chiral application guide - hplc · column, compares favorably with polysaccharide-derived chiral...

94
Regis Technologies Chiral Application Guide Chiral Application Guide 6 VOLUME

Upload: others

Post on 16-Aug-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

Regis Technologies

ChiralApplicationGuide

ChiralApplicationGuide

6V O L U M E

Page 2: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

DURABLE, HIGH EFFICIENCY CHIRAL COLUMNS

Since 1980, Regis Technologies, Inc. has proven to be a leader inchiral separations and services. Our support system to the

analytical and preparative chromatographer is a model othermanufacturers of chiral products try to emulate. Our technicalexpertise, professional staff, and worldwide distribution network ishighly respected and praised in the chiral community.

Regis offers four different types of Chiral StationaryPhases (CSP’s):• Covalently bonded Pirkle-Type Concept • Protein-based • Covalently bonded 18 Crown-ether

The complete line of Pirkle-Type CSP’s aremanufactured on-site at our cGMP facility inMorton Grove, Illinois. Columns range fromanalytical to preparative in size. Since Regispacks their own columns, custom sized columns areeasily attainable.

Regis maintains an extended inventory of Protein-based columnsmanufactured by ChromTech in the United Kingdom and thecovalently bonded 18 Crown-Ether columns manufactured by RStechin South Korea. Information on these product lines is readilyavailable on our website at www.registech.com.

As evidence of our commitment to the scientist in the lab, Regis ispleased to present its Chiral Application Guide VI. This new guidecontains over 500 specific chiral applications using a variety ofchiral column types. We have also included a few new sections inthis guide. We added a Frequently Asked Question section and aQuick Scheme Method Development section.

For applications not listed in this guide, Regis maintains a dedicatedchiral separations lab and chiral separations scientist. This enablesRegis to offer a Free Chiral Screening Service to the scientificcommunity. For specific column types, services or applications notlisted in this guide, please contact Regis directly or visit our websitefor continuously updated information.

Regis Technologies, Inc.

All Regis Chiral

Separations

products must

meet rigorous

manufacturing and

quality control

specifications

before release.

1

Page 3: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

2

Advantages of the Pirkle-Type Chiral Stationary Phases 3

Introduction to Regis Chiral Stationary Phases 4Pirkle Chiral Stationary PhasesProtein-based Chiral Stationary Phases RStech Corporation ChiroSil® RCA(+) and SCA(-)

18 Crown-Ether Chiral Stationary Phases

Regis HPLC Chiral Column Product List 7

Aryl Propionic Acid Non Steroidal Anti-Inflammatory Drugs (NSAIDS) 8

Other Carboxylic Acids 11

Basic Nitrogen 15

Basic Amine 15

Esters, Lactones, Ketones, Anhydrides 16

Amides, Imides, Carbamates, etc. 20

Epoxides 24

Alcohols 25

Diols, Hydroxyketones, etc. 32

Sulfoxides 33

Phosphorous Compounds 36

Atropisomers 39

Optical Switches, Liquid Crystal Components 47

Allenes 48

Organometallic Compounds 53

Agricultural Compounds 56

Miscellaneous Pharmaceuticals 61

Barbiturates, Ureas and Diol Epoxides 74

Natural Products 75

β-Blockers 76

Amino Acids 79

Frequently Asked Questions 82

Quick Scheme Method Development 83

References 86

Index 87Applications by CompoundApplications by Column Type

Chiral Screening Data Sheet 91

C O N T E N T S

CHIRAL HPLC APPLICATION GUIDE VI

Page 4: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

Regis Technologies, Inc.3

Advantages of the Pirkle-Type Chiral Stationary Phases

Universal Solvent CapabilityThe entire family of Regis’ Pirkle-Type Chiral Stationary Phases (CSP’s) canbe used in BOTH normal and reversed-phase solvents. Due to the fact that allof the Pirkle-Type CSP’s are covalently bonded, the columns can tolerate allcommonly used mobile phase combinations.

Column DurabilityAnother advantage of covalent bonding is column durability. Listed beloware a few distinct benefits associated with the Pirkle-Type CSP’s:• Long lasting columns• Bonded selector will not leach off the silica gel• Can tolerate sample overload• Can utilize strong solvents for cleaning• Columns are fully reversible• Compatible in SFC and SMB applications

Ability to Invert Elution OrderAll of the Pirkle-Type CSP’s are available in both enantiomeric forms. Thisallows the Chromatographer to invert the elution order of the enantiomers bysimply switching columns. This advantage is essential when determiningenantiomeric purity when the trace enantiomer should elute before the major.Elution order is also important in preparative chromatography because whenthe desired enantiomer elutes first, purity and production efficiencyincreases.

Chromatographic EfficiencyUnlike most Chiral columns on the market, Pirkle-Type Chiral HPLC columnsshow excellent chromatographic efficiency. The high density of binding sitesallows larger amounts of sample to be injected without major changes incolumn performance.

Ease of Scale-upPirkle-Type CSP’s were designed to allow the Chromatographer to scale-uptheir separation from analytical to preparative in a linear fashion. Regis usesthe highest grade silica gels available on the market today. The 5-micronCSP’s are bonded on Exsil®. Our 10-micron and 16-micron CSP’s arebonded on Kromasil®. Synthesis of the chiral selectors, bonding of thedifferent CSP’s, and column production is all performed by Regis in onefacility. This allows Regis total control over the product line. This also allowsRegis to perform special requests for the customer, including custom bondingand custom column packing.

Page 5: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS Introduct ion to Regis Chiral Stat ionary Phases

Pirkle Chiral Stationary Phases

The Pirkle-Concept Chiral Stationary Phases generally fall into three classes: π-electronacceptor/π-electron donors, the π-electron acceptors and the π-electron donors. WithPirkle Phases, chiral recognition occurs at binding sites. Major binding sites areclassified as π-basic or π-acidic aromatic rings, acidic sites, basic sites, and stericinteraction sites. Aromatic rings are potential sites for π-π interactions. Acidic sitessupply hydrogens for potential intermolecular hydrogen bonds-the hydrogen is often anamido proton (N-H) from an amide, carbamate, urea, or amine. Basic sites, such as π-electrons, sulfinyl or phosphinyl oxygens, and hydroxy or ether oxygens, may also beinvolved in hydrogen bond formation. Steric interactions may also occur between largegroups.

π-Electron Acceptor/π-Electron Donor Phases

• WHELK-O 1• WHELK-O 2• ULMO

The latest and most revolutionary addition to the Pirkle-Concept series is the π-electronacceptor/π-electron donor phase. This concept is an innovative incorporation of bothπ-acceptor and π-donor characteristics, resulting in a phase that can be used for a widevariety of compound groups.

WHELK-O 1The Whelk-O 1 Chiral Stationary Phase is based on 1-(3,5-Dinitrobenzamido)-1,2,3,4,-tetrahydrophenanthrene. This phase allows separation of underivatizedracemates from a number of families including amides, epoxides, esters, ureas,carbamates, ethers, aziridines, phosphonates, aldehydes, ketones, carboxylic acids,and alcohols.

The Whelk-O 1 was originally designed for the separation of underivatized non-steroidal anti-inflammatory drugs (NSAIDs). This π-electron acceptor/π-electron donorphase exhibits an extraordinary degree of generality, allowing resolution of a widevariety of underivatized racemates. This broad versatility observed on the Whelk-O 1column, compares favorably with polysaccharide-derived chiral stationary phases. Inaddition, because of the Whelk-O 1’s covalent nature, this chiral phase is compatiblewith all commonly used mobile phases, including aqueous systems-a distinct advantageover polysaccharide-derived chiral stationary phases. Other advantages includecolumn durability, excellent efficiency, elution order inversion allowing availability ofboth enantiomeric forms, and excellent preparative capacity.

4 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

less stableadsorbate

(S,S)(S,S)(S)

(R)

a) Schematic diagram showing keyfunctional groups of the Whelk-O 1 involved in chiral recognition.

b) Schematic diagram showinggeneralized structure of analytes whichare resolved on the Whelk-O 1.

a) b)

more stableadsorbate

DNB

H-bond donor

H-bond acceptorTetrahydro-phenanthreneπ system

Dinitrobenzamideπ-system

Conjugated π-system

Whelk-O 1

Page 6: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

WHELK-O 2The Whelk-O 2 is the covalent trifunctional version of the Whelk-O 1. The Whelk-O 2retains the same chiral selector but modifies the support to silica from a monofunctionallinkage to a trifunctional. In most cases, the enantioselectivity remains the sameallowing the separation of the analogous family of racemates as does the Whelk-O 1.

Whelk-O 2 was designed to enhance the stability of the stationary phase due to hydrolysis while using strong organic modifiers such as trifluoroacetic acid. TheWhelk-O 2 is ideal for preparative separations since the material is bonded on 10 µm100 Å spherical Kromasil silica. This allows the preparative chromatographer toperform method development on their analytical column and immediately scale-up tolarger diameter columns.

ULMOThe ULMO chiral stationary phase was developed by Austrian Researchers, Uray,Lindner, and Maier. This CSP has a general ability to separate the enantiomers of manyracemate classes, and is particularly good at separating the enantiomers of arylcarbinols.

The ULMO CSP is based on a 3,5-Dinitrobenzoyl derivative of diphenylethylene-diamine.

π-Electron Acceptor Phases

• DACH-DNB• Pirkle 1-J• α-Burke 2• β-Gem 1• Leucine• Phenylglycine

The π-electron acceptor Pirkle Chiral Stationary Phases can be used to separate a widerange of enantiomers without derivatization, as demonstrated for the following classesof solutes: secondary benzyl alcohols, mandelic acid analogs, α-hydroxy-α-aryl phosphates, α-tetralol analogs, propranolol analogs, β-hydroxy-aryl sulfoxides,alkyl-aryl sulfoxides, diaryl sulfoxides, aryl-substituted cyclic phthalides, aryl-substitutedlactams, aryl-substituted succinimides, aryl-substituted hydantoins, bi-β-naphthol and itsanalogs, and α-aryl acetamides.

DACH-DNBThe innovative DACH-DNB CSP was designed by Italian chemists Dr. FrancescoGasparrini, Misiti and Villani at Rome University “La Sapienza.” The DACH-DNB CSP;which contains the 3,5-dinitrobenzoyl derivative of 1,2-diaminocyclohexane, has beenfound to resolve a broad range of racemate classes including amides, alcohols, esters,ketones, acids, sulfoxides, phosphine oxides, selenoxides, phosponates,thiophosphineoxides, phosphineselenides, phosphine-boranes, β-lactams, organo-metallics, atropisomers and heterocycles.

PIRKLE 1-JThe Pirkle 1-J CSP is based on 3-(3,5-Dinitrobenzamido)-4-pheny-β-lactam. This unusualβ-lactam structure significantly alters its molecular recognition properties. The Pirkle 1Jis useful for the direct separation of underivatized β-blocker enantiomers. It can alsobe used for the separation of the enantiomers of arylpropionic acid NSAID’s as wellas other drugs.

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 5

Whelk-O 2

ULMO

DACH-DNB

Pirkle 1-J

Introduct ion to Regis Chiral Stat ionary Phases REGIS

Page 7: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS Introduct ion to Regis Chiral Stat ionary Phases

α-BURKE 2The α-Burke 2 phase, first prepared by J. A. Burke III, a graduate student of Dr. Pirkle, isderived from dimethyl N-3,5-dinitro-benzoyl-α-amino-2,2-dimethyl-4-pentenylphosphonate. The α-Burke 2 has been specifically designed to directly separate theenantiomers of β-blockers without chemical derivatization, but this chiral phase is notlimited solely to the separation of β-blocker enantiomers. It also resolves the enantiomersof many compounds separated on π-acceptor Pirkle type chiral stationary phases.

β-GEM 1β-Gem 1 is a π-acceptor chiral stationary phase and is derived from N-3,5-dinitrobenzoyl-3-amino-3-phenyl-2-(1,1-dimethylethyl)-propanoate.

For a great many analytes, this chiral phase considerably outperforms its widely usedanalog, phenylglycine. It can separate anilide derivatives of a wide variety of chiralcarboxylic acids, including nonsteroidal anti-inflammatory agents.

LEUCINEThe leucine CSP is based on the 3,5-dinitrobenzoyl derivative of leucine. This π-acceptorphase demonstrates enhanced enantioselectivities for several classes of compounds,including benzodiazapines.

PHENYLGLYCINEPhenylglycine is based on the 3,5-dinitrobenzoyl derivative of phenylglycine.

This CSP resolves a wide variety of compounds which contain π-basic groups. Theseinclude: aryl-substituted cyclic sulfoxides, bi-β-naphthol and its analogs, α-indanol and α-tetralol analogs, and aryl-substituted hydantoins.

Protein-Based Chiral Stationary Phases

Regis Technologies carries a line of protein-based chiral columns manufactured byChromTech AB, United Kingdom. For additional product information and a Protein-BasedChiral Stationary Phase application guide, please contact Regis directly.• Chiral AGP (α-glycoprotein)• Chiral CBH (cellobiohydrolase)• Chiral HSA (human serum albumin)

RStech Corporation ChiroSil® RCA(+) and SCA(-) 18Crown-Ether Chiral Stationary Phases• ChiroSil RCA(+)• ChiroSil SCA (-)

Developed by RStech Corporation in Daejeon, Korea, the ChiroSil phase is the newestaddition to our chiral line of columns. This phase is prepared by a covalent trifunctionalbonding of (+) or (-)-(18-Crown-6)-tetracarboxylic acid as the chiral selector.

This phase which is available in analytical as well as preparative columns, is an excellentchoice for the separation of amino acids and compounds containing primary amines.

Like our other line of columns, this phase is highly durable, has universal solventcompatibility, and has the ability to invert elution order.

As described above, Regis’ Chiral columns can be used to separate a wide variety ofenantiomers in numerous compound groups. Please refer to the Product List on page 7for particular column types, sizes, configurations and product numbers. Consult theapplication separation data section that begins on page 8 for information regardingspecific chiral separations on a wide variety of compounds. See Application Indexes onpage 87.

6 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

Phenylglycine

Leucine

ChiroSil

β-Gem 1

α-Burke 2

Page 8: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

Regis Chiral Column Product Lis t REGIS

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 7

PRODUCT PARTICLE SIZE COLUMN DIMENSIONS PRODUCT#

(R,R)-Whelk-O 1 5 µm, 100 Å 25 cm x 4.6 mm 786201(R,R)-Whelk-O 1 5 µm, 100 Å 25 cm x 10.0 mm 786202(R,R)-Whelk-O 1 5 µm, 100 Å 25 cm x 30.0 mm 786205(S,S)-Whelk-O 1 5 µm, 100 Å 25 cm x 4.6 mm 786101(S,S)-Whelk-O 1 5 µm, 100 Å 25 cm x 10.0 mm 786102(S,S)-Whelk-O 1 5 µm, 100 Å 25 cm x 30.0 mm 786105

(R,R)-Whelk-O 1 10 µm, 100 Å 25 cm x 4.6 mm 786515(R,R)-Whelk-O 1 10 µm, 100 Å 25 cm x 10.0 mm 786525(R,R)-Whelk-O 1 10 µm, 100 Å 25 cm x 21.1 mm 786535(R,R)-Whelk-O 1 10 µm, 100 Å 50 cm x 21.1 mm 786545(R,R)-Whelk-O 1 10 µm, 100 Å 25 cm x 30.0 mm 786708(R,R)-Whelk-O 1 10 µm, 100 Å 25 cm x 50.0 mm 786709(R,R)-Whelk-O 1 10 µm, 100 Å 50 cm x 30.0 mm 786713(R,R)-Whelk-O 1 10 µm, 100 Å 50 cm x 50.0 mm 786710(S,S)-Whelk-O 1 10 µm, 100 Å 25 cm x 4.6 mm 786615(S,S)-Whelk-O 1 10 µm, 100 Å 25 cm x 10.0 mm 786625(S,S)-Whelk-O 1 10 µm, 100 Å 25 cm x 21.1mm 786635(S,S)-Whelk-O 1 10 µm, 100 Å 50 cm x 21.1 mm 786645(S,S)-Whelk-O 1 10 µm, 100 Å 25 cm x 30.0 mm 786702(S,S)-Whelk-O 1 10 µm, 100 Å 25 cm x 50.0 mm 786703(S,S)-Whelk-O 1 10 µm, 100 Å 50 cm x 30.0 mm 786716(S,S)-Whelk-O 1 10 µm, 100 Å 50 cm x 50.0 mm 786704

(R,R)-Whelk-O 2 10 µm, 100 Å 25 cm x 4.6 mm 786315(R,R)-Whelk-O 2 10 µm, 100 Å 25 cm x 10.0 mm 786325(R,R)-Whelk-O 2 10 µm, 100 Å 25 cm x 21.1 mm 786335(R,R)-Whelk-O 2 10 µm, 100 Å 50 cm x 21.1 mm 786345(R,R)-Whelk-O 2 10 µm, 100 Å 25 cm x 30.0 mm 786727(R,R)-Whelk-O 2 10 µm, 100 Å 25 cm x 50.0 mm 786728(R,R)-Whelk-O 2 10 µm, 100 Å 50 cm x 30.0 mm 786732(R,R)-Whelk-O 2 10 µm, 100 Å 50 cm x 50.0 mm 786729(S,S)-Whelk-O 2 10 µm, 100 Å 25 cm x 4.6 mm 786415(S,S)-Whelk-O 2 10 µm, 100 Å 25 cm x 10.0 mm 786425(S,S)-Whelk-O 2 10 µm, 100 Å 25 cm x 21.1mm 786435(S,S)-Whelk-O 2 10 µm, 100 Å 50 cm x 21.1 mm 786445(S,S)-Whelk-O 2 10 µm, 100 Å 25 cm x 30.0 mm 786721(S,S)-Whelk-O 2 10 µm, 100 Å 25 cm x 50.0 mm 786722(S,S)-Whelk-O 2 10 µm, 100 Å 50 cm x 30.0 mm 786736(S,S)-Whelk-O 2 10 µm, 100 Å 50 cm x 50.0 mm 786723

(R,R)-ULMO 5 µm, 100 Å 25 cm x 4.6 mm 787200(R,R)-ULMO 5 µm, 100 Å 25 cm x 10.0 mm 787201(R,R)-ULMO 5 µm, 100 Å 25 cm x 30.0 mm 787203(S,S)-ULMO 5 µm, 100 Å 25 cm x 4.6 mm 787100(S,S)-ULMO 5 µm, 100 Å 25 cm x 10.0 mm 787101(S,S)-ULMO 5 µm, 100 Å 25 cm x 30.0 mm 787103

(R,R)-ULMO 10 µm, 100 Å 25 cm x 21.1 mm 787202(R,R)-ULMO 10 µm, 100 Å 25 cm x 30.0 mm 787707(R,R)-ULMO 10 µm, 100 Å 25 cm x 50.0 mm 787708(R,R)-ULMO 10 µm, 100 Å 50 cm x 30.0 mm 787712(R,R)-ULMO 10 µm, 100 Å 50 cm x 50.0 mm 787709(S,S)-ULMO 10 µm, 100 Å 25 cm x 21.1 mm 787102(S,S)-ULMO 10 µm, 100 Å 25 cm x 30.0 mm 787701(S,S)-ULMO 10 µm, 100 Å 25 cm x 50.0 mm 787702(S,S)-ULMO 10 µm, 100 Å 50 cm x 30.0 mm 787715(S,S)-ULMO 10 µm, 100 Å 50 cm x 50.0 mm 787703

PRODUCT PARTICLE SIZE COLUMN DIMENSIONS PRODUCT#

(R,R)-DACH-DNB 5 µm, 100 Å 25 cm x 4.6 mm 788101(R,R)-DACH-DNB 5 µm, 100 Å 25 cm x 10.0 mm 788102(R,R)-DACH-DNB 5 µm, 100 Å 25 cm x 30.0 mm 788104(S,S)-DACH-DNB 5 µm, 100 Å 25 cm x 4.6 mm 788201(S,S)-DACH-DNB 5 µm, 100 Å 25 cm x 10.0 mm 788202(S,S)-DACH-DNB 5 µm, 100 Å 25 cm x 30.0 mm 788204

(R,R)-DACH-DNB 10 µm, 100 Å 25 cm x 21.1 mm 788103(R,R)-DACH-DNB 10 µm, 100 Å 25 cm x 30.0 mm 788707(R,R)-DACH-DNB 10 µm, 100 Å 25 cm x 50.0 mm 788708(R,R)-DACH-DNB 10 µm, 100 Å 50 cm x 30.0 mm 788712(R,R)-DACH-DNB 10 µm, 100 Å 50 cm x 50.0 mm 788709(S,S)-DACH-DNB 10 µm, 100 Å 25 cm x 21.1 mm 788203(S,S)-DACH-DNB 10 µm, 100 Å 25 cm x 30.0 mm 788701(S,S)-DACH-DNB 10 µm, 100 Å 25 cm x 50.0 mm 788702(S,S)-DACH-DNB 10 µm, 100 Å 50 cm x 30.0 mm 788715(S,S)-DACH-DNB 10 µm, 100 Å 50 cm x 50.0 mm 788705

(3R,4S)-Pirkle 1-J 5 µm, 100 Å 25 cm x 4.6 mm 731044(3R,4S)-Pirkle 1-J 5 µm, 100 Å 25 cm x 10.0 mm 731244(3S,4R)-Pirkle 1-J 5 µm, 100 Å 25 cm x 4.6 mm 731045(3S,4R)-Pirkle 1-J 5 µm, 100 Å 25 cm x 10.0 mm 731245

(R,R)-α-Burke 2 5 µm, 100 Å 25 cm x 4.6 mm 735035(R,R)-α-Burke 2 5 µm, 100 Å 25 cm x 10.0 mm 735235(S,S)-α-Burke 2 5 µm, 100 Å 25 cm x 4.6 mm 735037(S,S)-α-Burke 2 5 µm, 100 Å 25 cm x 10.0 mm 735237

(R,R)-β-Gem 1 5 µm, 100 Å 25 cm x 4.6 mm 731043(R,R)-β-Gem 1 5 µm, 100 Å 25 cm x 10.0 mm 731243(S,S)-β-Gem 1 5 µm, 100 Å 25 cm x 4.6 mm 731029(S,S)-β-Gem 1 5 µm, 100 Å 25 cm x 10.0 mm 731229

D-Leucine 5 µm, 100 Å 25 cm x 4.6 mm 731054D-Leucine 5 µm, 100 Å 25 cm x 10.0 mm 731254L-Leucine 5 µm, 100 Å 25 cm x 4.6 mm 731041L-Leucine 5 µm, 100 Å 25 cm x 10.0 mm 731241

D-Phenylglycine 5 µm, 100 Å 25 cm x 4.6 mm 731021D-Phenylglycine 5 µm, 100 Å 25 cm x 10.0 mm 731221L-Phenylglycine 5 µm, 100 Å 25 cm x 4.6 mm 731024L-Phenylglycine 5 µm, 100 Å 25 cm x 10.0 mm 731224

Chiral AGP 5 µm, 300 Å 10 cm x 4.0 mm 732200Chiral AGP 5 µm, 300 Å 15 cm x 4.0 mm 732199Chiral CBH 5 µm, 300 Å 10 cm x 4.0 mm 732350Chiral CBH 5 µm, 300 Å 15 cm x 4.0 mm 732351Chiral HSA 5 µm, 300 Å 10 cm x 4.0 mm 732240Chiral HSA 5 µm, 300 Å 15 cm x 4.0 mm 732239

ChiroSil® RCA(+) 5 µm, 100 Å 15 cm x 4.6 mm 799001ChiroSil® RCA(+) 5 µm, 100 Å 25 cm x 4.6 mm 799002ChiroSil® SCA(-) 5 µm, 100 Å 15 cm x 4.6 mm 799101ChiroSil® SCA(-) 5 µm, 100 Å 25 cm x 4.6 mm 799102

Bulk material is available for all Chiral Stationary Phases

For column dimensions not listed, please contact Regis

NOTE: All columns (except the protein-based columns) listed contain chiral stationary phases that are covalently bound on 5 µm or 10 µm 100 Åspherical silica. A large variety of column dimensions and/or particle sizes are available upon request.

Page 9: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS Aryl Propionic Acid Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)

8 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

Ketoprofen Naproxen (semi prep)

Cicloprofen

Etodolac

Tiaprofenic Acid

Fenoprofen

Ketoprofen as 1-naphthylamidePirprofen

KetoprofenColumn = (R,R)-Whelk-O 1

25 cm x 4.6 mmMobile Phase = (47/47/6)

CH2Cl2/Hexane/Ethanol +0.01 M Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 11.0 mink'1 = 3.63α = 1.35reference 46

CH3

OH

OO

H3C

Naproxen (semi prep on analytical column)

80:20:0.5 hexane/IPA/HOAc1 ml/min; 300 nmRun Time = 18 mininject 400 µl @

31.5 mg/ml = 12.6 mg4.6 mm x 25 cm Whelk-O 1reference 6

FenoprofenColumn = (R,R)-Whelk-O 1

25 cm x 4.6 mmMobile Phase = (98/2)

Hexane/IPA +0.1% Acetic Acid

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 14.5 mink'1 = 2.62α = 1.66reference 46

EtodolacColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (98/2)

Hexane/IPA + 0.1% TFAFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 14.5 mink'1 = 2.43α = 1.50reference 48

Cicloprofen20% IPA/hex, 1g/L NH4OAc2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 1.16α = 2.15reference 4

CH3

OH

O

Tiaprofenic Acid20% IPA/hex, 1g/L NH4OAc2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 2.02α = 1.09reference 4

CH3

OH

O

SO

CH3

OH

ON

Cl

Pirprofen20% IPA/hex, 1g/LNH4OAc2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 0.85α = 1.81reference 4

Column: (S,S)-ULMO25 cm x 4.6 mmMobile Phase = (70/30)

Heptane/IPAFlow Rate = 1.0 mL/minDetection = UV 230 nmRun Time = 13 mink'1 = 1.51α = 1.25reference 48

Page 10: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

Aryl Propionic Acid Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) REGISNaproxen (R:S=30:70) Cicloprofen

Naproxen (Normal Phase)

Naproxen (Reversed Phase)

Flurbiprofen

Ibuprofen

Naproxen Diisopropyl AmideLoxoprofen

Column = (S,S)-ULMO25 cm x 4.6 mmMobile Phase (90/10)

Heptane/IPA + 0.1% TFAFlow Rate = 1.0 mL/minDetection = UV 230 nmRun Time = 8.5 mink'1 = 1.54α = 1.34reference 48

CH3

OH

O

Cicloprofen70:30:0.5 hexane/IPA/HOAc1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 0.48α = 1.35reference 26

IbuprofenColumn = (R,R)-Whelko-O 1

25 cm x 4.6 mmMobile Phase: (90/10)

Hexane/IPA +0.01 M Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 11.8 mink'1 = 3.21α = 1.72reference 46

FlurbiprofenColumn = (R,R)-Whelko-O 1

25 cm x 4.6 mmMobile Phase: (90/10)

Hexane/IPA +0.01 M Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 20.5 mink'1 = 5.90α = 1.76reference 46

Naproxen (Reversed Phase)Column = (R,R)-Whelko-O 1

25 cm x 4.6 mmMobile Phase: (80/20)

CH3OH/H2O + 0.1% Acetic Acid

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 10.0 mink'1 = 1.63α = 1.64reference 46

Naproxen (Normal Phase)Column = (R,R)-Whelko-O 1

25 cm x 4.6 mmMobile Phase: (60/40)

Hexane/IPA + 0.1% Acetic Acid

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 10.5 mink'1 = 1.40α = 2.03reference 46

Naproxen Diisopropyl Amide10%EtOH/hex1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 2.23α = 1.53reference 26

LoxoprofenColumn = (R,R)-Whelko-O 1

25 cm x 4.6 mmMobile Phase: (85/15)

Hexane/Ethanol +0.01 M Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 15.0 mink'1 = 5.41α = 1.30reference 46

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 9

H3CO

CH3

N

O

Page 11: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS Aryl Propionic Acid Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)

3,5-Dimethylanilide-R,S-Ibuprofen Naproxen Methyl Ester

Naproxen

Indoprofen

α-Trityl-2-naphthalene Propionic Acid

Naproxen Methyl Amide

Column = (3R,4S)-Pirkle 1-J25 cm x 4.6 mmMobile Phase = (85/15)

Hexane/IPAFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 13.0 mink'1 = 2.91α = 1.36reference 46

H3CO

CH3

OCH3

O

Naproxen Methyl Ester20% IPA/hex, 1g/L NH4OAc2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 3.42α = 1.42reference 14

H3CO

CH3

N

O

CH3

H

Naproxen Methyl Amide20% IPA/hex, 1g/L NH4OAc2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 18.73α = 1.41reference 14

IndoprofenColumn = (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mmMobile Phase = (80/20)

Hexane/Ethanol + 0.01 M Ammonium Acetate

Flow Rate = 2.0 mL/minDetection = UV 254 nmRun Time 17.0 mink'1 = 8.93α = 1.32reference 46

Rebamipide2-(4-Hydroxy-Phenoxy) Propionic Acid2-(4-Hydroxy-Phenoxy)

Propionic AcidColumn = (R,R)-ULMO

25 cm x 4.6 mmMobile Phase: (97/3)

Hexane/Ethanol+ 0.1% TFA

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 22.5 mink'1 = 9.02α = 1.27reference 46

RebamipideColumn = (S,S)-Whelk-O 2

10/100 25 cm x 4.6 mmMobile Phase: (85/15)

Hexane/Ethanol+ 0.1% TFA

Flow Rate = 2.0 mL/minDetection = UV 220 nmk'1 = 9.64α = 1.21reference 46

NaproxenExtract from Aleve® tablet (99.4%ee)80:20:0.5 hexane/IPA/HOAc2 ml/min; 254 nmRun Time = 10 min4.6 mm x 25 cm (S,S)

Whelk-O 1Sample prep: 1/2 tablet partitioned

between 1M HC1 (2 ml) andCH2C12 (5 ml) with sonication.CH2C12 layer filtered through glasswool and injected

α-Trityl-2-naphthalene propionic acid

Column = (R,R)-ULMO25 cm x 4.6 mm

Mobile Phase =(97/3)Hexane/IPA

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 10.0 mink'1 = 1.57α = 1.79reference 46

CH3

OH

O

O

H3C

10 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

Page 12: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

Hydratropic Acid CarprofenHydratropic AcidColumn = (R,R)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mm

Mobile Phase: (98/2)Hexane/IPA+ 0.1% Acetic Acid

Flow Rate = 1.5 mL/minDetection = UV 254 nmk'1 = 1.89α = 1.34reference 46

CarprofenColumn = (R,R)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mmMobile Phase: (85/15)

Hexane/IPA+ 0.1% Acetic Acid

Flow Rate = 1.5 mL/minDetection = UV 254 nmk'1 = 4.70α = 1.73reference 46

Other Carboxyl ic Acids REGISTetrahydropyrimindine Carboxylic Acid Phenylbutyric acid

Column: (S,S)-ULMO25 cm x 4.6 mmMobile Phase: (90/10)

Heptane/IPA + 0.1% TFAFlow Rate: 1.0 mL/minDetection: UV 215 nmRun Time: 14 mink'1 = 3.38α = 1.21reference 48

Column = (S,S)-ULMO25 cm x 4.6 mmMobile Phase = (99/1)

Heptane/IPA + 0.1% TFAFlow Rate = 2.0 mL/minDetection = UV 215 nmRun Time = 6.5 mink'1 = 3.19α = 1.16reference 48

OH

O

99:1:0.1 hexane/IPA/HOAc1 ml/min; 254 nmRun Time = 17 min4.6 mm x 25 cm Whelk-O 1k'1 = 4.06α = 1.28reference 18

99:1:0.1 hexane/IPA/HOAc1 ml/min; 254 nmRun Time = 16 min4.6 mm x 25 cm Whelk-O 1k'1 = 3.45α = 1.38reference 18

k'1 = 3.45

1 38

OH

O

Ph PhPh

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 11

Aryl Propionic Acid Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) REGIS

Page 13: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS Other Carboxyl ic Acids

2-Phenylcyclopropane Carboxylate Trolox

1,1'-binaphthyl-2,2'-diylhydrogen phosphateMandelic Acid

OCH3

OOH

CH3

CH3

H3C

HO

Trolox95:5:0.1 hexane/IPA/HOAc1 ml/min; 254 nmRun Time = 19 min4.6 mm x 25 cm

Whelk-O 1k'1 = 5.09α = 1.21reference 18

OH

O

2-Phenylcyclopropane Carboxylate

99:1 hexane/IPA1 ml/min; 220 nmRun Time = 18 min4.6 mm x 25 cm Whelk-O 1k'1 = 4.19α = 1.34reference 18

56:44 H2O/MeOH, 0.1%HOAc1 ml/min; 254 nmRun Time = 18 min4.6 mm x 25 cm Whelk-O 1k'1 = 4.46α = 1.27

OH

OH

O

Mandelic Acid0.1% HOAc in water1 ml/min; 254 nmRun Time = 13 min4.6 mm x 25 cm Whelk-O 1k'1 = 3.08α = 1.13reference 18

O

O

P

OH

O

Trolox Calcium Channel Blocker

O

CH3

OH

O

CH3

HO

H3C

CH3

Column = (R,R)-ULMO25 cm x 4.6 mmMobile Phase = (95/5)

Hexane/IPA +0.1% Acetic acid

Flow Rate = 1.5 mL/minDetection = UV 280 nmRun Time = 12.5 mink'1 = 2.18α = 2.68reference 46

Column = (S,S)-ULMO25 cm x 4.6 mmMobile Phase = (99/1)

Heptane/IPA + 0.1% TFAFlow Rate = 1.0 mL/minDetection = UV 230 nmRun Time = 6 mink'1 = 0.55α = 2.06reference 48

Column = (S,S)-Whelk-O 125 cm x 4.6 mmMobile Phase = (95/5)

Hexane/IPA + 0.1%Trifluoroacetic Acid

Flow Rate = 2.0 mL/minDetection = UV 254 nmRun Time = 8.5 mink'1 = 2.03α = 2.10reference 49

Column = (S,S)-Whelk-O 125 cm x 4.6 mmMobile Phase = (95/5)

Hexane/IPA + 0.1%Trifluoroacetic Acid

Flow Rate = 2.0 mL/minDetection = UV 254 nmRun Time = 8.5 mink'1 = 4.20α = 1.11reference 50

12 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

Page 14: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

Other Carboxyl ic Acids REGIS

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 13

Column = (S,S)-Whelk-O 125 cm x 4.6 mmMobile Phase = (95/5)

Hexane/IPA + 0.1%Trifluoroacetic Acid

Flow Rate = 2.0 mL/minDetection = UV 254 nmRun Time = 14.5 mink'1 = 7.24α = 1.22reference 50

Column = (S,S)-Whelk-O 125 cm x 4.6 mmMobile Phase = (95/5)

Hexane/IPA + 0.1%Trifluoroacetic Acid

Flow Rate = 2.0 mL/minDetection = UV 254 nmRun Time = 10.0 mink'1 = 2.07α = 2.62reference 49

Column = (S,S)-Whelk-O 125 cm x 4.6 mmMobile Phase = (95/5)

Hexane/IPA + 0.1%Trifluoroacetic Acid

Flow Rate = 2.0 mL/minDetection = UV 254 nmRun Time = 11.5 mink'1 = 5.44α = 1.34reference 50

Column = (S,S)-Whelk-O 125 cm x 4.6 mmMobile Phase: (95/5)

Hexane/IPA + 0.1%Trifluoroacetic Acid

Flow Rate = 2.0 mL/minDetection = UV 254 nmRun Time = 3.5 mink'1 = 0.84α = 1.36reference 49

Phenylsuccinic Acid 4-Chloromandelic Acid

Ketorolacα-Methoxyphenyl Acetic Acid

Phenylsuccinic AcidColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (95/5)

Hexane/IPA + 0.1% TFAFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 8.5 mink'1 = 1.71α = 1.22reference 48

4-Chloromandelic AcidColumn = (R,R)-Whelk-O 2

25 cm x 4.6 mmMobile Phase = (70/30)

H2O/CH3OH+ 0.1% Acetic Acid

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 10.0 mink'1 = 1.95α = 1.43reference 46

α-Methoxyphenyl Acetic AcidColumn = (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mmMobile Phase = (90/10)

Hexane/Ethanol +0.01 M Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 220 nmRun Time = 10.0 mink'1 = 2.96α = 1.61reference 46

KetorolacColumn = (R,R)-Whelk-O 1

25 cm x 4.6 mmMobile Phase = (98/2)

Hexane/IPA + 0.1% TFA

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 20.0 mink'1 = 8.87α = 1.15reference 46

Page 15: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

Suprofen Ditoluoyltartaric Acid

1-Cyclopentyl-1-phenylacetic AcidTrolox-methylether

Ditoluoyltartaric AcidColumn: (S,S)-ULMO

25 cm x 4.6 mmMobile Phase: (90/10)

Hexane/IPA + 0.1% TFAFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time = 12.0 mink'1 = 2.47α = 1.19reference 48

SuprofenColumn = (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mm

Mobile Phase = (80/20) Hexane/IPA +0.01 M Ammonium Acetate

Flow Rate = 2.0 mL/minDetection = UV 254 nmRun Time = 18.0 mink'1 = 9.76α = 1.27reference 46

1-Cyclopentyl-1-phenylacetic AcidColumn: (S,S)-ULMO 25 cm

x 4.6 mmMobile Phase: (99/1)

Hexane/IPA + 0.1% TFAFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time = 12.0 mink'1 = 2.46α = 1.19reference 48

Trolox-methyletherColumn: (S,S)-ULMO

25 cm x 4.6 mmMobile Phase: (90/10)

Hexane/IPA + 0.1% TFAFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time = 6.0 mink'1 = 0.32α = 2.50reference 48

14 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Other Carboxyl ic Acids

1-Cyclohexyl-1-phenylacetic Acid 2-(2-Chloro-4-methylphenoxy)propionic Acid

2-(3-Chlorophenoxy) Propionic AcidVanilmandelic Acid

1-Cyclohexyl-1-phenylacetic AcidColumn: (S,S)-ULMO 25 cm

x 4.6 mmMobile Phase: (99/1)

Hexane/IPA + 0.1% TFAFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time = 13.0 mink'1 = 2.53α = 1.18reference 48

2-(2-Chloro-4-methylphenoxy)propionic AcidColumn: (S,S)-ULMO 25 cm x 4.6 mmMobile Phase: (99/1)

Hexane/IPA + 0.1% TFAFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time = 11.0 mink'1 = 2.22α = 1.11reference 48

Vanilmandelic AcidColumn: (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6Moblie Phase: (85/15)

Hexane/Ethanol +0.01 M Ammonium Acetate

Flow Rate: 2.0 mL/minDetection: UV 254 nmRun Time: 22.0 mink'1 = 12.34α = 1.27reference 46

2-(3-Chlorophenoxy) Propionic AcidColumn: (R,R)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6Moblie Phase: (99/1)

Hexane/IPAFlow Rate: 1.5 mL/minDetection: UV 254 nmRun Time: 17.0 mink'1 = 6.09α = 1.42reference 46

Page 16: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 15

Other Carboxyl ic Acids REGIS4-(Trifluoromethyl)mandelic Acid 2,3-Dibenzoyl-Tartaric Acid

2,3-Dibenzoyl-Tartaric AcidColumn: (R,R)-ULMO

10/100 25 cm x 4.6 mmMobile Phase: (90/10)

Hexane/Ethanol + 10 mM Ammonium Acetate

Flow Rate: 1.5 mL/minDetection: UV 254 nmk'1 = 4.87α = 1.33reference 46

4-(Trifluoromethyl)mandelic AcidColumn: (S,S)-Whelk-O 1

25 cm x 4.6Moblie Phase: (92/8)

Hexane/Ethanol +0.01 M Ammonium Acetate

Flow Rate: 1.5 mL/minDetection: UV 254 nmRun Time: 11.0 mink'1 = 3.59α = 1.40reference 46

Troger’s BaseColumn: (R,R)-Whelk-O 1

(10/100) (FEC) 25 cm x 4.6 mmMobile Phase: (96/4) Hexane/EthanolFlow Rate: 1.5 mL/minDetection: UV 254 nmRun Time = 10.0 mink'1 = 2.52α = 1.80reference 46

N

N

O

Bz

CH3

30% EtOH/hexane1 ml/min; 254 nmrun time = 18 min4.6 mm x 25 cm

Whelk-O 1k'1 = 2.46α = 2.09reference 18

Basic Nitrogen REGIS Basic Amine REGIStrans-11,12-Diamino-9,10-dihydro-9,10-ethanoanthracenetrans-11,12-Diamino-9,10-

dihydro-9,10-ethanoanthraceneColumn = ChiroSil® RCA(+)

15 cm x 4.6 mmMobile Phase = (80/20)

CH2OH/H2O+ 0.1% Phosphoric acid

Flow Rate = 1.0 mL/minDetection = UV 220 nmRun Time = 10.7 mink'1 = 3.22α = 1.65reference 46

Page 17: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

Methyl Mandelate 2-Methyl-1-Indanone

OH

O

O

CH3

Methyl Mandelate73:27:0.1 H2O/CH3CN/HOAc1 ml/min; 254 nmRun Time = 20 min4.6 mm x 25 cm Whelk-O 1k'1 = 5.27α = 1.15reference 18

O

CH3

2-Methyl-1-Indanone99:1 hexane/IPA1 ml/min; 254 nmRun Time = 15 min4.6 mm x 25 cm Whelk-O 1k'1 = 4.00α = 1.12reference 18

95:5:0.5 hexane/IPA/HOAc1 ml/min; 280 nm4.6 mm x 25 cm Whelk-O 1k'1 = 1.27α = 1.28reference 26

O

CH3

OEt

O95:5:0.5 hexane/IPA/HOAc1 ml/min; 280 nm4.6 mm x 25 cm Whelk-O 1k'1 = 2.75α = 2.53reference 26

O

CH3

OEt

O

95:5:0.5 hexane/IPA/HOAc1 ml/min; 280 nm4.6 mm x 25 cm Whelk-O 1k'1 = 2.85α = 1.70reference 26

O

O

O93:7:0.1 hexane/IPA/HOAc1 ml/min; 254 nmrun time = 30 min4.6 mm x 25 cm Whelk-O 1k'1 = 8.10α = 1.21reference 18

20% IPA/hex2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 5.66α = 1.29reference 7

90:10 hexane/IPA1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 3.41α = 1.81reference 7

16 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Esters , Lactones, Ketones, Anhydrides

O

CH3

OH

O

H3C

O

H3CO

O

O

Page 18: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 17

Esters , Lactones, Ketones, Anhydrides REGIS3-Methyl-1-Indanone DPHB

O

CH3

3-Methyl-1-Indanonek'1 = 6.11α = 1.1899:1 hexane/IPA1 ml/min; 254 nmRun Time = 20 min4.6 mm x 25 cm Whelk-O 1reference 18

O

OH

DPHB6% EtOH/hexane1 ml/min; 254 nmRun Time = 41 min4.6 mm x 25 cm Whelk-O 1reference 29

H3C

O

20% IPA/hex2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 1.17α = 1.66reference 7

Column = L-Leucine25 cm x 4.6 mmMobile Phase = (99.5/0.5)

Hexane/IPAFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 11.5 mink'1 = 2.42α = 1.21reference 57

O

S

98:2 hexane/IPA1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 7.82α = 1.12reference 7

OOO

EtOO

H

H

O

OEtO

MeOH/IPA/hexane1 ml/min; 254 nmRun Time = 17 min4.6 mm x 25 cm Whelk-O 1k'1 = 12.73α = 1.16reference 19

10% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 2.27α = 1.11reference 26

H3CO

O

OCH3

O

97:3 hexane/IPA1 ml/min; 254 nmRun Time = 27 min4.6 mm x 25 cm Whelk-O 1k'1 = 8.46α = 1.08reference 18 OO

Page 19: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

2-Methyl-1-Tetralone Diperodon

1,3,5-Triphenylpent-4-yn-1-one

O

CH3

2-Methyl-1-Tetralone99:1 hexane/IPA1 ml/min; 254 nmRun Time = 12 min4.6 mm x 25 cm Whelk-O 1k'1 = 2.76α = 1.11reference 18

DiperodonColumn = (R)-α-Burke 2 25 cm x 4.6 mmMobile Phase = (48/48/4) CH2Cl2/Hexane/Ethanol

+ 1.5 mM Ammonium AcetateFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 9.0 mink'1 = 1.7α = 1.25reference 46

1,3,5-Triphenylpent-4-yn-1-oneColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase =

Hexane + 0.5% IPA

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 6.5 mink'1 = 1.19α = 1.19reference 46

Column = (S,S)-Whelk-O 1

25 cm x 4.6 mmMobile Phase =

(98/2) Hexane/IPA

Flow Rate = 1.0 mL/minDetection =

UV 254 nmRun Time = 20.5 mink'1 = 1.62α = 4.18reference 51

OO

10% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 0.67α = 1.16reference 26

Column = (S,S)-Whelk-O 1

25 cm x 4.6 mmMobile Phase =

(98/2) Hexane/IPA

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 34.0 mink'1 = 8.00α = 1.44reference 51

Column = D-Phenylglycine25 cm x 4.6 mmMobile Phase = 99/1)

Hexane/IPAFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 13.5 mink'1 = 3.10α = 1.18reference 57

Column = (S,S)-β-Gem 125 cm x 4.6 mmMobile Phase = (99.5/0.5)

Hexane/IPAFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 14.5 mink'1 = 2.67α = 1.43reference 57

18 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Esters , Lactones, Ketones, Anhydrides

Page 20: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 19

Esters , Lactones, Ketones, Anhydrides REGISBuckminsterfullerene-Enone [2+2] Photoadducts

Semi-prep separation on analytical column

2:1 toluene/hexane1 ml/min; 400 nmRun Time = 22 minSample: 100µ1 of

5 mg/ml solution (0.5 mg)4.6 mm x 25 cm Whelk-O 1reference 8

Tert-butyl-2-(benzamido) cyclopentyl carbamateTert-butyl-2-(benzamido)

cyclopentyl carbamateColumn = (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mm

Mobile Phase = (95/5)Hexane/IPA

Flow Rate = 1.5 mL/minDetection = UV 254 nmk'1 = 3.65α = 1.46reference 46

1’-Acetoxychavicol Acetate1’-Acetoxychavicol AcetateColumn = (R,R)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mm

Mobile Phase = (90/10)Hexane/IPA

Flow Rate = 1.5 mL/minDetection = UV 254 nmk'1 = 5.94α = 2.05reference 46

Ethyl-2-(p-Hydroxyphenoxy) PropionateEthyl-2-(p-Hydroxyphenoxy)

PropionateColumn = (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mm

Mobile Phase = (98/2)Hexane/Ethanol

Flow Rate = 2.0 mL/minDetection = UV 254 nmRun Time = 21.1 mink'1 = 12.72α = 1.15reference 46

Page 21: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

20 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Amides, Imides, Carbamates , e tc .

EEDQ

BOC-Ala

CBZ-Val

CBZ-Phe

CBZ nornicotine

N O

O O

EEDQ90:10 hexane/IPA1 ml/min; 254 nmRun Time = 25 min4.6 mm x 25 cm

Whelk-O 1k'1 = 1.53α = 2.13reference 18

k'1 = 1.75

NO

N

O

Omethanol2 ml/min; 254 nmRun Time = 6 min4.6 mm x 25 cm

Whelk-O 1k'1 = 1.75α = 1.20reference 7

CBZ nornicotine

N

N

O O

CBZ nornicotine1:3 MeOH/dichloromethane1 ml/min; 254 nmRun Time = 5 min4.6 mm x 25 cm

Whelk-O 1k'1 = 0.37α = 1.38reference 7

O N

O

H

OH

O

CBZ-Phe95:5:0.1 hexane/IPA/HOAc1 ml/min; 254 nmRun Time = 40 min4.6 mm x 25 cm Whelk-O 1k'1 = 10.2α = 1.20reference 18

O N

O

H

OH

O

CBZ-Val95:5:0.1 hexane/IPA/HOAc1 ml/min; 254 nmRun Time = 19 min4.6 mm x 25 cm

Whelk-O 1k'1 = 5.49α = 1.13reference 18

O N

O

H

CH3

OH

O

BOC-Ala98:2:0.2 hexane/IPA/HOAc1 ml/min; 220 nmRun Time = 17 min4.6 mm x 25 cm Whelk-O 1k'1 = 4.43α = 1.09reference 18

15% EtOH/hexane1 ml/min; 254 nmRun Time = 16 min4.6 mm x 25 cm

Whelk-O 1k'1 = 3.79α = 1.66reference 18

ON

O

O

H

80:20:0.1 hexane/IPA/HOAc1 ml/min; 254 nmRun Time = 25 min4.6 mm x 25 cm

Whelk-O 1k'1 = 5.97α = 1.36reference 18 N

O

OH

Ph

Ph

Page 22: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 21

Amides, Imides, Carbamates , e tc . REGIS

CH3

NH

O

H

ethyl acetate1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 0.50α = 1.56reference 7

CH3

NH

O

CH3

ethyl acetate1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 0.64α = 2.06reference 26

CH3

NH

O

ethyl acetate1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 0.16α = 5.56reference 7

CH3

N

O

2%EtOH/hex1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 5.13α = 1.03reference 26

ethyl acetate1 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 0.14α = 3.21reference 26

N OH

Me Et

95:5:0.5 hexane/IPA/HOAc1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 14.97α = 1.12reference 7

20% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 4.45α = 1.34reference 26

Np-Ts

10% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 3.64α = 1.11reference 26

Np-Ts

k'1 = 0.14

α = 3.21

CH3

NH

O

Page 23: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

N

CH3

H

CH3

O20% IPA/hexane2 ml/min; 254 nmRun Time = 4 min(S,S) Whelk-O 1k'1 = 3.72α = 3.17reference 38

N

CH3

H

O

Cl

20% IPA/hexane2 ml/min; 254 nmRun Time = 4 min(S,S) Whelk-O 1k'1 = 1.48α = 11.6reference 38

N

CH3

H

CH3

O

I

20% IPA/hexane2 ml/min; 254 nmRun Time = 4 min(S,S) Whelk-O 1k'1 = 4.10α = 5.12reference 38

N

CH3

H

O

Br

20% IPA/hexane2 ml/min; 254 nmRun Time = 4 min(S,S) Whelk-O 1k'1 = 1.75α = 13.7reference 38

N

CH3

H

O

Br

20% IPA/hexane2 ml/min; 254 nmRun Time = 4 min(S,S) Whelk-O 1k'1 = 1.61α = 12.8reference 38

N

CH3

H

O20% IPA/hexane2 ml/min; 254 nmRun Time = 4 min(S,S) Whelk-O 1k'1 = 1.39α = 6.74reference 38

20% IPA/hexane2 ml/min; 254 nmRun Time = 4 min(S,S) Whelk-O 1k'1 = 10.87α = 1.29reference 38

N

CH3

H

O

F

20% IPA/hexane2 ml/min; 254 nmRun Time = 4 min(S,S) Whelk-O 1k'1 = 1.17α = 7.29reference 38

P

NH

O

OEt

OEtH3C

CH3

22 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Amides, Imides, Carbamates , e tc .

Page 24: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 23

Amides, Imides, Carbamates , e tc . REGIS

P

NH

O

OEt

OEtH3C

CH3

F

20% IPA/hexane2 ml/min; 254 nmRun Time = 4 min(S,S) Whelk-O 1k'1 = 0.83α = 1.39reference 38

P

NH

O

OEt

OEtH3C

CH3

Cl

20% IPA/hexane2 ml/min; 254 nmRun Time = 4 min(S,S) Whelk-O 1k'1 = 0.84α = 1.55reference 38

P

NH

O

OEt

OEtH3C

CH3

Br

20% IPA/hexane2 ml/min; 254 nmRun Time = 4 min(S,S) Whelk-O 1k'1 = 0.86α = 1.66reference 38

N

H

O

Br

Br

D

H

H

H

H

D

D D

10% acetonitrile in CO2

(S,S) Whelk-O 1k'1 = 19.7α = 1.025reference 39

N

H

O

H

D

D

H

H

H

H

D

D D

10% acetonitrile in CO2

(S,S) Whelk-O 1k'1 = 8.5α = 1.025reference 39

N

H

O

D

H

H

H

H

D

D D

TMS

TMS

10% acetonitrile in CO2

(S,S) Whelk-O 1k'1 = 25α = 1.025reference 39

Column = (R,R)-Whelk-O 125 cm x 4.6 mm

Mobile Phase = (80/20)Hexane/IPA Flow Rate = 2.0mL/minDetection = UV 254nmRun Time = 19.0 mink'1 = 7.53α = 1.77reference 52

Column = (S,S)-Whelk-O 125 cm x 4.6 mm

Mobile Phase = (90/10)Hexane/IPA

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 46.0 mink'1 = 2.70α = 6.02reference 51

Page 25: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

24 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Amides, Imides, Carbamates , e tc .

REGIS Epoxides

Styrene Oxide Stilbene Oxide

m-Cl Styrene Oxide

OStyrene Oxide1% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 1.37α = 1.37reference 18

O

Stilbene Oxide10% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 0.45α = 2.00reference 18

O

0.1% HOAc in hexane1 ml/min; 254 nmRun Time = 20 min4.6 mm x 25 cm Whelk-O 1k'1 = 5.92α = 1.12reference 18

OCl

m-Cl Styrene Oxidehexane1 ml/min; 220 nm4.6 mm x 25 cm

Whelk-O 1reference 30

β-Lactam Cyclopentyl Benzoyl-Diamideβ-LactamColumn: (S,S)-

DACH-DNB25 cm x 4.6 mmMobile Phase: (48/48/2)

Hex/CH2Cl2/IPAFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 14.0 mink’1: 3.40α: 1.33reference 59

Cyclopentyl Benzoyl-DiamideColumn: (S,S)-ULMO

25 cm x 4.6 mmMobile Phase: (90/10)

Hexane/IPAFlow Rate: 1.5 mL/minDetection: UV 254 nmRun Time: 8.7 mink’1: 2.62α: 1.47reference 46

Page 26: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

Alcohols REGIS

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 25

Ibuprofenol 1,2,3,4-Tetrahydro-1-Naphtol

9-Anthryl Trifluoromethyl Carbinol

α-Naphthyl Methyl Carbinol

Acenaphthenol

Tert Butyl Phenyl Carbinol

CH3

OH

Ibuprofenol99:1 hexane/IPA1 ml/min; 254 nmRun Time = 14 min4.6 mm x 25 cm Whelk-O 1k'1 = 3.38α = 1.05reference 26

OH

1,2,3,4-Tetrahydro-1-NaphtolColumn = (R,R)-ULMO25 cm x 4.6 mmMobile Phase = (99/1)

Hexane/IPAFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 10.5 mink'1 = 2.17α = 1.30reference 46

Tert Butyl Phenyl CarbinolColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (99/1)

Heptane/IPA Flow Rate = 1.0 mL/minDetection = UV 215 nmRun Time = 6.0 mink'1 = 4.60α = 1.46reference 46

CH3

OH

α-Naphthyl Methyl CarbinolColumn = (R,R)-ULMO25 cm x 4.6 mmMobile Phase = (99/1)

Hexane/IPAFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 14.5 mink'1 = 3.49α = 1.25reference 46

9-Anthryl TrifluoromethylCarbinol

Column = (R,R)-ULMO25 cm x 4.6 mmMobile Phase = (95/5)

Hexane/IPAFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 10 mink'1 = 1.36α = 2.02reference 46

HO CF3

AcenaphthenolColumn: (R,R)-ULMO25 cm x 4.6 mmMobile Phase: (95/5)

Hexane/IPAFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 10 mink’1: 1.68α: 1.46reference 46

OH

2% IPA/hexane1 ml/min; 220 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 1.76α = 1.13reference 18

H3COH

80:20 hexane/IPA1 ml/min; 254 nmrun time = 10 min4.6 mm x 25 cm

Whelk-O 1k'1 = 1.22α = 2.08reference 26

OH

Page 27: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

Beta Naphthyl Methyl Carbinol 1,1’-Bi-2-Naphthol

1-Naphthyl-2-butanol

9-Anthrylethanol

2-Naphthyl-2-butanol

Tetrahydrobenzopyrene-7-ol

1,1’-Bi-2-NaphtholColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (98/2)

Hexane/IPA + 0.1% TFAFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 18.0 mink'1 = 4.84α = 1.24reference 48

9-AnthrylethanolColumn = (S,S)-ULMO25 cm x 4.6 mmMobile Phase = (95/5) Heptane/IPAFlow Rate = 1.0 mL/minDetection = UV 215 nmRun Time = 12 mink'1 = 1.82α = 1.74reference 48

2-Naphthyl-2-butanolColumn = (S,S)-ULMO25 cm x 4.6 mmMobile Phase = (95/5)

Heptane/IPAFlow Rate = 1.0 mL/minDetection = UV 215 nmRun Time = 8 mink'1 = 1.00α = 1.93reference 48

Column = (S,S)-Whelk-O 125 cm x 4.6 mmMobile Phase = (99/1)

Hexane/IPA Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 18.5 mink'1 = 5.59α = 1.09reference 55

CH3

OH

Beta Naphthyl Methyl CarbinolColumn: (R,R)-ULMO25 cm x 4.6 mmMobile Phase: (97/3) Hexane/IPAFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 9 mink’1: 1.64α: 1.34reference 46

OH

Tetrahydrobenzopyrene-7-ol80:20 hexane/IPA1 ml/min; 254 nmrun time = 22 min4.6 mm x 25 cm

Whelk-O 1k'1 = 6.10α = 1.18reference 18

1-Naphthyl-2-butanolColumn = (S,S)-ULMO25 cm x 4.6 mmMobile Phase = (95/5)

Heptane/IPAFlow Rate = 1.0 mL/minDetection = UV 215 nmRun Time = 6 mink'1 = 0.80α = 1.35reference 48

CH3

OH

1% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 3.38α = 1.05reference 7

26 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Alcohols

Page 28: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 27

Alcohols REGIS 1-Phenylpentanol Phenyl Tribromomethyl Carbinol

Phenyl Propyl Carbinol

Phenyl Ethyl Carbinol

1,1,2,-Triphenyl-1,2-Ethanediol

Phenyl Methyl Carbinol

1-PhenylpentanolColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (99/1)

n-Heptane/1,2-Dimethoxyethane

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 7.0 mink'1 = 1.65α = 1.45reference 60

CBr3

OHPhenyl Tribromomethyl CarbinolColumn = (R,R)-ULMO25 cm x 4.6 mmMobile Phase = (99/1)

Hexane/IPAFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 9 mink'1 = 1.87α = 1.25reference 46

CH3

OH

Phenyl Methyl CarbinolColumn = (R,R)-ULMO25 cm x 4.6 mmMobile Phase = 100%

HexaneFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 14 mink'1 = 3.11α = 1.30reference 46

OH

Phenyl Ethyl CarbinolColumn = (R,R)-ULMO25 cm x 4.6 mmMobile Phase = (99/1)

Hexane/IPAFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 6.5 mink'1 = 1.06α = 1.30reference 46

Phenyl Propyl CarbinolColumn = (R,R)-ULMO25 cm x 4.6 mmMobile Phase = 100% HexaneFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 12 mink'1 = 2.25α = 1.56reference 46

OH

1,1,2,-Triphenyl-1,2-EthanediolColumn = (S,S)-ULMO25 cm x 4.6 mmMobile Phase = (99/1)

Heptane/IPAFlow Rate = 1.0 mL/minDetection = UV 215 nmRun Time = 13 mink'1 = 2.59α = 1.14reference 48

OHColumn = (S,S)-Whelk-O 125 cm x 4.6 mmMobile Phase = (80/20)

Hexane/IPA Flow Rate = 2.0 mL/minDetection = UV 254 nmRun Time = 24.0 mink'1 = 13.30α = 1.11reference 55

Column = (R,R)-ULMO25 cm x 4.6 mmMobile Phase = (99/1)

Hexane/IPAFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 10 mink'1 = 1.97α = 1.37reference 48

Page 29: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

28 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Alcohols

1,1’-Binaphthol Monomethylether Terfenadine

2-Methoxyphenyl Phenyl Carbinol

Trans Phenyl Cyclohexanol Analytical vs. Preparative Run

Phenyl cyclohexyl carbinol

Propafenone

Phenyl phenylethyl carbinolPhenyl isopropyl carbinol

1,1'-BinaphtholMonomethyletherColumn: (S,S)-ULMO 25 cm

x 4.6 mmMobile Phase: (98/2)

Hexane/IPA + 0.1% TFAFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time = 11.0 mink'1 = 2.23α = 1.28reference 48

TerfenadineColumn = (R,R)-Whelk-O 1

25 cm x 4.6 mmMobile Phase = (97/3)

Hexane/Ethanol +0.01 M Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 15.0 mink'1 = 5.91α = 1.20reference 46

PropafenoneColumn = (R,R)-Whelk-O 1

25 cm x 4.6 mmMobile Phase = (47/47/6)

CH2Cl2/Hexane/Ethanol + 0.01 M Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 11.0 mink'1 = 3.99α = 1.25reference 46

Trans Phenyl CyclohexanolAnalytical vs. Preparative Run

Column = (S,S)-ULMO 25 cm x 4.6 mmMobile Phase = (99/1)

Heptane/IPA Flow Rate = 1.0 mL/minDetection = UV 270 nmRun Time = 7.0 minreference 48

2-Methoxyphenyl Phenyl CarbinolColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (99/1)

Heptane/IPA Flow Rate = 1.0 mL/minDetection = UV 215 nmRun Time = 12.0 mink'1 = 2.92α = 1.13reference 48

Phenyl cyclohexyl carbinolColumn = (S,S)-ULMO25 cm x 4.6 mmMobile Phase: (99/1)

Heptane/IPAFlow Rate = 1.0 mL/minDetection = UV 215 nmRun Time = 6.5 mink'1 = 0.97α = 1.39reference 48

Phenyl isopropyl carbinolColumn = (S,S)-ULMO25 cm x 4.6 mmMobile Phase = (99/1)

Heptane/IPAFlow Rate = 1.0 mL/minDetection = UV 215 nmRun Time: 6 mink'1 = 0.86α = 1.38reference 48

Phenyl phenylethyl carbinolColumn = (S,S)-ULMO25 cm x 4.6 mmMobile Phase = (99/1)

Heptane/IPAFlow Rate = 1.0 mL/min Detection = UV 215 nmRun Time = 9.5 mink'1 = 1.81α = 1.30reference 48

2.8 MG

1.4 MG

0.14 MG

Page 30: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 29

Alcohols REGIS Methyl 3-phenyl-3azido-2hydroxypropanoate

(Erythro-diastereomer)1-(4-Methoxyphenyl)-2-butanol

2-Thiopheneethanol

1-Phenyl-2-propanol

3-Thiopheneethanol

1-(4-Methoxyphenyl)-2-propanol

1-(o-Methoxyphenyl) Ethanol1-(4-Hydroxyphenyl) Ethanol

1-(4-Methoxyphenyl)-2-butanolColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (98.5/1.5)

n-Heptane/1,2-Dimethoxyethane

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 12.0 mink'1 = 2.04α = 1.49reference 60

1-Phenyl-2-propanolColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (98.5/1.5)

n-Heptane/1,2-Dimethoxyethane

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 6.5 mink'1 = 1.72α = 1.19reference 60

3-Thiopheneethanol Column = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (98.5/1.5)

n-Heptane/1,2-Dimethoxyethane

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 11.5 mink'1 = 2.42α = 1.13reference 60

1-(o-Methoxyphenyl) EthanolColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (98.5/1.5)

n-Heptane/1,2-Dimethoxyethane

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 11.0 mink'1 = 3.27α = 1.29reference 60

Methyl 3-phenyl-3azido-2hydroxypropanoate(Erythro-diastereomer)

Column = (S,S)-ULMO 25 cm x 4.6 mmMobile Phase = (97/3)

Heptane/GlymeFlow Rate = 1.0 mL/minDetection = UV 215 nmRun Tim = 10.5 mink'1 = 2.34α = 1.16reference 48

1-(4-Methoxyphenyl)-2-propanolColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (98.5/1.5)

n-Heptane/1,2-Dimethoxyethane

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 17.5 mink'1 = 5.33α = 1.28reference 60

2-Thiopheneethanol Column = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (98.5/1.5)

n-Heptane/1,2-Dimethoxyethane

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 10.5 mink'1 = 2.21α = 1.12reference 60

1-(4-Hydroxyphenyl) EthanolColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (95/5)

n-Heptane/IPA + 0.1% TFAFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 8.5 mink'1 = 1.491α = 1.16reference 60

Page 31: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

30 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Alcohols

1-[(4-Phenyl) phenyl] Ethanol 1-(4-Benzyloxy) phenyl Ethanol

1-(m-Trifluoromethylphenyl) Ethanol

1-(p-Flurorophenyl) Ethanol

1-(p-Methylphenyl) Ethanol

1-(p-Bromophenyl) Ethanol

1-(o-Methylphenyl) Ethanol1-(m-Methylphenyl) Ethanol

1-(4-Benzyloxy) phenyl EthanolColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (98.5/1.5)

n-Heptane/1,2-Dimethoxyethane

Flow Rate = 2.0 mL/minDetection = UV 254 nmRun Time = 11.0 mink'1 = 5.21α = 1.21reference 60

1-(p-Flurorophenyl) EthanolColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (98.5/1.5)

n-Heptane/1,2-Dimethoxyethane

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 10.5 mink'1 = 2.13α = 1.16reference 60

1-(p-Methylphenyl) EthanolColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (98.5/1.5)

n-Heptane/1,2-Dimethoxyethane

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 10.5 mink'1 = 2.06α = 1.21reference 60

1-(o-Methylphenyl) EthanolColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (98.5/1.5)

n-Heptane/1,2-Dimethoxyethane

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 10.5 mink'1 = 1.88α = 1.29reference 60

1-[(4-Phenyl) phenyl] EthanolColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (98.5/1.5)

n-Heptane/1,2-Dimethoxyethane

Flow Rate = 2.0 mL/minDetection = UV 254 nmRun Time = 8.5 mink'1 = 3.76α = 1.21reference 60

1-(p-Bromophenyl) EthanolColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (98.5/1.5)

n-Heptane/1,2-Dimethoxyethane

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 11.5 mink'1 = 2.39α = 1.17reference 60

1-(m-Trifluoromethylphenyl) EthanolColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (98.5/1.5)

n-Heptane/1,2-Dimethoxyethane

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 9.0 mink'1 = 1.66α = 1.14reference 60

1-(m-Methylphenyl) EthanolColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (98.5/1.5)

n-Heptane/1,2-Dimethoxyethane

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 10.5 mink'1 = 1.94α = 1.26reference 60

Page 32: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 31

Alcohols REGIS 1-(o-Chlorophenyl) Ethanol 1-(p-Chlorophenyl) Ethanol

1-(m-Chlorophenyl) Ethanol

1-(p-Chlorophenyl) EthanolColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (98.5/1.5)

n-Heptane/1,2-Dimethoxyethane

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 10.5 mink'1 = 2.18α = 1.15reference 60

1-(o-Chlorophenyl) EthanolColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (98.5/1.5)

n-Heptane/1,2-Dimethoxyethane

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 8.5 mink'1 = 1.58α = 1.12reference 60

RanolazineRanolazineColumn = (R,R)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mmMobile Phase = (65/35)

Hexane/IPA + 35 mMAmmonium Acetate

Flow Rate = 2.0 mL/minDetection = UV 220 nmk'1 = 11.51α = 1.23reference 46

1-(m-Chlorophenyl) EthanolColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (98.5/1.5)

n-Heptane/1,2-Dimethoxyethane

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 10.5 mink'1 = 2.13α = 1.17reference 60

Phenylethylene GlycolPhenylethylene GlycolColumn = (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mmMobile Phase = (99/1)

Hexane/EthanolFlow Rate = 2.0 mL/minDetection = UV 254 nmRun Time = 18.7 mink'1 = 11.62α = 1.11reference 46

Page 33: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

Benzoin

32 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

Hydrobenzoin

Ipsdienol

Anisoin

O

OH

Benzoin80:20:0.5 hexane/IPA/HOAc1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 0.86α = 1.97reference 7

O

OHH3CO

OCH3Anisoin80:20:0.5hexane/IPA/HOAc1 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 3.07α = 2.34reference 26

60:40 hexane/EtOH1 ml/min; 240 nm4.6 mm x 25 cm Whelk-O 1k'1 = 2.03α = 1.32reference 26

OH

OH

Hydrobenzoin95:5 hexane/IPA1 ml/min; 254 nmRun Time = 18 min4.6 mm x 25 cm Whelk-O 1k'1 = 1.14α = 1.40reference 18

OH

OH

98:2:0.5 hexane/EtOH/HOAc1 ml/min; 240 nm4.6 mm x 25 cm Whelk-O 1k'1 = 4.20α = 1.28reference 26

Ipsdienol2% IPA/hexane1 ml/min; 254 nmRun Time = 8 min4.6 mm x 25 cm

Whelk-O 1k'1 = 0.95α = 1.21reference 18

HO

OH

OH

98:2:0.5 hexane/IPA/HOAc1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 7.54α = 1.08reference 7

REGIS Diols , Hydroxyketones, e tc .

OH

OHH3CO

OCH3

Page 34: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 33

Sulfoxides REGIS

SCH3

OOH3C

7:2:1 hexane/IPA/CH2C122 ml/min; 254 nmRun Time = 9 min4.6 mm x 25 cm

Whelk-O 1k'1 = 4.10α = 1.13reference 18

SCH3

O7:2:1 hexane/IPA/CH2C121 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 3.83α = 1.24reference 7

SCH3

O

Br

7:2:1 hexane/IPA/CH2C122 ml/min; 254 nmRun Time = 8 min4.6 mm x 25 cm Whelk-O 1k'1 = 3.75α = 1.13reference 18

H3C

S

O

CH3

80:20 hexane/IPA1.5 ml/min; 254 nmRun Time = 14 min4.6 mm x 25 cm Whelk-O 1k'1 = 2.11α = 1.70reference 31

SCH3

O

Br

7:2:1 hexane/IPA/CH2C122 ml/min; 254 nmRun Time = 8 min4.6 mm x 25 cm

Whelk-O 1k'1 = 3.75α = 1.13reference 18

S

O

CH3

7:2:1 hexane/IPA/CH2C122 ml/min; 254 nmRun Time = 6 min4.6 mm x 25 cm

Whelk-O 1k'1 = 1.90α = 1.46reference 18

7:2:1 hexane/IPA/CH2C122 ml/min; 254 nmRun Time = 11 min4.6 mm x 25 cm

Whelk-O 1k'1 = 5.04α = 1.12reference 18

S S O

7:2:1 hexane/IPA/CH2C121 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 3.29α = 2.14reference 7

SCH3

O

Page 35: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

34 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Sulfoxides

k'1 = 10.72

S

O

O

SCH3

O

7:2:1 hexane/IPA/CH2C122 ml/min; 254 nmrun time = 11 min4.6 mm x 25 cm

Whelk-O 1k'1 = 5.02α = 1.21reference 18

7:2:1 hexane/IPA/CH2C122 ml/min; 254 nmrun time = 6 min4.6 mm x 25 cm

Whelk-O 1k'1 = 10.72α = 1.19reference 18

Column: (S,S)-DACH-DNB25 cm x 4.6 mmMobile Phase: (27.5/27.5/45)

CH2Cl2/Dioxane/HexFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 35.0 mink’1: 10.30α: 1.15reference 59

Column: (R,R)-DACH-DNB25 cm x 4.6 mmMobile Phase:

(98/2) CH2Cl2/IPA

Flow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 16.0 mink’1: 2.34α: 2.07reference 59

Column: (S,S)-DACH-DNB25 cm x 4.6 mmMobile Phase: (98/2)

CH2Cl2/IPAFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 13.0 mink’1: 3.08α: 1.26reference 59

Column: (S,S)-DACH-DNB25 cm x 4.6 mmMobile Phase:

(98/2) CH2Cl2/IPA

Flow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 17.0 mink’1: 3.33α: 1.63reference 59

OmeprazoleSulfinpyrazoneOmeprazoleColumn = (S)-α-Burke 2 25 cm x 4.6 mmMobile Phase = (95/5) CH2Cl2/CH3OHFlow Rate = 1.0 mL/minDetection = UV 302 nmRun Time = 8.0 mink'1 = 0.64α = 3.04reference 46

SulfinpyrazoneColumn = (R,R)-Whelk-O 1 25 cm x 4.6 mmMobile Phase = (75/25) Hexane/Ethanol

+ 15 mM Ammonium AcetateFlow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 11.0 mink'1 = 3.74α = 1.35reference 46

Page 36: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 35

Sulfoxides REGIS

Column: (S,S)-DACH-DNB25 cm x 4.6 mmMobile Phase: (40/40/20)

CH2Cl2/Dioxane/HexFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 27.0 mink’1: 7.51α: 1.21reference 59

Column: (R,R)-DACH-DNB25 cm x 4.6 mmMobile Phase: (27.5/27.5/45)

CH2Cl2/Dioxane/HexFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 18.0 mink’1: 4.77α: 1.18reference 59

Column: (R,R)-DACH-DNB

25 cm x 4.6 mmMobile Phase:

(27.5/27.5/45) CH2Cl2/Dioxane/Hex

Flow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 20.0 mink’1: 5.16α: 1.26reference 59

Column: (R,R)-DACH-DNB

25 cm x 4.6 mmMobile Phase: (95/5)

CH2Cl2/IPAFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 15.0 mink’1: 2.15α: 2.05reference 59

PantoprazolePantoprazoleColumn = (R)-α-Burke 2

25 cm x 4.6 mmMobile Phase = (48/48/4)

CH2Cl2/Hexane/Ethanol + 4 mM Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 280 nmRun Time = 12.0 mink'1 = 4.07α = 1.38reference 46

Page 37: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

36 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Phosphorous Compounds

P

N

O

OEt

OEt

H

H3CO

5% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 2.26α = 1.50reference 40

P

N

O

OEt

OEt

H

F3CO5% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 4.72α = 1.26reference 40

P

N

O

OEt

OEt

H

5% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 4.26α = 1.26reference 40

P

N

O

OEt

OEt

H

OCF35% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 6.05α = 1.63reference 40

P

N

O

OEt

OEt

H

OCF35% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 4.10α = 2.08reference 40

P

N

O

OEt

OEt

H

F

F

5% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 4.09α = 1.31reference 40

5% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 4.58α = 1.23reference 40

P

N

O

OEt

OEt

H

5% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 9.61α = 1.75reference 40

P

N

O

OEt

OEt

H

Page 38: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 37

Phosphorous Compounds REGIS

Cyclophosphamide Tertiary Phosphine Oxide

Secondary Phosphine OxidePhosphine Selenium Oxide

P

N

O

OEt

OEt

H

5% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 5.87α = 5.12reference 40

5:4:1 hexane/CH2C12/CH3CN1 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 1.11α = 1.15reference 7

Tertiary Phosphine OxideColumn: (R,R)-DACH-DNB25 cm x 4.6 mmMobile Phase:

(37.5/37.5/25) Hex/Dioxane/IPA

Flow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 14.0 mink'1: 2.19α: 1.48reference 59

Secondary Phosphine OxideColumn: (S,S)-DACH-DNB 25 cm x 4.6 mmMobile Phase: (75/25) CH2Cl2/IPAFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 19.0 mink'1: 1.49α: 4.11reference 59

P

N

O

OEt

OEt

H

5% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 7.35α = 2.54reference 40

P

N

O

OEt

OEt

H

N

5% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 12.30α = 2.00reference 40

CyclophosphamideColumn = (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mmMobile Phase = (95/5)

Hexane/EthanolFlow Rate = 1.5 mL/minDetection = UV 195 nmRun Time = 16.0 mink'1 = 6.31α = 1.27reference 46

Phosphine Selenium OxideColumn: (S,S)-DACH-DNB25 cm x 4.6 mmMobile Phase: (70/30)

Hex/CH2Cl2Flow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 13.0 mink'1: 2.49α: 1.48reference 59

Page 39: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

38 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

Secondary Phosphine Oxide Tertiary Phosphine Oxide

Tertiary Phosphine OxideSecondary Phosphine Oxide

Tertiary Phosphine OxideColumn: (R,R)-DACH-DNB25 cm x 4.6 mmMobile Phase:

(42.5/42.5/15) Hex/Dioxane/IPA

Flow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 28.0 mink'1: 8.11α: 1.17reference 59

Tertiary Phosphine OxideColumn:

(R,R)-DACH-DNB25 cm x 4.6 mmMobile Phase: (40/40/20)

Hex/Dioxane/IPAFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 14.0 mink’1: 4.19α: 1.25reference 59

10% EtOH/hexane1 ml/min; 254 nmrun time = 13 min4.6 mm x 25 cm

Whelk-O 1k'1 = 3.07α = 1.17reference 18

P

OH

O

OCH3

OCH3

Secondary Phosphine OxideColumn: (S,S)-DACH-DNB25 cm x 4.6 mmMobile Phase: (90/10)

CH2Cl2/IPAFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 8.0 mink'1: 1.23α: 1.81reference 59

Secondary Phosphine OxideColumn: (S,S)-DACH-DNB25 cm x 4.6 mmMobile Phase:

(90/10) CH2Cl2/IPA

Flow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 14.5 mink'1: 2.20α: 1.97reference 59

10% IPA/hex2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 1.35α = 3.53reference 7

N

N

PO

H

EtOEtO

P

OH

O

OCH3

OCH3

10% EtOH/hexane1 ml/min; 254 nmrun time = 18 min4.6 mm x 25 cm

Whelk-O 1k'1 = 3.75α = 1.38reference 18

REGIS Phosphorous Compounds

Page 40: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 39

Atropisomers REGIS

CH3

O NEt

EtEtOAc1 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 0.46α = 2.17reference 7

O

O

10% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 2.26α = 1.11reference 7

CH3

CH3

N

SO

CH3

30% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 1.73α = 1.64reference 7

CH3

O N

80:20:0.1% hexane/IPA/HOAc2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O-1k'1 = 3.23α = 2.66reference 10

N

SS

CH3

30% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 1.91α = 2.13reference 7

CH3

O N

80:20:0.1% hexane/IPA/HOAc2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 3.29α = 2.46reference 10

CH3

O N

80:20:0.1% hexane/IPA/HOAc2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O-1k'1 = 6.24α = 2.63reference 10 CH3

O N

80:20:0.1%hexane/IPA/HOAc2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O-1k'1 = 4.46α = 2.08reference 10

Page 41: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

40 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Atropisomers

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 10.06α = 2.37reference 41

NO

O

NO

O20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 13.00α = 2.57reference 41

NO

O20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 14.18α = 2.78reference 41

NO

O20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 15.59α = 3.74reference 41

NO

O20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 12.41α = 2.74reference 41

NO

O20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 16.29α = 3.15reference 41

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 6.29α = 2.25reference 41

NO

O

Cl

Cl

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 4.06α = 2.22reference 41

NO

O

Page 42: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 41

Atropisomers REGIS

sulfoxide atropisomer

sulfone atropisomersulfone atropisomer

CH3

O N

CH3

mixture of stereoisomers80:20:0.1% hexane/IPA/HOAc2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1reference 10

80:20:0.1% hexane/IPA/HOAc2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1(S)(-) retained on (S,S) CSPk'1 = 1.71α = 3.09reference 10

CH3

O N

sulfoxide atropisomerZ diastereomer2% MeOH in CH2Cl22 ml/min; 300 nm, -40o C4.6 mm x 25 cm Whelk-O 1k'1 = 1.32α = 4.06reference 21

CH3

SO

sulfone atropisomer-80°Creference 22

CH3

SO

H3C

SO

CH3

O N

O

80:20:0.1% hexane/IPA/HOAc2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 7.95α = 2.43reference 10

CH3

O N

80:20:0.1% hexane/IPA/HOAc2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 2.05α = 3.00reference 10

80:20:0.1% hexane/IPA/HOAc2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 5.11α = 2.04reference 10 CH3

O N

CH3

S OO

sulfone atropisomer2% MeOH in CH2Cl22 ml/min; 300 nm, -80°C4.6 mm x 25 cm Whelk-O 1k'1 = 0.54α = 5.79reference 21

Page 43: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

42 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Atropisomers

NS

O

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 3.06α = 2.48reference 41 N

S

O

HO

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 3.00α = 3.43reference 41

NS

O

Br

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 3.25α = 3.20reference 41

NS

O

MeO

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 5.65α = 3.63reference 41

NS

O20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 2.06α = 4.34reference 41

NS

OCl

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 1.94α = 1.12reference 41

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 2.78α = 1.90reference 41N

S

O

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 2.41α = 1.80reference 41

NS

O

Page 44: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

NO

O20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 7.12α = 2.40reference 41

NO

S20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O CSPk'1 = 6.94α = 1.36reference 41

NO

S20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 6.65α = 1.35reference 41

NO

S20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 6.65α = 1.50reference 41

NO

S20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 7.41α = 1.48reference 41

NO

S20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 7.12α = 1.36reference 41

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 3.06α = 2.21reference 41

NO

S20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 5.65α = 1.64reference 41 N

S

O

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 43

Atropisomers REGIS

Page 45: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

44 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Atropisomers

NS

S

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 1.94α = 1.85reference 41 N

S

O

Cl

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 2.24α = 1.45reference 41

NS

S

HO

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 2.59α = 1.70reference 41

NS

S

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 3.82α = 1.62reference 41

NS

S

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 3.12α = 2.39reference 41

NS

S

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 4.12α = 1.62reference 41

15% IPA/hexane1 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 2.86α = 1.86reference 42

N

N

O

S

15% IPA/hexane1 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 2.14α = 5.56reference 42

N

N

O

S

O2N

Page 46: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 45

Atropisomers REGIS

NS

OCl

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 3.12α = 2.21reference 41 N

S

S20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 2.41α = 1.66reference 41

NS

S

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 1.82α = 1.75reference 41

NS

S

HO

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 1.53α = 1.84reference 41

NS

S

HO

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 2.41α = 2.61reference 41

NS

S

Br

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 2.24α = 2.02reference 41

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 2.29α = 1.80reference 41N

S

S

Cl

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 2.18α = 1.46reference 41 N

S

S

Page 47: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

46 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Atropisomers

Amlodipine Vapol

Adam’s Acid DiethylamideNimodipine

AmlodipineColumn = (R,R)-

Whelk-O 125 cm x 4.6 mm

Mobile Phase = (46/46/8)CH2Cl2/Hexane/Ethanol +0.01 M Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 13.0 mink'1 = 5.13α = 1.22reference 46

OH

OH

Ph

Ph

VapolColumn = (R,R)-ULMO25 cm x 4.6 mmMobile Phase =

100% MethanolFlow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 13 mink'1 = 1.74α = 3.37reference 48

NimodipineColumn = (R,R)-Whelk-O 1

25 cm x 4.6 mmMobile Phase =

(65/35)Methanol/H2O

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 31.0 mink'1 = 9.25α = 1.13reference 46

Adam’s Acid DiethylamideColumn = (3R,4S)-Pirkle 1-J25 cm x 4.6 mmMobile Phase = (70/30)

Hexane/IPAFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 17.0 mink'1 = 4.11α = 1.27reference 46

15% IPA/hexane1 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 11.8α = 1.58reference 42

N

N

O

N

F

N

NH2

O

O

20% 2-propanol in hexane2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 4.00α = 2.25reference 41

NS

S

Page 48: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

Phototrigger 1 Phototrigger 2

Phototrigger 3

MesogensPhototrigger 4

O

H H

Phototrigger 18% IPA in hexane1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1reference 24

O

H3C CH3

Phototrigger 28% IPA in hexane1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1reference 24

O

H3C CH3

O

N

H

H3C

H3C

Phototrigger 440% IPA in hexane1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1reference 24

O

O

CN

O

O

O

CN

MesogensSchuster's candidate photoresolvable mesogensepoxide derivatives reference 13

Phototrigger 340% IPA in hexane1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1reference 24

Optical Switches, Liquid Crystal Components , e tc . REGIS

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 47

Page 49: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

48 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Allenes

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 0.74α = 2.38reference 42

H

CH3

O

O

Cl

H

CH3

O

O

F95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 0.72α = 2.33reference 42

H

CH3

O

O

O2N

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 2.20α = 1.59reference 42

H

CH3

O

O

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 0.43α = 3.23reference 42

H

CH3

O

O

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 0.87α = 2.90reference 42

H

CH3

O

O

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 0.69α = 3.70reference 42

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 1.95α = 4.19reference 42

H

CH3

O

OH

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 1.99α = 7.49reference 42

H

CH3

O

OH

Page 50: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 49

H

CH3

O

O

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 1.84α = 3.46reference 42

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 0.79α = 3.23reference 42

H

CH3

O

O

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 1.64α = 3.29reference 42

H

CH3

O

O

O

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 0.79α = 2.41reference 42

H

CH3

O

O

Br

H

CH3

O

O

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 1.84α = 5.68reference 42

H CH3

H

CH3

O

O

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 1.33α = 3.13reference 42

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 0.93α = 3.85reference 42

H

CH3

O

O

H

CH3

O

O

I

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 0.85α = 2.48reference 42

Allenes REGIS

Page 51: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS Allenes

50 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

H

CH3

O

OH

O2N95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 2.94α = 1.74reference 42

H

CH3

O

N

CH3

CH3

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 7.96α = 1.03reference 42

H

CH3

O

N

H

CH3

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 10.07α = 1.45reference 42

H

CH3

O

N

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 4.47α = 0.09reference 42

H

CH3

O

N

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 5.00α = 1.14reference 42

H

CH3

O

N

H

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 7.10α = 1.44reference 42

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 4.14α = 1.08reference 42

H

CH3

O

N

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 2.76α = 1.13reference 42

H

CH3

O

N

Page 52: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

H

CH3

O

OH

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 0.90α = 3.92reference 42

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 1.88α = 3.62reference 42

H

CH3

O

OH

H3CO

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 1.01α = 2.67reference 42

H

CH3

O

OH

Br

k'1 = 0.90α = 2.5795:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1reference 42

H

CH3

O

OH

F

H

CH3

O

OH

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 1.53α = 3.56reference 42

H

CH3

O

OH

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 1.04α = 4.28reference 42

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 1.07α = 2.84reference 42

H

CH3

O

OH

I

H

CH3

O

OH

Cl

k'1 = 0.92α = 2.6795:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1reference 42

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 51

Allenes REGIS

Page 53: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS Allenes

52 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

H

CH3

O

N

H

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 5.46α = 1.34reference 42

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 3.47α = 1.14reference 42

H

CH3

O

N

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 10.30α = 1.11reference 42

H

CH3

O

N

H

CH3

O

N

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 3.10α = 1.18reference 42

H

CH3

O

N

H

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 5.21α = 1.33reference 42

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 5.30α = 1.06reference 42

H

CH3

O

N

CH3

H

CH3

O

N

95:5:1 hexane2-propanol, acetic acid2 ml/min; 254 nm(S,S) Whelk-O 1k'1 = 6.07α = 1.12reference 42

Page 54: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 53

Organometal l ic Compounds REGIS

(OC)3Cr O

H3CO

20% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 3.82α = 1.07reference 20

(OC)3Cr O

H3CO

20% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 5.93α = 1.18reference 20

(OC)3Cr O

CH3

20% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 2.25α = 1.19reference 20

k'1 = 1.71

(OC)3Cr

NH

O

20% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 1.71α = 1.75reference 20

k'1 = 6.79

(OC)3Cr

N

OCH3

20% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 6.79α = 1.04reference 20

(OC)3Cr O

20% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 1.48α = 1.23reference 20

20% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 2.44α = 1.75reference 20

(OC)3CrCH3

NH

O CH3

20% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 4.93α = 1.62reference 20

k'1 = 2.44

(OC)3CrCH3

NH

O

Page 55: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS Organometal l ic Compounds

54 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

k'1 = 1.79

α 1 99

(OC)3CrCH3

NH

O

20% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 1.79α = 1.99reference 20

(OC)3CrCH3

NH

O

20% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 3.14α = 1.86reference 20

k'1 = 1.14

(OC)3Cr

NH

O

20% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 1.14α = 1.75reference 20

k'1 = 11.86

(OC)3Cr

N

O CH3

20% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 11.86α = 2.08reference 20

k'1 = 1.86

(OC)3CrOEt

NH

O

20% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 1.86α = 1.69reference 20

k'1 = 3.71

(OC)3Cr

N

O

20% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 3.71α = 2.50reference 20

20% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 2.29α = 2.46reference 20

(OC)3Cr

N

O

20% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 3.71α = 2.50reference 20

k'1 = 2.29

(OC)3Cr

N

O

Page 56: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

H

O

CH3

(OC)3Cr

30% CH2Cl2 in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 4.28α = 1.07reference 20

H

O

OCH3

(OC)3Cr

30% CH2Cl2 in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 7.57α = 1.09reference 20

CH3

O

CH3

(OC)3Cr

30% CH2Cl2 in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 3.57α = 1.06reference 20

(OC)3Cr O

20% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 4.48α = 1.08reference 20

OH

CH3

(OC)3Cr

20% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 1.77α = 1.11reference 20

OH

OCH3

(OC)3Cr

20% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 3.22α = 1.15reference 20

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 55

Organometal l ic Compounds REGIS

Page 57: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS Agricul tural Compounds

56 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

PPO Inhibitor PPO Inhibitor

Tetramethrin

PPO Inhibitor

Bromacil

PPO Inhibitor

Mecoprop MethylPermethrin

O2N

O

O

N N

Et

O NH

CH3

Cl

CF3

PPO inhibitor10% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 5.2α = 1.32reference 23

O2N

O

O

N N

CH3

O NH

CH3

Cl

CF3

PPO inhibitor10% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 7.5α = 1.29reference 23

O2N

O

O

N N

CH3

O NH

H

Cl

CF3

PPO inhibitor10% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 8.0α = 1.22reference 23

O2N

N

O

N N

CH3

O NH

CH3

Cl

CF3

H

PPO inhibitor10% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 15.1α = 1.04reference 23

Tetramethrin (insecticide)2% IPA/hexane1 ml/min; 254 nmRun Time = 22 min4.6 mm x 25 cm

Whelk-O 1k'1 = 11.77α = 1.12reference 43

O

O

N

O

O

Bromacil (insecticide)2% IPA/hexane1 ml/min; 254 nmRun Time = 38 min4.6 mm x 25 cm

Whelk-O 1k'1 = 21.43α = 1.07reference 43

N

NH3C

Br

O

H

O

Cl

Cl

O

O

O

Permethrin (insecticide)0.2% IPA/hexane1 ml/min; 254 nmRun Time = 16 min4.6 mm x 25 cm

Whelk-O 1k'1 = 4.83 cis; 7.46 transα = 1.11 cis; 1.24 transreference 43

O

CH3

O

OCH3

Cl

CH3

Mecoprop Methyl (insecticide)hexane1 ml/min; 254 nmRun Time = 15 min4.6 mm x 25 cm

Whelk-O 1k'1 = 6.92α = 1.15reference 43

Page 58: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 57

Agricul tural Compounds REGISResmethrin Metalaxyl

Sethoxydim

Metolachlor

Chrysanthemic Acid-Ethyl Ester

Leptophos, Phosvel

MecopropOmite

ResmethrinColumn: (R,R)-Whelk-O 1

25 cm x 4.6 mmMobile Phase: 100% HexaneFlow Rate:1.0 mL/minDection: UV 254 nmRun Time: 15.0 mink'1 = 6.30α = 1.19reference 46

N

CH3

CH3

CH3

O

OCH3

O

OCH3

Metalaxyl (herbicide)70:30 hexane/IPA1 ml/min; 254 nmRun Time = 13 min4.6 mm x 25 cm

Whelk-O 1k'1 = 6.54α = 1.13reference 43

PO

S

OCH3

Cl

Cl

Br

Leptophos, Phosvel (insecticide)

hexane1 ml/min; 254 nmRun Time = 10 min4.6 mm x 25 cm

Whelk-O 1k'1 = 4.11α = 1.18reference 43

N

CH3

CH3

CH3

OCH3

O

Cl

Metolachlor (herbicide)2% IPA/hexane1 ml/min; 254 nmRun Time = 25 min4.6 mm x 25 cm

Whelk-O 1reference 43

Sethoxydim (herbicide)2% IPA/hexane1 ml/min; 254 nmRun Time = 15 min4.6 mm x 25 cm

Whelk-O 1k'1 = 6.77α = 1.26reference 43

NO

OH

O

S

Chrysanthemic acid ethyl ester(mixture of isomers)hexane1 ml/min; 254 nmRun Time = 10 min4.6 mm x 24 cm

Whelk-O 1reference 43

O

O

Et

Omite (acaricide)(mixture of isomers)hexane1 ml/min; 254 nmRun Time = 25 min4.6 mm x 24 cm

Whelk-O 1reference 43

O

CH3

OH

OCH3

Cl

Mecoprop (herbicide)99:1:0.1 HEX/IPA/HOAc1 ml/min; 254 nmRun Time = 15 min4.6 mm x 25 cm

Whelk-O 1k'1 = 6.54α = 1.13reference 43

O

OS

O

OOmite

Page 59: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS Agricul tural Compounds

58 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

Propiconazole, Tilt Devrinol, Napropamide

Diclofop Methyl

Crotoxyphos

Diclofop Methyl

Chlorflurecol Methlyl

PPO InhibitorPPO Inhibitor

Cl

OOCl

N

NN

Propiconazole, Tilt (fungicide)

99:1:0.1 IPA/hexa-ne/HOAc1 ml/min; 254 nmRun Time = 70 min4.6 mm x 25 cm

Whelk-O 1reference 43

O

CH3

N

O

Devrinol, Napropamide (herbicide)1:1 IPA/hexane1 ml/min; 254 nmRun Time = 15 min4.6 mm x 25 cm

Whelk-O 1k'1 = 3.17α = 3.00reference 43

HO

Cl

O

OCH3

Chlorflurecol Methyl(herbicide)2% IPA/hexane1ml/min; 254 nmRun Time 16 min4.6 mm x 25 cm

Whelk-O 1k'1 = 3.96α = 1.28reference 43

Crotoxyphos70:30 hexane/IPA1 ml/min; 254 nmRun Time = 15 min4.6 mm x 25 cm

Whelk-O 1k'1 = 4.37α = 1.93reference 43

Diclofop Methyl (herbicide)1% IPA/hexane1 ml/min; 254 nmRun Time = 30 min4.6 mm x 25 cm

Whelk-O 1k'1 = 4.29α = 1.21reference 43 O

Cl

Cl

CH3

O

O

CH3O

Diclofop Methyl (herbicide)hexane1 ml/min; 254 nmRun Time = 30 min4.6 mm x 25 cm

Whelk-O 1k'1 = 14.19α = 1.30reference 43 O

Cl

Cl

CH3

O

O

CH3O

O2N

O

O

N N

CH3

O OCH3

Cl

CF3

PPO inhibitor10% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 3.9α = 1.11reference 23

O2N

O

O

N N

Et

O OEt

Cl

CF3

PPO inhibitor10% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 2.4α = 1.12reference 23

Page 60: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

cis:trans Cypermethrin PPO Inhibitor

Tetramisole

PPO Inhibitor

Silvex Methyl

PPO Inhibitor

cis:trans CypermethrinColumn = (3R,4S)-Pirkle 1-J

25 cm x 4.6 mmMobile Phase = (98/2)

Hexane/IPAFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 22.0 mink'1 (trans) = 4.59α (trans) = 1.19k'1 (cis) = 6.19α (cis) = 1.18reference 46

O2N

O

O

N N

CH3

O OEt

Cl

CF3

PPO inhibitor10% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 3.2α = 1.08reference 23

O2N

O

O

N N

CH3

O O

Cl

CF3

OCH3

PPO inhibitor10% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 6.1α = 1.08reference 23 O2N

O

O

N N

CH3

O O

Cl

CF3

OEt

PPO inhibitor10% IPA in hexane2 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 4.2α = 1.10reference 23

TtetramisoleColumn = (R,R)-Whelk-O 1

25 cm x 4.6 mmMobile Phase = (40/40/20)

CH2Cl2/Hexane/Ethanol + 0.01 M Ammonium Acetate

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 7.0 mink'1 = 0.52α = 2.84reference 46

Silvex Methyl (herbicide)

hexane1 ml/min; 254 nmrun time = 15 min4.6 mm x 25 cm

Whelk-O 1k'1 = 6.47α = 1.05reference 43

O

CH3

O

OCl

Cl

CH3

Cl

Column = (R,R)-Whelk-O 1

25 cm x 4.6 mmMobile Phase = Hexane Flow Rate = 0.5 mL/minDetection = UV 254 nmRun Time = 15.5 minreference 54

Column = (S,S)-Whelk-O 1

25 cm x 4.6 mmMobile Phase = Hexane Flow Rate = 0.5 mL/minDetection = UV 254 nmRun Time = 18.5 minreference 54

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 59

Agricul tural Compounds REGIS

Page 61: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS Agricul tural Compounds

60 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

Fluazifop-butyl Haloxyfop-ethoxyethyl

Dinocap

Quizalofop-ethylFenoxaprop-ethyl

Fluazifop-butylColumn: (S,S)-DACH-DNB

25 cm x 4.6 mmMobile Phase: (95/5)

Hexane/IPATemperature: 20º CFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 11.5 mink'1 = 2.65α = 1.22reference: 59

Haloxyfop-ethoxyethylColumn: (S,S)-DACH-DNB

25 cm x 4.6 mmMobile Phase: (95/5)

Hexane/IPATemperature: 20º CFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 13.0 mink'1 = 3.13α = 1.25reference: 59

Fenoxaprop-ethylColumn: (R,R)-DACH-DNB

25 cm x 4.6 mmMobile Phase: (95/5)

Hexane/IPATemperature: 20º CFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 18.0 mink'1 = 4.70α = 1.15reference: 59

FenvalerateFenvalerateColumn: (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mmMobile Phase: (99/1)

Hexane/IPAFlow Rate: 3.0 mL/minDetection: UV 254 nmk'A1= 9.36α(A1,A2)= 2.54k'B1= 16.79α(B1,B2)= 1.14reference 46

Quizalofop-ethylColumn: (R,R)-DACH-DNB

25 cm x 4.6 mmMobile Phase: (95/5)

Hexane/IPATemperature: 20º CFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 20.0 mink'1 = 5.22α = 1.21reference: 59

Dinocap (fungicide) - mixture of isomershexane1 ml/min; 254 nmRun Time = 15 min4.6 mm x 25 cm Whelk-O 1reference 43

O2N

NO2

O

O2N NO2

O

Page 62: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 61

Miscel laneous Pharmaceut icals REGISNirvanol Mephenytoin

Cyclothiazide

Oxazepam

Bendroflumethiazide

Thalidomide

N

N O

H

HO

CH3

Nirvanol20% IPA/hexane1 ml/min; 254 nmRun Time = 8 min4.6 mm x 25 cm

Whelk-O 1k'1 = 1.50α = 2.57reference 31

N

N O

H

CH3O

CH3

Mephenytoin20% IPA/hexane1 ml/min; 254 nmRun Time = 14 min4.6 mm x 25 cm

Whelk-O 1k'1 = 1.57α = 2.46reference 31

N

N

O

H

OO

O

Thalidomide63:37:0.1 H2O/MeOH/HOAc1 ml/min; 254 nmRun Time = 33 min4.6 mm x 25 cm

Whelk-O 1k'1 = 10.19α = 1.10reference 18

OxazepamColumn = (R,R)-Whelk-O 1

25 cm x 4.6 mmMobile Phase = (75/25)

Hexane/IPA + 0.01 MAmmonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 9.5 mink'1 = 2.73α = 1.56reference 46

CyclothiazideColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (75/25)

Hexane/IPA + 0.1% Acetic Acid

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 12.0 mink'1 = 3.71α = 1.47reference 46

bendroflumethiazidek'1 = 7.89α = 1.161:1 hexane/IPA1 ml/min; 220 nmrun time = 30 min4.6 mm x 25 cm

Whelk-O 1reference 18

N

NSS

H2N

OO

F3C

OOH

H

Column: (S,S)-Whelk-O 125 cm x 4.6 mmMobile Phase: (60/40)Ethanol/Hexane + 0.1%TriethylamineFlow Rate: 1.5 mL/minDetection: UV 254 nmRun Time: 32.0 mink'1 = 3.78α = 1.66reference 55

Column: (S,S)-Whelk-O 125 cm x 4.6 mmMobile Phase: (80/20)Hexane/IPA Flow Rate: 2.0 mL/minDetection: UV 254 nmRun Time: 32.0 mink'1 = 15.64α = 1.33reference 55

Page 63: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

McN 5652 Bupivacaine

Cyclandelate

p-Chloro-Warfarin

Indapamide

Tolperisone

N

SCH3McN 56522% IPA/hex w. 0.2%

diethylamine1 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 0.85α = 1.36reference 32

NN

O

H

Bupivacaine80:20:0.1 hexane/IPA/TEA1 ml/min; 254 nmRun Time = 7-8 min4.6 mm x 25 cm

Whelk-O 1k'1 = 1.89α = 1.25reference 18

H3C

O

CH3

N

Tolperisone99:1:0.1 hexane/IPA/TEA1 ml/min; 254 nmRun Time = 18 min4.6 mm x 25 cm

Whelk-O 1k'1 = 4.81α = 1.10reference 18

-chloro-warfarin

1 64

O O

OH

CH3

O

Cl

p-Chloro-Warfarin85:15:0.1 MeOH/H2O/HOAc1 ml/min; 254 nmRun Time = 12 min4.6 mm x 25 cm

Whelk-O 1k'1 = 1.64α = 1.93reference 18

Cyclandelate (mixture of isomers)hexane1 ml/min; 254 nmRun Time = 35 min4.6 mm x 25 cm

Whelk-O 1reference 18

OH

O

O

Iindapamidek'1 = 2.46α = 1.681:1 hexane/IPA1 ml/min; 220 nmRun Time = 14 min4.6 mm x 25 cm

Whelk-O 1reference 18 N

NH

O

CH3

S

Cl

NH2

OO

Column:(S,S)-Whelk-O 125 cm x 4.6 mmMobile Phase: (60/40)

Ethanol/Hexane + 0.1%Triethylamine

Flow Rate: 1.0 mL/minDetection: UV 280 nmRun Time: 17.0 mink'1 = 3.78α = 1.14reference 56

Column = (R,R)-Whelk-O 125 cm x 4.6 mmMobile Phase = (95/5)Hexane/IPA Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 25.0 mink'1 = 3.45α = 2.04reference 53

62 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Miscel laneous Pharmaceut icals

Page 64: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 63

Miscel laneous Pharmaceut icals REGISNicardipine Isradipine (reversed phase)

Hanessian’s Lignan

SC 41930

Tropicamide

Isradipine (normal phase)

U-94863U-100057

nicardipine

k' 6 06

N

H

H3C CH3

O OCH3

OO

NO2

N

H3C

Nicardipine73:27:0.1 hexane/IPA/HOAc1 ml/min; 254 nmRun Time = 30 min4.6 mm x 25 cm

Whelk-O 1k'1 = 6.06α = 1.52reference 18

N

H

H3C CH3

O OCH3

OO

NO

N

Isradipine (reversed phase)63/37 MeOH/H2O1 ml/min; 254 nmRun Time = 35 min4.6 mm x 25 cm

Whelk-O 1k'1 = 11.21α = 1.12reference 18

N

O

N

N

H

H3C CH3

O

O

O

O

H3C

Isradipine (normal phase)98:2:0.5 hexane/IPA/TEA1 ml/min; 254 nmRun Time = 52 min4.6 mm x 25 cm

Whelk-O 1k'1 = 9.71α = 1.10reference 18

SC 41930

k'1 = 1.05

H3C

O OCH3

O O

O

HO

HO

SC 4193080:20:0.5 hexane/IPA/HOAc1 ml/min; 254 nmRun Time = 6 min4.6 mm x 25 cm

Whelk-O 1k'1 = 1.05α = 1.12reference 7

Hanessian's lignanmethanol1 ml/min; 254 nmRun Time = 8 min4.6 mm x 25 cm

Whelk-O 1k'1 = 0.94α = 1.69reference 7

O

OO

O

H

H

OCH3

OCH3H3CO

TropicamideColumn: (R,R)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mm

Mobile Phase: (75/25)Hexane/Ethanol

Flow Rate: 1.5 mL/minDetection: UV 254 nmRun Time = 13.9 mink'1 = 4.52α = 1.49reference 46

O O

OH

U-10005765:35 hexane/IPA90 ml/min to 34 min,

then 120 ml/minRun Time = 50 min5.1 cm x 25 cm

Whelk-O 1Sample Load = 1.9 greference 37

N Cl

O

Cl

Cl

U-9486370:30:0.5 hexane/

IPA/HOAC12 ml/min; 254 nm2.1 cm x 25 cm

Whelk-O 1Run Time = 12 minSample Load = 40 mgreference 37

Page 65: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

64 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

U-94863

ProglumideTemazepam

N Cl

O

Cl

Cl

U-9486340:60:0.5 hexane/IPA/HOAc1 ml/min; 254 nmrun time = 15 min4.6 mm x 25 cm

Whelk-O 1k'1 = 2.26α = 1.95reference 37

Column: (S,S)-ULMO25 cm x 4.6 mmMobile Phase: (97/3)

Hexane/IPA +0.1% Acetic acid

Flow Rate: 1.5 mL/minDetection: UV 254 nmRun Time: 31.0 mink'1 = 12.05α = 1.34reference 46

N

O

H

N

O

OHO

Proglumide75:25:0.1 hexane/IPA/HOAc1 ml/min; 254 nmrun time = 10 min4.6 mm x 25 cm

Whelk-O 1k'1 = 1.54α = 1.49reference 18

30% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 1.61α = 1.48reference 44

N

N

O

H

CH3

30% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 1.66α = 1.69reference 44

N

N

O

H

CH3

N

N

O

H

30% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 1.29α = 1.83reference 44

N

N

O

H

CH3O2N

30% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm Whelk-O 1k'1 = 2.56α = 1.25reference 44

REGIS Miscel laneous Pharmaceut icals

TroglitazoneTroglitazoneColumn = (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mm

Mobile Phase = (90/10)Hexane/IPA + 0.1% Acetic Acid

Flow Rate = 2.0 mL/minDetection = UV 220 nmk'1 = 13.05α = 1.22reference 46

Page 66: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 65

Miscel laneous Pharmaceut icals REGIS

N

N

O

H

CH3Cl

30% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 1.38α = 1.44reference 44

N

N

O

HCl

30% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 1.34α = 1.60reference 44

N

N

O

H

F

30% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 1.29α = 1.83reference 44

N

N

O

H

Cl

Cl

30% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 1.34α = 1.78reference 44

N

N

O

H

Cl

30% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 1.37α = 1.90reference 44

N

N

O

H

F

Cl

30% IPA/hexane1 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 1.18α = 1.72reference 44

70:30:05 hexane/2-propanol/diethyl amine1 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 1.70α = 1.55reference 44

N N

N

O

H

CH3

70:30:05 hexane/2-propanol/diethyl amine1 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 2.36α = 1.33reference 44 N N

N

O

H

F

Page 67: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

66 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Miscel laneous Pharmaceut icals

N N

N

O

H

70:30:05 hexane/2-propanol/diethyl amine1 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 1.90α = 1.45reference 44 N N

N

O

H

Cl

70:30:05 hexane/2-propanol/diethyl amine1 ml/min; 254 nm4.6 mm x 25 cm

Whelk-O 1k'1 = 1.73α = 1.59reference 44

H3CO

N

OCH3

O

N

N

40% IPA/hexane1 ml/min4.6 mm x 25 cm(S,S) Whelk-O 1α = 1.34Rs = 2.10reference 45

N

NH

NH

O

H

OCH3

50% IPA/hexane1 ml/min4.6 mm x 25 cm(S,S) Whelk-O 1 α = 1.32Rs = 2.10reference 45

N

OH

NH

HO

O O

10% IPA/hexane1 ml/min4.6 mm x 25 cm(S,S) Whelk-O 1α = 1.29Rs = 2.10reference 45

N

O

NH

HO

O O

10% IPA/hexane1 ml/min4.6 mm x 25 cm(S,S) Whelk-O 1α = 1.10Rs = 0.95reference 45

45% IPA/hexane1 ml/min4.6 mm x 25 cm(S,S) Whelk-O 1α = 1.57Rs = 2.20reference 45

NN

O

H

O

NH

Br

45% IPA/hexane1 ml/min4.6 mm x 25 cm(S,S) Whelk-O 1 α = 2.17Rs = 2.20reference 45 N

N

O

H

H

Page 68: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 67

Miscel laneous Pharmaceut icals REGIS

NO

CH3

H

H

Cl10% IPA/hexane1 ml/min4.6 mm x 25 cm(S,S) Whelk-O 1 α = 1.04Rs = 0.60reference 45

NO

CH3

H3C

H

Br10% IPA/hexane1 ml/min4.6 mm x 25 cm(S,S) Whelk-O 1 α = 1.04Rs = 0.60reference 45

F

O

OCH3

15% IPA/hexane1 ml/min4.6 mm x 25 cm(S,S) Whelk-O 1 α = 1.13Rs = 1.50reference 45

NN

O

O

CH3O

NH

CH3

H2N

40% IPA/hexane1 ml/min4.6 mm x 25 cm(S,S) Whelk-O 1 α = 1.22Rs = 1.50reference 45

F3C N

O

H O

Cl

OCH3

O

10% IPA/hexane1 ml/min4.6 mm x 25 cm(S,S) Whelk-O 1 α = 1.11Rs = 1.50reference 45

Bendroflumethiazide

ThalidomideIndapamide

Bendroflumethiazide Column = (R,R)-ULMO25 cm x 4.6 mmMobile Phase = (75/25) Hexane/IPAFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 18 mink'1 = 2.99α = 1.84reference 46

N

N

SS

H2N

OO OO

F3C

H

H

NN

H

CH3

O

Cl

SNH2

O O

IndapamideColumn = (R,R)-ULMO25 cm x 4.6 mmMobile Phase = (75/25) Hexane/IPAFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 16 mink'1 = 3.09α = 1.58reference 46

ThalidomideColumn = (R,R)-ULMO 25 cm x 4.6 mmMobile Phase: (90/10)

Hexane/IPA + 0.1% Acetic acid

Flow Rate = 1.0 mL/minDetection = UV 220 nmRun Time = 28.0 mink'1 = 7.71α = 1.22reference 46

Page 69: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

Warfarin Chlorthalidone

Flobufen and Flobufen Metabolites

4(3H)-Quinazolone Derivatives

Flobufen Metabolites

4(3H)-Quinazolone Derivatives4(3H)-Quinazolone Derivatives

68 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Miscel laneous Pharmaceut icals

α = 1.14

α = 1.14 α = 1.14

α = 1.20α = 1.08

WarfarinColumn: (S,S)-ULMO25 cm x 4.6 mmMobile Phase: (70/30)

Heptane/IPA + 0.1% TFAFlow Rate: 1.0 mL/minDetection: UV 230 nmRun Time: 6.5 mink'1 = 0.89α = 1.36reference 48

ChlorthalidoneColumn = (S,S)-DACH-DNB

25 cm x 4.6 mmMobile Phase = (99/1)

CH2Cl2/CH3OH + 0.01 M Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 20.0 mink'1 = 9.38α = 1.18reference 46

Flobufen MetabolitesColumn = (S,S)-ULMO 25 cm x 4.6 mmMobile Phase = (97/3)

Heptane/Glyme + 0.1% TFA

Flow Rate = 1.0 mL/minDetection = UV 215 nmRun Time = 21.0 minreference 47

Flobufen and FlobufenMetabolites

Column = (S,S)-ULMO 25 cm x 4.6 mmMobile Phase = (90/10)Heptane/IPA + 0.1% TFA Flow Rate = 2.0 mL/minDetection = UV 230 nmRun Time = 24.0 minreference 47

4(3H)-Quinazolone DerivativesColumn = (S,S)-Whelk-O 1

25 cm x 4.6 mmMobile Phase = (80/20)

Hexane/EthanolFlow Rate = 1.0 mL/minDetection = UV 225 nmRun Time = 16.0 mink'1 = 2.88α = 1.56reference 58

4(3H)-quinazolonederivatives

Column = (S,S)-Whelk-O 125 cm x 4.6 mm

Mobile Phase = (80/20)Hexane/Ethanol

Flow Rate = 1.0 mL/minDetection = UV 225 nmRun Time = 17.0 mink'1 = 2.95α = 1.62reference 58

4(3H)-quinazolone derivativesColumn = (S,S)-

Whelk-O 125 cm x 4.6 mm

Mobile Phase = (90/10)Hexane/IPA

Flow Rate = 1.0 mL/minDetection = UV 225 nmRun Time = 15.0 mink'1 = 3.54α = 1.19reference 58

Dexmedetomidine (Enriched)Dexmedetomidine (Enriched)Column = (S,S)-Whelk-O 2

25 cm x 4.6 mmMobile Phase = (90/10)

Hexane/Ethanol + 10 mM Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 220 nmk'1 = 3.41α = 1.39reference 46

Page 70: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 69

Miscel laneous Pharmaceut icals REGIS

Sulpiride

Ketoconazole

Coumachlor

Tofisopam and it’s ConformersTofisopam and it’s ConformersColumn = (R,R)-β-Gem 1

25 cm x 4.6 mmMobile Phase = (70/30)

Hexane/Ethanol + 0.1% TEAFlow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 25.0 mink'1 = 2.66α = 3.13reference 46

4(3H)-Quinazolone Derivatives 4(3H)-Quinazolone Derivatives

KetamineIfenprodil

4(3H)-Quinazolone DerivativesColumn = (S,S)-Whelk-O 1

25 cm x 4.6 mmMobile Phase = (80/20)

Hexane/EthanolFlow Rate = 1.0 mL/minDetection = UV 225 nmRun Time = 21.0 mink'1 = 3.75α = 1.57reference 58

4(3H)-Quinazolone DerivativesColumn = (S,S)-Whelk-O 1

25 cm x 4.6 mmMobile Phase = (80/20)

Hexane/EthanolFlow Rate = 1.0 mL/minDetection = UV 225 nmRun Time = 15.0 mink'1 = 3.19α = 1.37reference 58

IfenprodilColumn = (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mm

Mobile Phase = (85/15)Hexane/IPA +0.01 M Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 220 nmRun Time = 16.5 mink'1 = 6.16α = 1.32reference 46

KetamineColumn = (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mm

Mobile Phase = (99/1)Hexane/IPA + 0.1% TEA

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 22.0 mink'1 = 6.37α = 1.14reference 46

KetoconazoleColumn = (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mm

Mobile Phase = (46/46/8)CH2Cl2/Hexane/IPA +0.01 M Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 16.0 mink'1 = 6.60α = 1.19reference 46

CoumachlorColumn = (R,R)-Whelk-O 1

25 cm x 4.6 mmMobile Phase = (65/35)

Hexane/Ethanol +0.1% Acetic Acid

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 10.0 mink'1 = 1.48α = 2.90reference 46

SulpirideColumn = (R,R)-DACH-DNB

25 cm x 4.6 mmMobile Phase = (95/5)

CH2Cl2/Ethanol +0.01 M Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 14.0 mink'1 = 5.92α = 1.24reference 46

Page 71: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

70 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Miscel laneous Pharmaceut icals

Ofloxacin Isoxsuprine

Cromakalim

Warfarin (Reversed Phase)

Trichlormethiazide

Warfarin (Normal Phase)

PrilocaineTemazepam

OfloxacinColumn = (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mmMobile Phase = (43/43/14)

CH2Cl2/Hexane/Ethanol +0.01 M Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 10.0 mink'1 = 2.96α = 1.24reference 46

IsoxsuprineColumn = (R,R)-Whelk-O 1

25 cm x 4.6 mmMobile Phase = (95/5)

Hexane/Ethanol +0.01 M Ammonium Acetate

Flow Rate = 2.0 mL/minDetection = UV 220 nmRun Time = 28.0 mink'1 = 17.91α = 1.08reference 46

Warfarin (normal phase)Column = (R,R)-

Whelk-O 125 cm x 4.6 mm

Mobile Phase = (65/35) Hexane/IPA+ 0.1% Acetic Acid

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 11.5 mink'1 = 1.54α = 2.07reference 46

Warfarin (reversed phase)Column = (R,R)-

Whelk-O 125 cm x 4.6 mm

Mobile Phase = (70/30) CH3OH/H2O+ 0.1% Acetic Acid

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 15.0 mink'1 = 3.54α = 1.55reference 46

CromakalimColumn = (R,R)-Whelk-O 1

25 cm x 4.6 mmMobile Phase = (92/8)

Hexane/EthanolFlow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 21.0 mink'1 = 9.18α = 1.14reference 46

TrichlormethiazideColumn = (R,R)-ULMO

25 cm x 4.6 mmMobile Phase =

(75/25)Hexane/IPA +0.1% Acetic Acid

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 15.0 mink'1 = 5.16α = 1.43reference 46

TemazepamColumn = (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mm

Mobile Phase = (80/20) Hexane/IPA + 0.1% Acetic Acid

Flow Rate = 2.0 mL/minDetection = UV 254 nmRun Time = 13.0 mink'1 = 6.86α = 1.34reference 46

PrilocaineColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase =

(99/1) Hexane/Ethanol + 0.01 M Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 15.0 mink'1 = 5.70α = 1.28reference 46

Page 72: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 71

Miscel laneous Pharmaceut icals REGISLorazepam Althiazide

Methadone Hydrochloride

Metolazone

Ethotoin

Clenbuterol

LansoprazoleZopiclone

LorazepamColumn = (R,R)-Whelk-O 1

25 cm x 4.6 mmMobile Phase = (70/30)

Hexane/IPA +0.1% Acetic Acid

Flow Rate = 1.5 mL/minDtection - UV 254 nmRun Time = 9.0 mink'1 = 2.08α = 2.02reference 46

AlthiazideColumn = (S,S)-ULMO

25 cm x 4.6 mmMobile Phase = (75/25)

Hexane/IPA +0.1% Acetic Acid

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 13.0 mink'1 = 3.94α = 1.53reference 46

ClenbuterolColumn = (R)-α-Burke 2

25 cm x 4.6 mmMobile Phase = (90/10)

CH2Cl2/Ethanol +0.01 M AmmoniumAcetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 12.0 mink'1 = 4.99α = 1.09reference 46

MetolazoneColumn = (R,R)-

Whelk-O 125 cm x 4.6 mm

Mobile Phase = (55/45)Hexane/Ethanol

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 10.0 mink'1 = 1.93α = 2.43reference 46

Methadone HydrochlorideColumn = (S)-α-Burke 2

25 cm x 4.6 mmMobile Phase =

(88/12)Hexane/Ethanol + 0.1% TEA

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 10.0 mink'1 = 3.50α = 1.34reference 46

EthotoinColumn = (S,S)-Whelk-O 1

25 cm x 4.6 mmMobile Phase =

(75/25)Hexane/Ethanol

Flow Rate = 1.5 mL/minDtection - UV 254 nmRun Time = 11.0 mink'1 = 1.65α = 3.03reference 46

ZopicloneColumn = (R,R)-Whelk-O 1

25 cm x 4.6 mmMobile Phase = (95/5)

CH2Cl2/Ethanol + 0.01 M Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 8.5 mink'1 = 1.94α = 2.01reference 46

LansoprazoleColumn = (S)-α-Burke 2

25 cm x 4.6 mmMobile Phase =

(94/3/3)CH2Cl2/Ethanol/Methanol + 0.2% Acetic AcidFlow Rate = 1.5 mL/min

Detection = UV 254 nmRun Time = 6.0 mink'1 = 0.88α = 2.43reference 46

Page 73: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

Chlormezanone Tetrabenazine

trans-U-50488HDihydrotetrabenazine

72 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Miscel laneous Pharmaceut icals

ChlormezanoneColumn = (R,R)-Whelk-O 1

25 cm x 4.6 mmMobile Phase = (60/40)

Hexane/IPAFlow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 13.0 mink'1 = 4.48α = 1.36reference 46

TetrabenazineColumn = (S,S)-Whelk-O 1

10/100 (FEC)25 cm x 4.6 mm

Mobile Phase = (55/45) Hexane/IPA + 0.1% TFA

Flow Rate = 1.5 mL/minDetection = UV 280 nmRun Time = 13.4 mink'1 = 3.35α = 1.93reference 46

DihydrotetrabenazineColumn = (S,S)-Whelk-O 1

10/100 (FEC)25 cm x 4.6 mm

Mobile Phase = (60/40) Hexane/IPA + 0.1% TFA

Flow Rate = 1.5 mL/minDetection = UV 280 nmRun Time = 9.3 mink'1 = 2.50α = 1.65reference 46

trans-U-50488HColumn = (3R,4S)-Pirkle I-J

25 cm x 4.6 mmMobile Phase = (92/8)

Hexane/Ethanol +0.01 M Ammonium Acetate

Flow Rate = 2.0 mL/minDetection = UV 220 nmRun Time = 12.0 mink'1 = 6.71α = 1.27reference 46

Fluridil Alfuzosin

PazufloxacinDoxazosin

FluridilColumn = (S,S)-Whelk-O 2

25 cm x 4.6 mmMobile Phase =

(57/43)H2O/CH3OH

Flow Rate = 1.5 mL/minDetection = UV 254 nmk'1 = 12.9α = 1.18reference 46

AlfuzosinColumn = (R,R)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mm

Mobile Phase = (68/28/4)Hexane/CH2Cl2/Ethanol + 4 mM Ammonium Acetate

Flow Rate = 2.0 mL/minDetection = UV 254 nmk'1 = 7.37α = 1.15reference 46

DoxazosinColumn = (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mmMobile Phase = (66/29/5)

Hexane/CH2Cl2/Ethanol + 5 mM Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmk'1 = 14.2α = 1.13reference 46

PazufloxacinColumn = (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mmMobile Phase = (40/40/20)

CH2Cl2/Hexane/IPA+ 0.15% TFA

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 6.7 mink'1 = 1.71α = 1.58reference 46

Page 74: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 73

Miscel laneous Pharmaceut icals REGISMosapride Modafinil

Lorglumide

Nadifloxacin

Idazoxan

Sulindac

MosaprideColumn = (R,R)-

Whelk-O 110/100 (FEC) 25 cm x 4.6 mm

Mobile Phase = (66/28/6)Hexane/CH2Cl2/Ethanol

Flow Rate = 1.5 mL/minDetection = UV 254 nmk'1 = 7.37α = 1.19reference 46

ModafinilColumn = (S,S)-Whelk-O 1

10/100 (FEC)25 cm x 4.6 mm

Mobile Phase = (65/35)Hexane/IPA

Flow Rate = 1.5 mL/minDetection = UV 254 nmk'1 = 3.57α = 1.75reference 46

SulindacColumn = (R,R)-Whelk-O 1

10/100 (FEC)25 cm x 4.6 mm

Mobile Phase = (48/48/4)Hexane/CH2Cl2/IPA+ 0.1% Acetic acid

Flow Rate = 1.5 mL/minDetection = UV 254 nmk'1 = 4.32α = 1.45reference 46

NadifloxacinColumn = (S,S)-Whelk-O 1

10/100 (FEC)25 cm x 4.6 mm

Mobile Phase = (45/45/10)CH2Cl2/Hexane/IPA+ 10 mM Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmk'1 = 2.95α = 1.58reference 46

LorglumideColumn = (R,R)-Whelk-O 1

10/100 (FEC)25 cm x 4.6 mm

Mobile Phase = (95/5)Hexane/IPA + 0.1% Acetic Acid

Flow Rate = 2.0 mL/minDetection = UV 254 nmk'1 = 5.22α = 1.25reference 46

IdazoxanColumn = (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mmMobile Phase = (70/29/1)

Hexane/MethyleneChloride/IPA+ 0.1% TEA

Flow Rate = 2.0 mL/minDtection - UV 254 nmk'1 = 5.86α = 1.23reference 46

Page 75: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

74 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

r-7,t-8-Dihydroxy-t-9, 10-epoxy-7,8,9, 10-tetrahydrobenzo[a]pyrene

r-7,t-8-Dihydroxy-t-9, 10-epoxy-7,8,9, 10-tetrahydrobenzo[a]pyrene

40% EtOH/Hexane4.6 mm x 25 cm (R,R) β-Gem 11 ml/min; 254 nmRun Time = 14 mink'1 = 3.18α = 1.25

O�H�

HO�

O�

1-Naphthylureaphenethylamine30% EtOH/Hexane4.6 mm x 25 cm

D-Phenyglycine1 ml/min; 254 nmRun Time = 10 mink'1 = 2.37α = 1.22

HN� C� N� CH�

CH�3�O� H�

Diol Epoxides REGIS Ureas REGIS1-Naphthylureaphenethylamine

Hexobarbital

N�

N� O�Na�

O�

CH�3�

H�3�C�

Hexobarbital5% EtOH/Hexane0.7 ml/min; 254nmrun time = 16 min4.6 mm x 25 cm

L-Leucinek'1 = 2.89α = 1.10

REGIS Barbi turates

Page 76: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 75

Natural Products REGIS

Calanolide A (semi prep)Calanolide A

Flavanone 2-cis-4-trans-Abscisic Acid (ABA)

Combretastatin D-1

ABA Methyl Ester

Combretastatin D-1

2-trans-4-trans-Abscisic Acid

flavanone

k'1 = 7 08

O

OFlavanone1% IPA/hexane1 ml/min; 254 nmRun Time = 25 min4.6 mm x 25 cm

Whelk-O 1k'1 = 7.08α = 1.04reference 26 O

CH3

OH

CH3H3C

OHO

2-cis-4-trans-Abscisic Acid (ABA)80:20:0.5 hexane/IPA/HOAc1 ml/min; 254 nmRun Time = 5 min4.6 mm x 25 cm

Whelk-O 1k'1 = 1.58α = 1.39reference 9

O

CH3

OH

CH3H3C

O

OH

2-trans-4-trans-AbscisicAcid (ABA)80:20:0.5

Hexane/IPA/HOAc1 ml/min; 254 nmRun Time = 5 min4.6 mm x 25 cm

Whelk-O 1k'1 = 2.08α = 1.21reference 9

O

CH3

OH

CH3H3C

O

OH

O O

CH3

ABA Methyl Ester80:20:0.5

Hexane/IPA/HOAc1 ml/min; 254 nmRun Time = 5 min4.6 mm x 25 cm

Whelk-O 1k'1 = 2.41α = 1.31reference 9

Combretastatin D-120% IPA/Hexane2 ml/min; 254 nmrun time = 13 min4.6 mm x 25 cm

Whelk-O 1k'1 = 4.54α = 1.45reference 17

O

OH

O

OO

Combretastatin D-1semi-prep separation20% IPA/hexane2 ml/min; 300 nm200 µl of 12.7 mg/ml solnload = 2.5 mgrun time = 10 min4.6 mm x 25 cm

Whelk-O 1reference 17

O

OH

O

OO

O O

O

OH

O

Calanolide A10% IPA/hexane1.25 ml/min; 270 nmrun time = 18 min4.6 mm x 25 cm

Whelk-O 1k'1 = 3.2α = 1.4reference 16

O O

O

OH

O

Calanolide A (semi prep)10% IPA/hexane1.25 ml/min; 270 nmrun time = 18 min4.6 mm x 25 cm

Whelk-O 15 mg samplek'1 = 3.2α = 1.4reference 16

Page 77: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

Abscisic AcidAbscisic AcidColumn = (R,R)-Whelk-O 1

25 cm x 4.6 mmMobile Phase = (85/15)

Hexane/IPA +0.1% Acetic Acid

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 11.0 mink'1 = 3.52α = 1.38reference 46

TetrahydropalmatineTetrahydropalmatineColumn = (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mm

Mobile Phase = (50/50)Hexane/IPA

Flow Rate = 1.5 mL/minDetection = UV 254 nmk'1 = 6.66α = 1.46reference 46

76 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Natural Products

REGIS β−Blockers

LuciferinTaxifolinLuciferinColumn = L-Leucine

25 cm x 4.6 mmMobile Phase = (60/40)

Hexane/Ethanol + 0.04 mMAmmonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 15.5 mink'1 = 6.09α = 1.25reference 46

TaxifolinColumn = (S,S)-Whelk-O 2

10/100 (FEC)25 cm x 4.6 mm

Mobile Phase = (85/15)Hexane/Ethanol + 0.1% TFA

Flow Rate = 2.0 mL/minDetection = UV 220 nmk'1 = 11.87α = 1.20reference 46

β-Blockerβ-blockerColumn: (S,S)-DACH-DNB25 cm x 4.6 mmMobile Phase: (92/8)

CH2Cl2/IPAFlow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 11.0 mink’1: 2.27α: 1.42reference 59

BambuterolBambuterolColumn = (R,R)-alpha-Burke 2

25 cm x 4.6 mmMobile Phase = (40/40/20)

Hexane/MethyleneChloride/Ethanol + 20 mMAmmonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmk'1 = 3.74α = 1.35reference 46

Page 78: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 77

β−Blockers REGISAlprenolol Betaxolol

Bufuralol

Bupranolol

Metoprolol

Atenolol

β-BlockerTulobuterol HCI

O

OH

N

H

Alprenolol90:5:5 CH2C12/EtOH/MeOH10 mM NH4OAc1 ml/min; 254 nmrun time = 10 min4.6 mm x 25 cm

α-Burke 2k'1 = 1.44α = 1.44reference 33

O

OH

N

H

O

Betaxolol85:10:5 CH2C12/EtOH/MeOH10 mM NH4OAc1 ml/min; 254 nmrun time = 11 min4.6 mm x 25 cm

α-Burke 2k'1 = 2.36α = 1.25reference 33

O

H2N

O

OH

N

H

Atenolol85:10:5CH2C12/EtOH/MeOH15 mM NH4OAc1 ml/min; 254 nmrun time = 16 min4.6 mm x 25 cm

α-Burke 2k'1 = 4.41α = 1.13reference 33

BupranololColumn: (3R,4S)-Pirkle 1-J25 cm x 4.6 mmMobile Phase: (85/15)

CH2Cl2/Ethanol + 0.015M Ammonium Acetate

Flow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 8.5 mink’1: 1.44α: 1.47reference 46

BufuralolColumn: (3R,4S)-Pirkle 1-J25 cm x 4.6 mmMobile Phase: (90/10)

CH2Cl2/Ethanol + 0.02 M AmmoniumAcetate

Flow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 7.0 mink’1: 0.91α: 2.01reference 46

metoprolol85:10:5 CH2C12/EtOH/MeOH10 mM NH4OAc1 ml/min; 254 nmrun time = 13 min4.6 mm x 25 cm

α-Burke 2k'1 = 2.66α = 1.28reference 33

O

OH

N

H

O

CH3

Tulobuterol HCIColumn: (S)-α-Burke 2

25 cm x 4.6 mmMobile Phase: (91/9)

CH2Cl2/Ethanol + 0.01 M Ammonium Acetate

Flow Rate: 1.5 mL/minDetection: UV 254 nmRun Time: 15.0 mink’1: 6.38α: 1.13reference 46

β-BlockerColumn: (S,S)-

DACH-DNB25 cm x 4.6 mmMobile Phase:

(90/10) CH2Cl2/IPA

Flow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 18.0 mink'1: 4.52α: 1.29reference 59

Page 79: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

78 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS β−Blockers

Nadolol Timolol Maleate

Carazolol

NadololColumn = (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mmMobile Phase = (78/22)

Hexane/Ethanol +0.01 M Ammonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 270 nmRun Time = 9.5 mink'1 = 3.05α = 1.43reference 46

Timolol MaleateColumn = (3R,4S)-Pirkle 1-J

25 cm x 4.6 mmMobile Phase =

(94/3/3) CH2Cl2/Ethanol/IPA+ 0.01M Ammonium Acetate

Flow Rate = 1.0 mL/minDetection = UV 294 nmRun Time = 16.0 mink'1 = 3.72α = 1.33reference 46

CarazololColumn = (R)-α-Burke 2

25 cm x 4.6 mmMobile Phase =

(46/46/8) CH2Cl2/Methanol/Ethanol + 0.01 MAmmonium Acetate

Flow Rate = 1.5 mL/minDetection = UV 254 nmRun Time = 15.0 mink'1 = 6.73α = 1.10reference 46

Practolol

Pronethalol

Practolol85:10:5 CH2C12/

EtOH/MeOH15 mM NH4OAc1 ml/min; 254 nmrun time = 19 min4.6 mm x 25 cm

α-Burke 2k'1 = 4.78α = 1.14reference 33

OH

N

H

Pronethalol90:10 CH2C12/EtOH15 mM NH4OAc1 ml/min; 254 nmrun time = 15 min4.6 mm x 25 cm

α-Burke 2k'1 = 3.26α = 1.31reference 33

Pindolol

Oxprenolol

Propranolol

PindololColumn: (3R,4S)-Pirkle 1-J25 cm x 4.6 mmMobile Phase: (80/20)

CH2Cl2/Ethanol + 0.04M Ammonium Acetate

Flow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 11.0 mink’1: 1.56α: 2.06reference 46

OxprenololColumn: (3R,4S)-Pirkle 1-J25 cm x 4.6 mmMobile Phase: (90/10)

CH2Cl2/Ethanol + 0.015M Ammonium Acetate

Flow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 13.5 mink’1: 3.55α: 1.15reference 46

PropranololColumn: (3R,4S)-Pirkle 1-J25 cm x 4.6 mmMobile Phase: (80/20)

CH2Cl2/Ethanol + 0.04M Ammonium Acetate

Flow Rate: 1.0 mL/minDetection: UV 254 nmRun Time: 6.5 mink’1: 0.80α: 1.80reference 46

practolol

O

OH

N

H

N

O

H

H3C

Page 80: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 79

Amino Acids REGISNorleucine 4-Fluorophenyalanine

1-Aminoindan

Arginine

Tyrosine

1,2,3,4-Tetrahydro-1-naphthylamine

LeucineMethionine

NorleucineColumn: ChiroSil® RCA(+)

or SCA(-)15 cm x 4.6 mm

Mobile Phase: (45/55) CH3OH/H2O+10 mM Acetic acid

Flow Rate: 1.0 mL/minDetection: UV 210 nmRun Time: 5.6 mink'1: 1.28α: 1.75

4-FluorophenyalanineColumn: ChiroSil® RCA(+) or

SCA(-) 15 cm x 4.6 mmMobile Phase: (70/30)

CH3OH/H2O+10 mM Acetic acid

Flow Rate: 1.5 mL/minDetection: UV 210 nmRun Time: 9.6 mink'1: 2.92α: 2.56

1,2,3,4-Tetrahydro-1-naphthylamineColumn: ChiroSil® RCA(+)

or SCA(-) 15 cm x 4.6 mmMobile Phase: (84/16)

CH3OH/H2O+10 mM H2SO4 and 0.1% TEA

Flow Rate: 1.0 mL/minDetection: UV 210 nmRun Time: 3.5 mink'1: 0.82α: 1.76

ArginineColumn: ChiroSil®

RCA(+) or SCA(-)15 cm x 4.6 mm

Mobile Phase: (84/16) CH3OH/H2O+10 mM H2SO4

Flow Rate: 0.8 mL/minDetection: UV 210 nmRun Time: 4.9 mink'1: 1.21α: 1.64

1-AminoindanColumn: ChiroSil®

RCA(+) or SCA(-)15 cm x 4.6 mm

Mobile Phase: (84/16)CH3OH/H2O+5 mM HClO4

Flow Rate: 1.0 mL/minDetection: UV 210 nmRun Time: 4.8 mink'1: 1.44α: 1.91

TyrosineColumn: ChiroSil®

RCA(+) or SCA(-)15 cm x 4.6 mm

Mobile Phase: (70/30) CH3OH/H2O+10 mM Acetic acid

Flow Rate: 1.5 mL/minDetection: UV 210 nmRun Time: 9.1 mink'1: 2.95α: 2.38

MethionineColumn: ChiroSil® RCA(+)

or SCA(-) 15 cm x 4.6 mm

Mobile Phase: (45/55) CH3OH/H2O+10 mM Acetic acid

Flow Rate: 1.0 mL/minDetection: UV 210 nmRun Time: 7.5 mink'1: 1.64α: 2.04

LeucineColumn: ChiroSil®

RCA(+) or SCA(-)15 cm x 4.6 mm

Mobile Phase: (45/55) CH3OH/H2O+10 mM Acetic acid

Flow Rate: 1.0 mL/minDetection: UV 210 nmRun Time: 5.5 mink'1: 1.03α: 2.14

Page 81: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

80 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

REGIS Amino Acids

KynurenineKynurenineColumn = (S,S)-Whelk-O 1

10/100 (FEC) 25 cm x 4.6 mmMobile Phase =

(65/35)H2O/CH3OH + 0.1% Acetic Acid

Flow Rate = 1.0 mL/minDetection = UV 254 nmRun Time = 9.0 mink'1 = 1.17α = 1.99reference 46

Serine

Tryptophan

Phenylalanine

NorvalinePhenylglycine

TryptophanColumn: ChiroSil®

RCA(+) or SCA(-)15 cm x 4.6 mm

Mobile Phase: (70/30) CH3OH/H2O+10 mM Acetic acid

Flow Rate: 1.5 mL/minDetection: UV 210 nmRun Time: 11.0 mink'1: 4.06α: 2.15

SerineColumn: ChiroSil® RCA(+)

or SCA(-)15 cm x 4.6 mm

Mobile Phase: (84/16) CH3OH/H2O+5 mM HClO4

Flow Rate: 0.8 mL/minDetection: UV 210 nmRun Time: 6.0 mink'1: 1.37α: 1.99

PhenylalanineColumn: ChiroSil® RCA(+) or

SCA(-) 15 cm x 4.6 mmMobile Phase: (70/30)

CH3OH/H2O+10 mM Acetic acid

Flow Rate: 1.5 mL/minDetection: UV 210 nmRun Time: 8.9 mink'1: 2.66α: 2.57

PhenylglycineColumn: ChiroSil® RCA(+)

or SCA(-)15 cm x 4.6 mmMobile Phase: (70/30)

CH3OH/H2O+10 mM H2SO4 and 0.1% TEA

Flow Rate: 1.0 mL/minDetection: UV 210 nmRun Time: 13.1 mink'1: 3.14α: 2.60

NorvalineColumn: ChiroSil® RCA(+) or

SCA(-)15 cm x 4.6 mmMobile Phase:

(45/55) CH3OH/H2O+10 mM Acetic acid

Flow Rate: 1.0 mL/minDetection: UV 210 nmRun Time: 5.3 mink'1: 1.15α: 1.79

D,L-p-Hydroxy-PhenylglycineD,L-p-Hydroxy-PhenylglycineColumn: ChiroSil®-SCA(+)

15 cm x 4.6 mmMobile Phase:

(50/50) CH3ON/H2O+0.02% Acetic acid

Flow Rate: 1.0 mL/minDetection: UV 210 nmRun Time: 11.0 mink'1: 2.11α: 2.29reference 46

GlutamineGlutamineColumn: ChiroSil® SCA(-)

25 cm x 4.6 mmMobile Phase:

(65/35) CH3CN/H2O+0.01% Acetic acid

Flow Rate: 1.5 mL/minDetection: UV 210 nmRun Time: 6.5 mink'1: 1.51α: 1.61reference 46

Page 82: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 81

Amino Acids REGISHistidine Glutamic Acid

Lysine

EthionineDOPA

HistidineColumn: ChiroSil®

RCA(+) or SCA(-)15 cm x 4.6 mm

Mobile Phase: (45/55) CH3OH/H2O+10 mM Acetic acid

Flow Rate: 1.0 mL/minDetection: UV 210 nmRun Time: 26.0 mink'1: 10.96α: 1.27

Glutamic AcidColumn: ChiroSil®

RCA(+) or SCA(-)15 cm x 4.6 mm

Mobile Phase: (65/35) CH3OH/H2O+0.05% Phosphoric acid

Flow Rate: 1.0 mL/minDetection: UV 210 nmRun Time: 4.5 mink'1: 0.71α: 2.27

DOPAColumn: ChiroSil®

RCA(+) or SCA(-)15 cm x 4.6 mm

Mobile Phase: (70/30) CH3OH/H2O+0.01% Phosphoric acid

Flow Rate: 1.0 mL/minDetection: UV 210 nmRun Time: 5.5 mink'1: 0.97α: 2.30

EthionineColumn: ChiroSil®

RCA(+) or SCA(-)15 cm x 4.6 mm

Mobile Phase: (75/25) CH3OH/H2O+0.02% Acetic acid

Flow Rate: 1.0 mL/minDetection: UV 210 nmRun Time: 6.2 mink'1: 1.29α: 2.07

LysineColumn: ChiroSil®

RCA(+) or SCA(-)15 cm x 4.6 mm

Mobile Phase: (70/30) CH3OH/H2O+0.01% Phosphoric acid

Flow Rate: 1.0 mL/minDetection: UV 210 nmRun Time: 5.3 mink'1: 1.44α: 1.48

Page 83: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

Throughout the past 20 years, the Sales and Technical persons atRegis have fielded hundreds of different questions related to our

Chiral Stationary Phases (CSP’s). Listed here you will find some ofthe frequently asked questions. By no means is this a complete list,if you have questions regarding chiral chromatography, please feelfree to contact Regis directly or pass your question on through oneof our distributors.

What is the pressure rating of your columns?All analytical (25cm x 4.6 mm i.d.) and semi-preparative (25cm x 10.0 mm i.d.) columns manufactured by Regis can tolerate pressures up to 6000 psi. Larger columns will tolerate3000 psi. It is very important not to exceed the maximum pressurerating for any HPLC column as you may disrupt the integrity of thesilica bed and destroy the column.

Can Regis columns be reversed?Yes, all columns packed by Regis are fully reversible. In fact, Regiswas the first column manufacturer to sell a fully reversible HPLC column. It is recommended to reverse your column frequently. Thishelps keep the frit surface from becoming clogged with undissolvedsample or particulates in the mobile phase, thus extending the column life.

What is the pH range of your columns?All of Regis’ Chiral phases are bonded on silica. The recommendedpH range is 2.5 to 7.5. Limited usage outside of this pH range canbe tolerated, but it has been proven that extended usage outside ofthe range will decrease column life.

Can your columns be used in normal and reversed-phase solvents?Yes, all Pirkle-Type Chiral HPLC columns can be used in BOTHnormal and reversed-phase solvents. Generally, the Pirkle-TypeCSP’s will give better separations by using them with normal-phasesolvents. There are numerous examples, however; whereseparations with reversed-phase solvents will outperform those with normal-phase solvents.

Can I use the same column for reversed-phase and normal-phase solvent systems while doing method development?Yes, just make sure you completely flush out the column with a miscible solvent such as IPA or ethanol. We recommend at least 20 column volumes.

How long does it take your columns to equilibrate?The column should equilibrate after about 20 column volumes.When you are switching from normal to reversed-phase solventsystems and vise-versa, flush the column with a miscible solvent for20 column volumes. It should take another 20 column volumes toequilibrate. The equilibration volumes may vary depending on thecomposition of the mobile phase.

What type of silica do you use?Regis exclusively uses Exsil® for our 5-micron material andKromasil‚ for 10 and 16-micron material. Both brands of silica are100 angstrom in pore size.

Do you always need a modifier in the mobile phase?No modifiers are usually needed for initial method development.Modifiers can be used to improve peak shape and resolution whenthe samples are extremely basic or acidic in nature. Acetic acid orammonium acetate are recommended for acidic compounds, andtriethylamine, diethylamine or ammonium acetate arerecommended for basic compounds. Usually 0.1% of modifier is allthat is required. Note: Although TFA may be used as a modifier,its use should be limited. Acetic acid usually works as well as TFA.

Can I use your columns for SMB chromatography and SFC?Yes, many analytical and preparative chromatographers usePirkle-Type Chiral columns in both SFC and SMB. Specialhardware is necessary for certain column dimensions.

What is the difference between Whelk-O 1 and Whelk-O 2?Although the Whelk-O 1 and Whelk-O 2 both share the sameChiral selector, they have distinct differences. The Whelk-O 1 ismonofunctionally bonded to silica and the Whelk-O 2 istrifunctionally bonded. The Whelk-O 2 was designed to toleratestrong acidic modifiers such as TFA. The Whelk-O 2 was designedfor preparative use and is not available on 5-micron silica. Due tothe fact the Whelk-O 2 is a trifunctional bond, coverage on the silicawill be less than with Whelk-O 1. This decrease in the actual numberof bonded sites will decrease selectivity and not allow for exactreproducibility of a method developed on a Whelk-O 1 column.

Does my compound need an aromatic ring to achieve separation on a Pirkle-Type Chiral column?In most cases (not all), yes. Chiral recognition occurs at bindingsites. The potential π-π interaction that can occur between the aromatic rings on the Chiral selector and the aromatic ring on thesample is a major factor in achieving selectivity. Binding doesoccur at other sites such as acidic sites, basic sites and stericinteraction sites—this is why you do not always need a ring—butby far, the π-π interaction is the major binding site.

Can I use the Pirkle-Type Chiral columns in polar organic mode?Yes, even though the success rate is very poor, you can use thecolumns in polar organic mode. We do not recommend dedicatinga slot in your method development station for a Pirkle-Type Chiralcolumn if you are exclusively running in polar organic mode. Addanother Pirkle-Type column to your normal-phase system toachieve a higher success rate.

What sampling loading can I expect from Pirkle-Type ChiralHPLC columns?The typical loading range – with relative retention’s (alpha) greaterthan 1.3—is ~ 4-16 mg of sample per gram of packing. Below aretypical loadings for some of the different column sizes: Note:Factors, such as solubility, will greatly affect loading capacity.Analytical column, 25cm x 4.6mm, ~ 3.5 grams of packing,

loading is 14-56 mg/ injection.Semi-prep column, 25cm x 10.0mm, ~ 16 grams of packing,

loading is 64-256 mg/ injection.Prep column, 25cm x 21.1mm, ~ 72.5 grams of packing,

loading is 288-1,152 mg/ injection.

Frequently Asked QuestionsABOUT PIRKLE-TYPE CHIRAL STATIONARY PHASES AND COLUMNS FROM REGIS

82 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

Page 84: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

STEP 1: Choosing the Appropriate Column:

We recommend using the following sequence of columns to startyour method development. When doing method development atRegis, the Whelk-O is our first choice as it exhibits the broadestdegree of generality.

Order of Preference:

� Whelk-O

� ULMO

� DACH-DNB

� α-Burke

� β-Gem

� Pirkle 1-J

� Leucine

� Phenylglycine

STEP 2: Choosing the Mobile Phase:

Certain factors such as solubility and future considerations forpreparative work usually help to determine whether to performyou method development with reversed-phase or normal phasesolvents. Pirkle-Type phases can be used in both modes, buttypically performs the best with normal phase solvents. Since themajority of analytical Chiral methods move on to preparativeseparations, we recommend using normal phase solvents.

Typical Mobile Phase Combinations:

� Hexane/IPA � Heptane/IPA

� Hexane/Ethanol � Methanol/H2O

� Hexane/CH2CL2/Ethanol � Ethanol/H2O

� Hexane/Ethyl Acetate � Acetonitrile/H2O

� Heptane/Ethanol � Methanol/CH2CL2

� Heptane/CH2CL2 � THF/H2O

� Hexane/CH2CL2 � Ethanol/CH2CL2

STEP 3: Start with a high percentage (~50%) ofstrong solvent (ethanol, IPA, ect.):

Starting with a strong solvent system ensures that all peaks willelute off the column quickly.

� If you achieve any resolution, (such as the above sample)move on to STEP 4.

� If your sample comes off in the void, decrease the strongsolvent by half.

� If your sample is now out of the void and you haveresolution, move on to STEP 4.

� If your sample is out of the void, and there is no resolution,change the column.

Quick Scheme Method DevelopmentFOR THE REGIS PIRKLE-TYPE CHIRAL STATIONARY PHASES

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 83

Steps 4 and 5 continued on pages 84 & 85

Sample: NaproxenColumn: (R,R)-Whelk-O 1

25 cm x 4.6 mmMobile Phase: (50/50)

Hexane/EthanolFlow Rate: 1.5 mL/minDetection: UV 254 nmRun Time: 6.5 min

Page 85: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

84 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

STEP 4: Add a Mobile Phase Modifier (usually ~ 0.1%)

� For this sample, you can stop at 50/50 Hexane/Ethanol + 0.1% acetic acid if you are only looking for a basic methodor you can carry it forward to STEP 5 and optimize.

Quick Scheme Method DevelopmentFOR THE REGIS PIRKLE-TYPE CHIRAL STATIONARY PHASES

Recapping The First Four Steps:

As you can see, the peak shape of the initial separation is verypoor. To rectify this problem, a modifier is usually added. If youare satisfied with the peak shape—you do not need to add amodifier—move on to STEP 5 and optimize your separation.

� For basic or amine groups—add triethylamine, diethylamineor ammonium acetate

� For acidic groups—add acetic acid, trifluoroacetic acid orammonium acetate

� Although resolution increased with the addition of 0.1% of triethylamine to the mobile phase, the peak shape is stillvery poor.

� Try adding a different modifier

� Resolution and peak shape are excellent with the addition of0.1% of acetic acid

Page 86: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral 85

STEP 5: Optimizing your method:

Quick Scheme Method DevelopmentFOR THE REGIS PIRKLE-TYPE CHIRAL STATIONARY PHASES

Optimizing a Chiral method is very similar tooptimizing an achiral method. Changing mobilephase component concentrations and even thecomponents themselves can dramatically changeresolution.

Increase the concentration of the weaker solvent:

� Increasing the hexane content increased the resolution in this example. Again, you can stop here and accept this asoptimized or continue on.

Change the strong solvent:

� By substituting IPA for ethanol, an increase in both resolution and alpha were achieved.

Optimization of a Chiral method can be assimple or as complicated as you want it to be.Different mobile phase components can be used; modifiers can be changed or eliminated;you can switch to reversed-phase solvents; you can change columns. The possibilities areendless. We suggest you keep it as simple as possible. Once you have achieved anacceptable separation, move on to the nextproject. Small increases in resolution and alpha are usually not worth the time spent in method development to achieve thoseincreases.

?Not sure which chiral column to use for your separation?Let the professional staff at Regis assist you with its free chiral screening service.

Simply fill out the chiral screening data sheet (see page 91 of this Guide) and pre-fax it to Regis or send it along with your sample of interest.

STRICTLY CONFIDENTIAL • FAST TURN AROUND TIME • NO OBLIGATION TO THE [email protected]

Page 87: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

1. Pirkle, W. H.; Welch, C. J.; Burke, J. A., Lamm, B., Target-directed Design ofChiral Stationary Phases, Analytical Proceedings, 1992, 29, 225.

2. Pirkle, W. H.; Welch, C. J.; Hyun, M. H., Concerning the Role of Face-to-Edge π-π Interactions in Chiral Recognition, J. Chromatogr., 1992, 607, 126.

3. Pirkle, W. H.; Welch, C. J.; Lamm, B., Design, Synthesis, and Evaluation of anImproved Enantioselective Naproxen Selector, J. Org. Chem., 1992, 57, 3854.

4. Pirkle, W. H.; Welch, C. J., An Improved Chiral Stationary Phase for theChromatographic Separation of Underivatized Naproxen Enantiomers, J. Liq.Chromatogr., 1992, 15(11), 1947.

5. Pirkle, W. H.; Welch, C. J.; Wilson, S. R., Assignment of Absolute Configurationto an Improved Enantioselective Naproxen Selector, Chirality, 1994, 6, 615.

6. Welch, C. J., Analytical & Semipreparative Separation of Enantiomers Using theWhelk-O 1 Chiral Stationary Phase: Naproxen & Abscisic Acid as Case Studies,Chemistry in New Zealand, 1993, July, 9.

7. Pirkle, W. H.; Welch, C. J., Use of Simultaneous Face to Face to Edge π-π Interactions to Facilitate Chiral Recognition, Tetrahedron: Asymmetry, 1994, 5, 777.

8. Wilson, S. R.; Wu, Y.; Kaprinidis, N. A.; Schuster, D. I.; Welch, C. J., Resolutionof Enantiomers of C60-Enone Photoadducts: Mirror Image Fullerenes, J. Org.Chem., 1993, 58, 6548.

9. Welch, C. J., An Improved Method for the Direct Chromatographic Resolution ofAbscisic Acid Enantiomers, Chirality, 1993, 5, 569.

10. Pirkle, W. H.; Welch, C. J.; Zych, A. J., Chromatographic Investigation of theSlowly Interconverting Atropisomers of Hindered Naphthamides, J. Chromatogr.,1993, 648,101.

11. Zhen, L.; Conser, K. R.; Jacobsen, E. N., Asymmetric Alkene Aziridination withReadily Available Chiral Diimine-Based Catalysts, J. Amer. Chem. Soc., 1993,115, 5326.

12. Blum, A. M.; Lynam, K. G.; Nicolas, E. C., Use of a New Pirkle-type ChiralStationary Phase in Analytical and Preparative Subcritical Fluid Chromatographyof Pharmaceutical Compounds, Chirality, 1994, 6, 302.

13. Zhang, Y.; Schuster, G. B. A Search for Photoresolvable Mesogens: Synthesis andProperties of a Series of Liquid Crystalline, Axially Chiral 1-Benzylidene-4 -

[4'-[(p - alkylphenyl)ethnyl]phenyl]cyclohexanes, J. Org. Chem., 1994, 59, 1855.14. Pirkle, W. H.; Welch, C. J., Chromtographic and 1H NMR support for a

proposed chiral recognition model, J. Chromatogr., 1994, 683, 347.15. Wan, K. T.; Davis, M. E., Asymmetric Synthesis of Naproxen by Supported

Aqueous-Phase Catalysis, Journal of Catalysis, 1994, 148, 1.16. Cardellina, J.H.; Bokesch, H.R.; McKee, J.C.; Boyd, M.R., Resolution and

Comparative Anti-HIV Evaluation of the Enantiomers of Calanolides A and B,Bioorg & Med. Chem. Lett., 1995, 1011.

17. Rychnovsky, Pettit & Welch, unpublished results.18. Welch, Szczerba & Perrin, Regis Technologies, Inc., unpublished results.19. Pickard, S.T.; Pirkle, W.H.; Tabatabai, M.; Vogt, W.; Boehmer, V., Dissymmetric

Calix[4]arenes: Optical Resolution of Some Conformationally Fixed Derivatives,Chirality, 1993, 5, 310.

20. Villani, C.; Pirkle, W.H., Direct High-Performance Liquid ChromatographicResolution of Planar Chiral Tricarbonyl (h6-arene)-chromium(0) Complexes, J. Chromatogr., 1995, 693, 63.

21. Villani, C.; Pirkle, W.H., Chromatographic Resolution of the InterconvertingStereoisomers of Hindered Sulfinyl and Sulfonyl Naphthalene Derivatives,Tetrahedron: Asymmetry, 1995, 6, 27-30.

22. Casarini, D.; Lunazzi, L.; Alcaro, S.; Gasparrini, F.; Villani, C., Atropisomerism inHindered Naphthyl Sulfones Investigated by Dynamic NMR and Dynamic HPLCTechniques, J. Org. Chem., 1995, 60, 5515.

23. Hamper, B.C.; Dukesherer, D.R.; Moedritzer, K., Analytical and PreparativeSeparation of the Enantiomers of Pyrazole Phenyle Ether Herbicides on ThreeChiral Stationary Phases., J. Chrom., 1994, 666, 479-484.

24. Suarez, M.; Schuster, G.B., Photoresolution of an Axially ChiralBicyclo[3.3.0]octan-3-one: Phototriggers for a Liquid-Crystal-Based Optical Switch,J. Amer. Chem. Soc., 1995, 117, 6732.

25. Lalonde, J.J.; Govardhan, C.; Khalaf, N.; Martinez, A.G.; Visuri, K.; Margolin,A.L., Cross-linked Crystals of Candida Rugosa Lipase: Highly Effiecient Catalystfor the Resolution of Chiral Esters, J. Amer. Chem. Soc., 1995, 117, 6845.

26. Welch, C.J.; Perrin, S.R., The Whelk-O 1 Chiral Stationary Phase: Some RecentDevelopments, Poster presented at the 4th International Symposium on ChiralDiscrimination, Sept. 22, 1993, Montréal.

27. Stringham, R.W., Relationship Between Resolution and Analysis Time in ChiralSubcritical Fluid Chromatography, Chirality, 1996, 8, 249-257.

28. Courtesy of Suzanne Leung, Department of Pharmaceutics, University ofMinnesota.

29. Courtesy of Dhimant Desai, American Health Foundation.30. Courtesy of Hal Butler, Sepracor, Inc.31. Courtesy of Allan Rettie, Department of Medicinal Chemistry, University of

Washington.32. Courtesy of Chet Mathis, Department of Radiology, University of Pittsburgh

School of Medicine.33. Welch, C.J.; Perrin. S.R., Improved Chiral Stationary Phase for ß-blocker

Enantioseparations, J. Chromatogr., 1995, 690, 218.34. Pirkle, W.H.; Burke, J.A., Preparation of a Chiral Stationary Phase from an

α-amino Phosphonate, Chirality, 1989, 1, 57.35. Pirkle, W.H.; Burke, J.A., Chiral Stationary Phase Designed for β-blockers,

J. Chromatogr., 1991, 557, 173,.36. Perrin, S.R., “Fast Liquid Chromatography for the Analysis of Enantiomers” In

Pharmaceutical and Biomedical Applications of Liquid Chromatography; Riley,M., Lough, W.J., Wainer, Eds.; Pergamon Division of Elsevier Science Ltd.:Oxford, 1994; Vol. 1, Chapter 3.

37. Courtesy of Les Dolak, Department of Chemical & Biological Screening,Pharmacia & Upjohn, Inc.

38. Pirkle, W.H.; Gan, K.Z.; Brice, L.J., The Enhancement of Enantioselectivity byHalogen Substitutes, Tetrahedron: Asymmetry, 1996, 7, 2813-2816.

39. Pirkle, W.H.; Gan, K.Z., in press, 1997.40. Pirkle, W.H.; Brice, L.J.; Caccamese, S.; Principato, G.; Failla, S.,

J. Chromatogr., 1996, 721, 241-246.41. Pirkle, W.H.; Koscho, M.E.; Wu, Z., High-Performance Liquid Chromatographic

Separation of the Enantiomers of N-Aryloxazolinones, N-aryl Thiazolinones andtheir Sulfur Derivatives on a Synthetic Chiral Stationary Phase, J. Chromatogr.,1996, 726, 91-97.

42. Pirkle, W.H.; Koscho, M.E., J. Chrom, in press, 1997.43. Szczerba & Welch, Regis Technologies, Inc., unpublished results.44. Caccamese, S., Tetrahedron: Asymetry, 1996, 7, 2577-2584.45. Kennedy, J.K., Comparison of Chiral Separations on Polysaccharide Chiral

Stationary Phases to an Improved Pirkle Phase, J. Chromatogr., 1996, 725, 219-224.

46. Szczerba, T. J., Regis Technologies, Inc., unpublished results.47. Uray, G.; Kosjek, B., Simultaneous Enantioseparation of Flobufen and its

Diastereomeric Metabolites on a Pirkle Type Chiral Stationary Phase, Poster presented at the 11th International Symposium on Chiral Discrimination, July 25, 1999, Chicago.

48. Courtesy of Georg Uray, Karl Franzens University, Austria; Norbert Maier,University of Vienna, Austria; Wolfgang Lindner, University of Vienna, Austria.

49. Pirkle, W.H.; Lee, W.; Welch, C.J., Enantiomer, 1997, 2, 423-431.50. Pirkle, W.H.; Lee, W., Bull. Kor. Chem. Soc., 1998, 19(11), 1277-1280.51. Lee, W., Bull. Kor. Chem. Soc., 1998, 19(7), 715-717.52. Hyun, M.H.; Jin, J.S.; Lee, W., Bull. Kor. Chem. Soc., 1997, 18(3), 336-339.53. Kim, S.W.; Ahn, S.Y.; Koh, J.S.; Lee, J.H.; and Cho, H.Y., Tetrahedron Letters,

1997, 38(26), 4603-4606.54. Lee, W.; Kim, B.H, J. Of High Resolution Chromatogr., 1998, 21(3), 189-192.55. Courtesy of Wonjae Lee, LG Chemicals, Korea.56. Lee, J.Y.; Lee, Y.S.; Chung, B.Y.; Park, H., Tetrahedron, 1997, 53(7), 2449-

2458.57. Lee Wonjae, Analytical Lett., 1997, 30(15), 2791-2799.58. K. Gyimesi-Forras, Gy. Szasz, M. Szabo and J. Kokosi: Chiral liquid

chromatographic separation of new potential cholecystokinin antagonist nitrogen-containing heterocycles, Poster presented at the 12th International Symposium onChiral Discrimination, Sept. 24, 2000, Chamonix.

59. Courtesy of Dr. Francesco Gasparrini, Misiti,Villani, et al,; Rome University “La Sapienza.”

60. Courtesy of Georg Uray, Karl Franzens University, Austria.

REFERENCES

NOTESIf you have published literature or intend to publish literature referencing anyof Regis’ columns (Pirkle-types or others), we would appreciate a copy for ourfiles. Please send it directly to Regis (address at right).Regis would appreciate the opportunity of obtaining your permission to reference your material in our Application Guides. Please let us know if youhave application information you would like included in our future guides.PLEASE CONTACT REGIS FOR MORE INFORMATION.

8210 Austin AvenueMorton Grove, IL 60053 USA

tel: 847 967-6000 � 800 323-8144fax: 847 [email protected]

website: www.registech.com86 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

Page 88: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 87

INDEX OF APPLICATION BY COMPOUND

Aryl Propionic Acid Non SteroidalAnti-Inflammatory Drugs (NSAIDS)..................................8-11

α-Trityl-2-naphthalenePropionic Acid.....................10

2-(4-Hydroxy-Phenoxy)Propionic Acid.....................10

3,5-Dimethylanilide-R,S-Ibuprofen ............................10

Carprofen...............................11Cicloprofen............................8,9Etodolac...................................8Fenoprofen ...............................8Flurbiprofen ..............................9Hydratropic Acid.....................11Ibuprofen..................................9Indoprofen..............................10Ketoprofen................................8Ketoprofen as 1-naphthylamide...8Loxoprofen ...............................9Naproxen (normal phase) .....9,10Naproxen (reversed phase) ........9Naproxen (semi prep)................8Naproxen Diisopropyl Amide .....9Naproxen Dimethyl Amide .......10Naproxen Methyl Amide..........10Naproxen Methyl Ester ............10Pirprofen ..................................8Rebamipide ............................10Tiaprofenic Acid........................8

Other Carboxylic Acids ..........11-15α-Methoxyphenyl Acetic Acid ...131,1’-Binaphthyl-2,2’-

Diylhydrogen Phosphate .......121-Cyclohexyl-1-phenylacetic

Acid ...................................141-Cyclopentyl-1-phenylacetic

Acid ...................................142-(2-Chloro-4-methylphenoxy)

Propionic Acid.....................142-(3-Chlorophenoxy)

Propionic Acid.....................142-Phenylcyclopropane

Carboxylate ........................122,3-Dibenzoyl-Tartaric Acid ......154-Chloromandelic Acid ............134-(Trifluoromethyl)-

Mandelic Acid.....................15Calcium Channel Blocker .........12Ditoluoyltartaric Acid ...............14Ketorolac................................13Mandelic Acid ........................12Phenylbutyric Acid...................11Phenylsuccinic Acid .................13Suprofen ................................14Tetrahydropyrimidine

Carboxylic Acid...................11Trolox ....................................12Trolox-methylether ...................14Vanilmandelic Acid .................14

Basic Amine ................................15Trans-11,12-Diamino-

9,10-dihydro-9,10-ethanoanthracene ................15

Basic Nitrogen ............................15Troger’s Base..........................15

Esters, Lactones, Ketones, Anhydrides ............................16-19

1’-Acetoxychavicol Acetate.......191,3,5-Triphenylpent-4-yn-1-one ..182-Methyl-1-Indanone ................162-Methyl-1-Tetralone.................183-Methyl-1-Indanone ................17Buckminsterfullerene-Enone

[2+2] Photoadducts..............19Diperodon ..............................18DPHB.....................................17Ethyl-2-(p-Hydroxyphenoxy)

Propionate ..........................19Methyl Mandelate ...................16Tert-butyl-2(benzamido)

cyclopentyl carbamate..........19

Amides, Imides, Carbamates, etc. ....................20-24

β-Lactam.................................24BOC-Ala ................................20CBZ Nornicotine .....................20CBZ-Phe .................................20CBZ-Val..................................20Cyclopentyl Benzoyl-diamide ....24EEDQ ....................................20

Epoxides .....................................24m-Cl-Styrene Oxide..................24Stilbene Oxide........................24Styrene Oxide.........................24

Alcohols.................................25-31α-Naphthyl Methyl Carbinol .....25β-Naphthyl Methyl Carbinol .....261,1’-Bi-2-Naphthol ...................261,1’-Binaphthol

Monomethylether ................281,1,2,-Triphenyl-1,

2-Ethanediol ........................271,2,3,4-Tetrahydro-1-Naphtol ...251-(4-Benzyloxy) Phenyl Ethanol..301-(4-Hydroxyphenyl) Ethanol .....291-(4-Methoxyphenyl)-

2-butanol ............................291-(4-Methoxyphenyl)-

2-propanol ..........................291-[(4-Phenyl) Phenyl] Ethanol .....301-(m-Chlorophenyl) Ethanol .......311-(m-Methylphenyl) Ethanol .......301-(m-Trifluoromethylphenyl)

Ethanol ...............................301-Naphthyl-2-Butanol ...............26

1-(o-Chlorophenyl) Ethanol........311-(o-Methoxyphenyl) Ethanol .....291-(o-Methylphenyl) Ethanol........301-(p-Bromophenyl) Ethanol ........301-(p-Fluorophenyl) Ethanol ........301-(p-Chlorophenyl) Ethanol .......311-(p-Methylphenyl) Ethanol........291-Phenylpentanol .....................271-Phenyl-2-propanol .................292-Methoxyphenyl Phenyl

Carbinol .............................282-Naphthyl-2-Butanol ...............262-Thiopheneethanol .................293-Thiopheneethanol .................299-Anthryl Trifluoromethyl

Carbinol .............................259-Anthrylethanol ......................26Acenaphthenol........................25Ibuprofenol .............................25Methyl 3-Phenyl-3azido-

2hydroxypropanoate (Erythro-diastereomer) ...........29

Phenyl Cyclohexyl Carbinol ......28Phenyl Ethyl Carbinol...............27Phenylethylene Glycol ..............31Phenyl Isopropyl Carbinol ........28Phenyl Methyl Carbinol ............27Phenyl Phenylethyl Carbinol......28Phenyl Propyl Carbinol.............27Phenyl Tribromomethyl

Carbinol .............................27Propafenone ...........................28Ranolazine .............................31Terfenedine.............................28Tert Butyl Phenyl Carbinol ........25Tetrahydrobenzopyrene-7-ol .....26Trans Phenyl Cyclohexanol

(Analytical vs. Preparative Run) ..................28

Diols, Hydroxyketones, etc. ........32Anisoin ..................................32Benzoin..................................32Hydrobenzoin.........................32Ipsdienol ................................32

Sulfoxides..............................33-35Omeprazole ...........................34Pantoprazole ..........................35Sulfinpyrazone........................34

Phosphorous Compounds .......36-38Cyclophosphamide..................36Phosphine Selenium Oxide .......37Secondary Phosphine

Oxide............................37,38Tertiary Phosphine Oxide ....37,38

Atropisomers .........................39-46Adam’s Acid Diethylamide .......46Amlodipine.............................46

Nimodipine ............................46Sulfone Atropisomer ................41Sulfoxide Atropisomer..............41Vapol.....................................46

Optical Switches, Liquid Crystal Components, etc. .............47

Mesogens...............................47Phototriggers...........................47

Allenes ..................................48-52

Organometallic Compounds ...53-55

Agricultural Compounds .........56-60Bromacil.................................56Chlorflurecol Methyl ................58Chrysanthemic Acid-

Ethyl Ester ...........................57Cis:trans Cypermethrin.............59Crotoxyphos ...........................58Devrinol, Napropamide ...........58Diclofop Methyl.......................58Dinocap .................................60Fenvalerate.............................60Fenoxaprop-ethyl.....................60Fluazifop-butyl.........................60Haloxyfop-ethoxyethyl ..............60Leptophos, Phosvel ..................57Mecoprop ..............................57Mecoprop Methyl ...................56Metalaxyl ...............................57Metolachlor ............................57Omite ....................................57Permethrin ..............................56PPO Inhibitors ...............56,58,59Propiconazole, Tilt...................58Quizalofop-ethyl......................60Resmethrin..............................57Sethoxydim.............................57Silvex Methyl ..........................59Tetramethrin............................56Tetramisole .............................59

Miscellaneous Pharmaceuticals61-73Alfuzosin ................................72Althiazide...............................71Bendroflumethiazide ...........61,67Bupivacaine............................62Chlormezanone.......................72Chlorthalidone ........................68Clenbuterol.............................71Coumachlor............................69Cromakalim............................70Cyclandelate ..........................62Cyclothiazide..........................61Dexmedetomidine....................68Dihydrotetrabenazine ..............72Doxazosin ..............................72Ethotoin..................................71Flobufen .................................68

Index of Application by Compound continued on page 88

Page 89: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

88 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

Flobufen Metabolites................68Fluridil....................................72Hanessian’s Lignan .................63Idazoxan................................73Ifenprodil................................69Indapamide .......................62,67Isoxsuprine .............................70Isradipine (normal phase).........63Isradipine (reversed phase).......63Ketamine................................69Ketoconazole..........................69Lansoprazole ..........................71Lorazepam .............................71Lorglumide..............................73McN 5652.............................62Mephenytoin...........................61Metolazone ............................71Methadone Hydrochloride........71Modafinil ...............................73Mosapride..............................73Nadifloxacin...........................73Nicardipine ............................63Nirvanol.................................61Ofloxacin ...............................70Oxazepam .............................61p-Chloro-Warfarin ...................62Pantoprazole ..........................35Pazufloxacin ...........................72Prilocaine ...............................70Proglumide .............................64Quinazolone Derivatives .....68,69SC 41930..............................63Sulindac.................................73Sulpiride ................................69Temazepam.......................64,70Tetrabenazine.........................72Thalidomide.......................61,67Tofisopam and it’s

Conformers .........................69Tolperisone.............................62Trans-U-50488H......................72Trichlormethiazide ...................70Troglitazone ...........................64Tropicamide ...........................63U-100057 ..............................63U-94863 (analytical) ...............64U-94863 (preparative) .............63Warfarin (normal phase).....68,70Warfarin (reversed phase)........70Zopiclone ...............................71

Barbiturates ................................74Hexobarbital...........................74

Ureas..........................................741-Naphthylureaphenethylamine.74

Diol Epoxides ..............................74r-7,t-8-Dihydroxy-t-9,10-epoxy-

7,8,9,10-tetrahydrobenzo[a]pyrene ............................73

Natural Products ....................75-76

2-cis-4-trans-Abscisic Acid.........752-trans-4-trans-Abscisic Acid......75Abscisic Acid..........................76Abscisic Acid Methyl Ester........75Calanolide A ..........................75Combretastatin D-1..................75Flavanone ..............................75Luciferin .................................76Taxifolin .................................76Tetrahydropalmatine ................76

ß-Blockers..............................76-78Alprenolol ..............................77Atenolol .................................77Bambuterol .............................76Betaxolol ................................77Bufuralol.................................77Bupranolol..............................77Carazolol ...............................78Metoprolol..............................77Nadolol .................................78Oxprenolol .............................78Pindolol..................................78Practolol .................................78Pronethalol .............................78Propranolol.............................78Timolol Maleate ......................78Tulobuterol HCL.......................77

Amino Acids ..........................79-811-Aminoindan .........................791,2,3,4-Tetrahydro-1-

naphthylamine .....................794-Fluorophenylalanine..............79Arginine.................................79DOPA ....................................81Ethionine ................................81Glutamic Acid.........................81Glutamine ..............................80Histidine.................................81p-Hydroxy-Phenylglycine...........80Kynurenine .............................80Leucine...................................79Lysine.....................................81Methionine .............................79Norleucine .............................79Norvaline ...............................80Phenylalanine .........................80Phenylglycine..........................80Serine ....................................80Tryptophan .............................80Tyrosine .................................79

INDEX OF APPLICATION BY COMPOUND continued from page 87

Page 90: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 89

INDEX OF APPLICATION BY COLUMN TYPE

α-Burke .......................................2Alprenolol..............................77Atenolol.................................77Bambuterol ............................76Betaxolol ...............................77Carazolol ..............................78Clenbuterol ............................71Diperodon .............................18Lansoprazole..........................71Methadone Hydrochloride .......71Metoprolol .............................77Omeprazole ..........................34Pantoprazole..........................35Practolol ................................78Pronethalol.............................78Tulobuterol HCL......................77

ChiroSil® RCA(+) and SCA(-)1-Aminoindan ........................791,2,3,4-Tetrahydro-1-naphthylamine........................794-Fluorophenylalanine .............79Arginine ................................79DOPA ...................................81Ethionine ...............................81Glutamic Acid ........................81Glutamine..............................80Histidine ................................81p-Hydroxy-Phenylglycine ..........80Leucine..................................79Lysine....................................81Methionine.............................79Norleucine.............................79Norvaline ..............................80Phenylalanine.........................80Phenylglycine .........................80Serine ...................................80trans-11,12-Diamino-9,10-

dihydro-9,10-ethanoanthracene................15

Tryptophan ............................80Tyrosine.................................79

DACH-DNBβ-Blockers .........................76,77β-Lactam................................24Chlorthalidone .......................68Fenoxaprop-ethyl ....................60Fluazifop-butyl ........................60Haloxyfop-ethoxyethyl .............60Phosphine Selenium Oxide ......37Quizalofop-ethyl .....................60Secondary Phosphine

Oxide ...........................37,38Sulfoxides ..............................34Sulpiride................................69Tertiary Phosphine Oxide ...37,38

ß-GEM 1r-7,t-8-Dihydroxy-t-9,10-epoxy-

7,8,9,10-tetrahydrobenzo[a]pyrene ...........................74

Tofisopam and it’s Conformers .69

LeucineHexobarbital ..........................74Luciferin.................................76

Phenylglycine1-Naphthylureaphenethylamine 74

Pirkle 1-J3,5-Dimethylanalide-R,S-

Ibuprofen............................10Adam’s Acid Diethylamide ......46Bufuralol ................................77Bupranolol .............................77Cis:trans Cypermethrin ............59Oxprenolol ............................78Pindolol .................................78Propranolol ............................78Timolol Maleate......................78Trans-U-50488H.....................72

ULMOα-Trityl-2-naphthalene

Propionic Acid ....................10α-Naphthyl Methyl Carbinol ....25β-Naphthyl Methyl Carbinol.....261,1’-Bi-2-Naphthol ..................261,1’-Binaphthol

Monomethylether.................281,1,2,-Triphenyl-1,2-

Ethanediol ..........................271,2,3,4-Tetrahydro-1-

Naphtol .............................251,3,5-Triphenylpent-4-yn-1-one 181-Cyclohexyl-1-

phenylacetic Acid................141-Cyclopentyl-1-

phenylacetic Acid................141-(4-Benzyloxy) Phenyl

Ethanol...............................301-(4-Hydroxyphenyl) Ethanol ....291-(4-Methoxyphenyl)-2-butanol..291-(4-Methoxyphenyl)-

2-propanol .........................291-[(4-Phenyl) Phenyl] Ethanol ....301-(m-Chlorophenyl) Ethanol ......311-(m-Methylphenyl) Ethanol ......301-(m-Trifluoromethylphenyl)

Ethanol...............................301-Naphthyl-2-Butanol...............261-(o-Chlorophenyl) Ethanol .......311-(o-Methoxyphenyl) Ethanol ....291-(o-Methylphenyl) Ethanol .......301-(p-Bromophenyl) Ethanol .......30

1-(p-Chlorophenyl) Ethanol.......311-(p-Fluorophenyl) Ethanol........301-(p-Methylphenyl) Ethanol .......301-Phenylpentanol ....................271-Phenyl-2-propanol ................292-(2-Chloro-4-methylphenoxy)

Propionic Acid ....................142-(4-Hydroxy-Phenoxy)

Propionic Acid ....................102-Methoxyphenyl Phenyl

Carbinol.............................282-Naphthyl-2-Butanol...............262-Thiopheneethanol.................292,3-Dibenzoyl-Tartaric Acid .....153-Thiopheneethanol.................299-Anthryl Trifluoromethyl

Carbinol.............................259-Anthrylethanol .....................26Acenaphthenol .......................25Althiazide ..............................71Bendroflumethiazide ...............67Calcium Channel Blocker.........12Cyclothiazide.........................61Cyclopentyl Benzoyl-diamide ...24Ditoluoyltartaric Acid ..............14Etodolac ..................................8Flobufen Metabolites ...............68Flobufen ................................68Indapamide ...........................67Ketoprofen as 1-

naphthylamide ......................8Methyl 3-Phenyl-3azido-

2-hydroxypropanoate (Erythro-diastereomer) ..........29

Naproxen................................9Phenyl Cyclohexyl Carbinol .....28Phenyl Ethyl Carbinol ..............27Phenyl Isopropyl Carbinol........28Phenyl Methyl Carbinol ...........27Phenyl Phenylethyl Carbinol .....28Phenyl Propyl Carbinol ............27Phenyl Tribromomethyl

Carbinol.............................27Phenylbutyric Acid ..................11Phenylsuccinic Acid ................13Prilocaine ..............................70Temazepam ...........................64Tert Butyl Phenyl Carbinol........25Tetrahydropyrimidine

Carboxylic Acid ..................11Thalidomide ...........................67Trans Phenyl Cyclohexanol

(Analytical vs. Preparative Run)..................28

Trichlormethiazide ..................70Trolox....................................12Trolox-methylether ...................14Vapol ....................................46Warfarin ...............................68

Whelk-O 1 and 2α-Methoxyphenyl Acetic Acid......................................131’-Acetoxychavicol Acetate ......191,1’-Binaphthyl-2,2’-

Diylhydrogen Phosphate.......122-(3-Chlorophenoxy)

Propionic Acid ....................142-cis-4-trans-Abscisic Acid .......752-Methyl-1-Indanone................162-Methyl-1-Tetralone................182-Phenylcyclopropane

Carboxylate........................122-trans-4-trans-Abscisic Acid.....753-Methyl-1-Indanone................174-Chloromandelic Acid............134-(Trifluoromethyl)-

Mandelic Acid ....................15Abscisic Acid .........................76Abscisic Acid Methyl Ester .......75Alfuzosin ...............................72Amlodipine ............................46Anisoin..................................32Bendroflumethiazide ...............61Benzoin .................................32BOC-Ala................................20Bromacil ................................56Buckminsterfullerene-Enone

[2+2] Photoadducts .............19Bupivacaine ...........................62Calanolide A .........................75Carprofen..............................11CBZ nornicotine .....................20CBZ-Phe ................................20CBZ-Val .................................20Chlorflurecol Methyl ................58Chlormezanone......................72Chrysanthemic Acid-

Ethyl Ester...........................57Cicloprofen...........................8,9Combretastatin D-1 .................75Coumachlor ...........................69Cromakalim ...........................70Crotoxyphos ..........................58Cyclandelate..........................62Cyclophosphamide .................37Devrinol, Napropamide...........58Dexmedetomidine ...................68Diclofop Methyl ......................58Dihydrotetrabenazine..............72Dinocap ................................60Doxazosin .............................72DPHB ....................................17EEDQ....................................20Ethotoin .................................71Ethyl-2-(p-Hydroxyphenoxy)

Propionate..........................19Fenvalerate ............................60Fenoprofen ..............................8

Index of Application by Column Type continued on page 90

Page 91: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

90 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

INDEX OF APPLICATION BY COLUMN TYPE continued from page 89

Flavanone..............................75Flurbiprofen .............................9Fluridil ...................................72Hanessian’s Lignan .................63Hydrobenzoin ........................32Hydratropic Acid....................11Ibuprofen.................................9Ibuprofenol ............................25Idazoxan ...............................73Ifenprodil ...............................69Indapamide ...........................62Indoprofen .............................10Ipsdienol................................32Isoxsuprine.............................70Isradipine (normal phase) ........63Isradipine (reversed phase) ......63Ketamine ...............................69Ketoconazole .........................69Ketoprofen...............................8Ketorolac ...............................13Kynurenine.............................80Leptophos, Phosvel..................57Lorazepam.............................71Lorglumide .............................73Loxoprofen...............................9Mandelic Acid .......................12m-Cl-Styrene Oxide .................24McN 5652 ............................62Mecoprop..............................57Mecoprop Methyl ...................56Mephenytoin..........................61Mesogens ..............................47Metalaxyl ..............................57Methyl Mandelate...................16Metolachlor............................57Metolazone............................71Modafinil...............................73Mosapride .............................73Nadifloxacin..........................73Nadolol.................................78Naproxen (normal phase).....9,10Naproxen (reversed phase) .......9Naproxen (semi prep) ...............8Naproxen Diisopropyl Amide ....9Naproxen Dimethyl Amide ......10Naproxen Methyl Amide .........10Naproxen Methyl Ester............10Nicardipine ...........................63Nimodipine............................46Nirvanol ................................61Ofloxacin ..............................70Omite....................................57Oxazepam ............................61p-Chloro-Warfarin...................62Pazufloxacin ..........................72Permethrin .............................56Phenylethylene Glycol .............31Phototriggers ..........................47Pirprofen..................................8PPO Inhibitors ..............56,58,59Proglumide ............................64Propafenone ..........................28

Propiconazole, Tilt ..................58Quinazolone Derivatives ....68,69Ranolazine.............................31Rebamipide ...........................10Resmethrin .............................57SC 41930 .............................63Sethoxydim ............................57Silvex Methyl .........................59Stilbene Oxide .......................24Styrene Oxide ........................24Sulfinpyrazone .......................34Sulfone Atropisomer................41Sulfoxide Atropisomer .............41Sulindac ................................73Suprofen................................14Taxifolin ................................76Temazepam ...........................70Terfenadine............................28Tert-butyl-2(benzamido)

cyclopentyl carbamate ........19Tetrabenazine ........................72Tetrahydrobenzopyrene-7-ol.....26Tetrahydropalmatine ...............76Tetramethrin ...........................56Tetramisole ............................59Thalidomide ...........................61Tiaprofenic Acid.......................8Tolperisone ............................62Troger’s Base .........................15Troglitazone...........................64Trolox....................................12Tropicamide...........................63U-100057 .............................63U-94863 ..........................63,63Vanilmandelic Acid.................14Warfarin (normal phase) .........70Warfarin (reversed phase) .......70Zopiclone ..............................71

Page 92: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

� 8210 Austin Avenue � Morton Grove IL 60053, USA Phone (847) 583-7661 or 7662 � Toll Free (800) 323-8144 x661 � Fax (847) 967-1214

Compound Structure/Name

This compound � may or � may notbe used in an application booklet.

Chiral ScreeningData SheetContact Information:

Primary Contact____________________________________

Other Contact _____________________________________

Company Address___________________________________

_____________________________________________

City___________________________________________

State _____________ Zip Code _____________________

Country ________________________________________

Phone _________________________________________

Fax___________________________________________

e-mail _________________________________________

_____________________________________________

Separation Requirements:Analytical �

Preparative �

Quantity ____________ � mg � gr � kg

Physical, Chemical, and Chromatographic Data:MSDS Available � Yes � No If yes, include a copy with your sample.

Hazardous Material � Yes � No � Unknown

Special Handling Requirements � Yes � No � Unknown

Appearance:� Powder � Crystal � Oil � Other

Color __________________ pKa __________________ UV (max) __________________ UV (min) __________________

Chemical Purity __________________

Do you want your sample returned?� Yes � No

Please Note: All samples are destroyed after the screeningprocess is complete.

REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/ 91

Page 93: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

Stability/Exposure:Light � Stable � Decomposes � Unknown

Moisture � Stable � Decomposes � Unknown

Temp<40˚C � Stable � Decomposes � Unknown

ACIDS:

Acetic Acid (<1%) � Stable � Decomposes � Unknown

Trifluoroacetic Acid (<1%) � Stable � Decomposes � Unknown

BASES:

Triethylamine (<1%) � Stable � Decomposes � Unknown

Diethylamine (<1%) � Stable � Decomposes � Unknown

Storage Conditions:____________________________________________________________________________________________

_____________________________________________________________________________________________________________

SolubilityWater � Soluble � Slightly � Decomposes � Unknown

Methanol � Soluble � Slightly � Decomposes � Unknown

Ethanol � Soluble � Slightly � Decomposes � Unknown

2-Propanol � Soluble � Slightly � Decomposes � Unknown

Hexane � Soluble � Slightly � Decomposes � Unknown

Ethyl Acetate � Soluble � Slightly � Decomposes � Unknown

CH2Cl2 � Soluble � Slightly � Decomposes � Unknown

Acetonitrile � Soluble � Slightly � Decomposes � Unknown

Other ________________________________________________________________________________________________________

_____________________________________________________________________________________________________________

Chromatographic Analysis:

Column ______________________________________________

Column Manufacturer __________________________________

Mobile Phase _________________________________________

Flow Rate ______________ Wavelength __________________

Please include a copy of the chromatogram.

Chiral Screening Data Sheet

Instructions:Please send the completed form along with your sample. We would like to have at least 25 mg of sample. If youare unable to send us 25 mg, you must include sufficientsolubility information. If the compound you are sending isnot commercially available, please inquire if you need aconfidentiality agreement signed before you send us yoursample.

92 REGIS TECHNOLOGIES CHIRAL APPLICATION GUIDE VI • WWW.REGISTECH.COM/chiral/

Page 94: Chiral Application Guide - HPLC · column, compares favorably with polysaccharide-derived chiral stationary phases. In addition, because of the Whelk-O 1’s covalent nature, this

www.RegisTech.com

8210 Austin AvenueMorton Grove, IL 60053-0519

PH 847.967.6000800.323.8144

FX 847.967.1214

EM [email protected]

3/2007