  Pacific  Ocean.  Preprint,  Symposium

    o n

      algal productivity

      in the Pacific,  10th Pac. Sei.  Congr.,  p. 16.

    J E F F R E Y , S . W .

      1963 (results to be published).

    K A L L E ,

      K . 1 9 5 1 .  Meereskundlich-chemische

     Untersuchungen mit Hilfe des Pulfrich-Photometers

    v o n

      Zeiss VII. Die

      Mikrobestimmung

      des Chlorophylls und der Eigenfluoreszens des

    Meerwassers.  Deutsch. Hydrogr.  Zeitschr.,  4.

    K R E Y ,

      J.  1 9 3 9 .  Die Bestimmung des Chlorophylls in

      Meerwasser-Schöpfproben,  J. du

     Cons., 14.

    . 1 9 5 8 .

      Chemical methods  of

     estimating

     standing crop of phytoplankton.

      Rapp.

      et   Proc-

    Verb.

     Cons,  internat.

      Explor. de la Mer,

     144.

    L A E S S O E ,   A . ;   H A N S E N ,

      V a g n

      K r . 1 9 6 1 .  Ultrasonic

     and extraction of chlorophyll  a from  phyto

    plankton. Plankton  Committee  Report  N o .  143. Cons,  internat.  Explor. de la Mer.

    N E L S O N ,

      D .

      J.

      1 9 6 0 .

      Improved  chlorophyll extraction

     method.

      Science,  132.

    P A T T E R S O N ,

      J.;

      P A R S O N S ,   T . R .

      1963. Distribution  of  chlorophyll  a and  degradation  products

    in various marine samples.

     Limnol.  Oceanogr.

     (in

      press).

    R I C H A R D S ,

      F.

      A . W I T H T H O M P S O N , T . G .

      1952. The

     estimation

      and  characterization  of

      plankton

    populations

      by

      pigment  analysis.

      II. A

      spectrophotometric

      method  for the  estimation

    o f

      plankton pigments. / .  Mar. Res., 11.

    S M I T H ,  J.  H . C ; B É N I T E ,  A . 1955. Chlorophylls. Analysis in  plant

     materials.

      Modern  methods

    o f

      plant

     analysis, vol. IV, p.

      143-96.

     Berlin,  Springer-Verlag.

    S T R I C K L A N D ,  J.  D . H . 1 9 6 0 .

      Measuring

     the production of marine phytoplankton. Bulletin No. 122

    Fish. Res. Bd.

      Canada,  1 7 2

      p.

    ;   P A R S O N S ,   T . R .

      1960. A  man