chemistry of dehydro-diels-alder reaction

41
Chemistry of Dehydro-Diels-Alder Reaction LS 2016.10.24 Takahiro Kawamata 1

Upload: others

Post on 25-Nov-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chemistry of Dehydro-Diels-Alder Reaction

Chemistry ofDehydro-Diels-Alder Reaction

LS 2016.10.24

Takahiro Kawamata

1

Page 2: Chemistry of Dehydro-Diels-Alder Reaction

2

Contents

1-1. Concept of dehydro-Diels-Alder (DDA) reactions1-2. Overview of benzyne chemistry

2-1. Initial studies by Johnson and Ueda (1997~2008)2-2. Studies by Hoye group (2012~present)

Page 3: Chemistry of Dehydro-Diels-Alder Reaction

Diels-Alder Reaction

3

HH

HH

HOMO

LUMO

dienedienophile

+

two C C bonds formationeight possible stereoisomers

Specific types or variants of Diels-Alder reactions

intramolecular (IMDA) reaction inverse electron demand HDA reaction

hetero-Diels-Alder (HDA) reaction dehydro-Diels-Alder (DDA) reaction

+X

+

X = O, N, S

X

O

+

OMeO MeO

Page 4: Chemistry of Dehydro-Diels-Alder Reaction

4

Dehydro-Diels-Alder Reaction

+

+

+

+

+

Didehydro-Diels-Alder (DDDA) reaction Tetradehydro-Diels-Alder (TDDA) reaction

Hexadehydro-Diels-Alder (HDDA) reaction

ortho-benzynecumulene

Wessig, P.; Müller, G. Chem. Rev. 2008, 108, 2051.

Page 5: Chemistry of Dehydro-Diels-Alder Reaction

5

Landmark Events

Baire, B.; Niu, D.; Willoughby, P. H.; Woods, B. P.; Hoye, T. R. Nature Protocols 2013, 8, 501.

Page 6: Chemistry of Dehydro-Diels-Alder Reaction

6

Methods for the Generation of o-Benzyne

H

X

Conventional method of benzyne generation

Benzyne from benzenediazonium 2-carboxylate

Benzyne generation from 2-(trimethylsilyl)aryl triflate (widely used Kobayashi method)

X

(–) requirement of harsh conditions(–) base sensitive substrate not tolerable

CO2H

NH2 R-ONO

base X–

CO2

N2 N2–

CO2–

(–) explosive nature of diazonium compounds

OH

Brone-pot

three stepsOTf

TMS F

(+) mild and base-free protocol(+) compatibility with various substrates

BuLi, t-BuOK

TMSF, TfO

Bhojgude, S. S.; Bhunia, A.; Biju, A. T. Acc. Chem. Res. 2016, 49, 1658.

Page 7: Chemistry of Dehydro-Diels-Alder Reaction

7

o-Benzyne Generation and Trapping

Bhunia, A.; Yetra, S. R.; Biju, A. T. Chem. Soc. Rev. 2012, 41, 3140.

Page 8: Chemistry of Dehydro-Diels-Alder Reaction

8

Contents

Page 9: Chemistry of Dehydro-Diels-Alder Reaction

9

Johnson’s Discovery

Bradley, A. Z.; Johnson, R. P. J. Am. Chem. Soc. 1997, 119, 9917.

Page 10: Chemistry of Dehydro-Diels-Alder Reaction

10

Deuterium Labeling Study

Bradley, A. Z.; Johnson, R. P. J. Am. Chem. Soc. 1997, 119, 9917.

Page 11: Chemistry of Dehydro-Diels-Alder Reaction

11

Studies by Ueda Group

HO

TMS

RO

XO

TMS

O

time

benzene (50 mM)25 °C, time

A : X = HB : X = R

Ph

Ph

Ph

O

48

72

72

72

48

A : 45%, B : 38%

A : 66%, B : 6.3%

A : 53%, B : 14%

A : 40%, B : 3.3%benzophenone : 6.0%

A : 52%, B : not detected

timeresults resultsR R

Me

Miyawaki, K.; Suzuki, R.; Kawano, T.; Ueda, I. Tetrahedron Lett. 1997, 38, 3943.

Page 12: Chemistry of Dehydro-Diels-Alder Reaction

12

HO

TMS

O

Ph

Ph

TMS

O

HO

TMS

OH

Ph

Ph

A : 40%

B : 3.3%

Ph

Ph O2

6.0%

PhPh

O

Ph

Ph

TMS

O

Ph Ph

HO

H+

O

TMS

O

Ph

Ph

?

–HO

?

–H

25 °C

?

Proposed Mechanism by Ueda Group

Miyawaki, K.; Suzuki, R.; Kawano, T.; Ueda, I. Tetrahedron Lett. 1997, 38, 3943.

Page 13: Chemistry of Dehydro-Diels-Alder Reaction

13

My Proposal of the Mechanism

Page 14: Chemistry of Dehydro-Diels-Alder Reaction

14

Evidence of Arylcarbene Formation

HO

TMS

O

Ar =

C2H5

C2H5

OMe

XO

TMS

OAr

ArAr

Ph ArCH2OMe

ArCH2OCOMe

Ar

H

+

A : X = HB : X = CH2Ar

C1 C2

C3

C4

solvent

25 °C, 72 hunder Ar

solvent

benzene

concentration

30 mM

3.0 mM

0.3 mM

126 mM

3.0 mM

3.0 mM

A B C

44% 13% C1 : 16%

benzene

benzene

styrene

MeOH

MeCO2H

47% 13% C1 : 23%

55% 4% C1 : 37%

33% 7% C2 : 5%

62% 0% C3 : 60%

71% 0% C4 : 66%

carbene species

entry

1

2

3

4

5

6

Ueda, I.; Sakurai, Y.; Kawano, T.; Wada, Y.; Futai, M. Tetrahedron Lett. 1999, 40, 319.

Page 15: Chemistry of Dehydro-Diels-Alder Reaction

15

Application for DNA Cleavage

HO

R

MeO

S no reaction

O

R

MeO

S

R

MeO

O

DNA cleavage

Radical intermediate:abstraction of H atomfrom deoxyribose

R

O

O

Me

alkylation ofDNA base

H

37 °C

MnO2 oxidation

rt

Hypothesis of dual DNA cleavage pathway

R = t-Bu

HNCO2H

OMe

Me

O

OH

O

O

OH

OH

dynemicin A(ene-diyne antitumor agent)

Torikai, K.; Otsuka, Y.; Nishimura, M.; Sumida, M.; Kawai, T.; Sekiguchi, K.; Ueda, I. Bioorg. Med. Chem. 2008, 16, 5441.

Page 16: Chemistry of Dehydro-Diels-Alder Reaction

16

Direct Observation of Plasmid DNA by AFM

Torikai, K.; Otsuka, Y.; Nishimura, M.; Sumida, M.; Kawai, T.; Sekiguchi, K.; Ueda, I. Bioorg. Med. Chem. 2008, 16, 5441.

Page 17: Chemistry of Dehydro-Diels-Alder Reaction

17

Contents

Page 18: Chemistry of Dehydro-Diels-Alder Reaction

18

Revelation of HDDA reaction by Hoye Group

HO OTBS

OTBS O

TBSO

O

TBS

MnO2, CH2Cl2rt, 5 h

53%

RO

OTBS O

RO

TBS

retro-Brook rearrangement

R =

OTBS

trapping bynucleophilic oxygen atom

Hoye, T. R.; Baire, B.; Niu, D.; Willoughby, P. H.; Woods, B. P. Nature, 2012, 490, 208.

Page 19: Chemistry of Dehydro-Diels-Alder Reaction

19

Substrate Scope of HDDA Reaction

Hoye, T. R.; Baire, B.; Niu, D.; Willoughby, P. H.; Woods, B. P. Nature, 2012, 490, 208.

Page 20: Chemistry of Dehydro-Diels-Alder Reaction

20

Application : Alkane Desaturation

TMS

Me

OMe

TMS

O

Me

TMS

O

entry yield2H donor krel G‡ (kcal/mol)

1

3

4

97%

94%

84%

cyclooctane

cycloheptane

cyclopentane

17.6

18.7

24.120%cyclohexane

A

H

H

A

H

H

A

H

H

+ +

H

Hcyclichydrocarbon(2H donor)

0.01 M95 °C, 14 h

2

H

H

2.6

2.3 17.7

1.0

0.01

saturated

Concept

desaturated

H

H

boat-likeform

+ cycloalkene

Niu, D.; Willoughby, P. H.; Woods, B. P.; Baire, B.; Hoye, T. R. Nature, 2013, 501, 531.

Page 21: Chemistry of Dehydro-Diels-Alder Reaction

21

Application : Aromatic Ene Reaction (1)

Niu, D.; Hoye, T. R. Nat. Chem. 2014, 6, 34.

Brinkley, Y. J.; Friedman, L. Tetrahedron Lett. 1972, 13, 4141.

Page 22: Chemistry of Dehydro-Diels-Alder Reaction

22

Application : Aromatic Ene Reaction (2)

Niu, D.; Hoye, T. R. Nat. Chem. 2014, 6, 34.

Page 23: Chemistry of Dehydro-Diels-Alder Reaction

23

Mechanistic Study of HDDA Reaction

O

R1

O

R2

concerted TS

stepwise TS1

R1

OR2

O

O

O R1

R2

stepwise TS2

concerted or stepwise ?

Wang, T.; Niu, D. Hoye, T. R. J. Am. Chem. Soc. 2016, 138, 7832.

Page 24: Chemistry of Dehydro-Diels-Alder Reaction

24

Relative Rates of the HDDA Reactions

N

R

Ts

TBSO

N O

R

TBSTs

N

R

TBSTs

Me

R

CHO

COMe

CO2Me

CONEt2

H

CF3

entry

1

2

3

4

5

6

7

krel p RSE (kcal/mol)

320

100

16

9.1

1

<<1

<<1

0.03

0.42

0.34

0.34

0.26

0

0.54

–12.1

–7.7

–6.7

–4.9

–4.9

0

+1.9

N

R

Ts

concerted

stepwise

p : Hammet constant, RSE : radical-stabilizing energy

conditions : p-nitrotoluene, 110 °C

conditions

Wang, T.; Niu, D. Hoye, T. R. J. Am. Chem. Soc. 2016, 138, 7832.

Page 25: Chemistry of Dehydro-Diels-Alder Reaction

25

Relative Rates of Diels-Alder Cycloadditions

Wang, T.; Niu, D. Hoye, T. R. J. Am. Chem. Soc. 2016, 138, 7832.

Page 26: Chemistry of Dehydro-Diels-Alder Reaction

26

Conclusion of Mechanistic Study

Wang, T.; Niu, D. Hoye, T. R. J. Am. Chem. Soc. 2016, 138, 7832.

Page 27: Chemistry of Dehydro-Diels-Alder Reaction

27

Pentadehydro-Diels-Alder Reaction

Wang, T.; Naredla, R. R.; Thompson, S. K.; Hoye, T. R. Nature, 2016, 532, 484.

Page 28: Chemistry of Dehydro-Diels-Alder Reaction

28

Scope of the PDDA Cascades of Substrates

Wang, T.; Naredla, R. R.; Thompson, S. K.; Hoye, T. R. Nature, 2016, 532, 484.

Page 29: Chemistry of Dehydro-Diels-Alder Reaction

29

Aza-PDDA Reactions

N

TsN

Me

N

TsN

N

Me

H

0.05 M in piperidine

23 °C, 2 h70%

N

TsN

Me

150 °Co-dichlorobenzeneAcOH (20 eq.)

TsN

HH

NMe

N

TsN

Me

H H

H

HPDDA

HDDA

deprotonation by piperidineaddition ofpiperidine

not obtained

Wang, T.; Naredla, R. R.; Thompson, S. K.; Hoye, T. R. Nature, 2016, 532, 484.

Page 30: Chemistry of Dehydro-Diels-Alder Reaction

30

Scope of the Aza-PDDA Cascades of Substrates

Wang, T.; Naredla, R. R.; Thompson, S. K.; Hoye, T. R. Nature, 2016, 532, 484.

Page 31: Chemistry of Dehydro-Diels-Alder Reaction

31

Mechanistic Aspects of the PDDA Reaction

Wang, T.; Naredla, R. R.; Thompson, S. K.; Hoye, T. R. Nature, 2016, 532, 484.

Page 32: Chemistry of Dehydro-Diels-Alder Reaction

32

Evidence of Allenyne Intermediate

Me

n-Pr

OR

R = HR = PPh2

n-Pr

H

PPh2

Me

O

n-Pr

POPh2

Me

n-Pr

POPh2

Me

X

H

85% (isolated)

rearrangement ofdiphenylphosphine oxide

Ph2PCl, Et3NCDCl3, 0 °C

23 °C, 10 h(t1/2 = 2.5 h)

MeOH orH2O/MeCN (1:3)

X = OMe (91%)X = OH (83%)

Wang, T.; Naredla, R. R.; Thompson, S. K.; Hoye, T. R. Nature, 2016, 532, 484.

Page 33: Chemistry of Dehydro-Diels-Alder Reaction

33

Summary

+

Hexadehydro-Diels-Alder (HDDA) reaction

ortho-benzyne

X+

X

Pentadehydro-Diels-Alder (PDDA) reaction

X

X = CH, NH

1. alkane desaturation2. aromatic ene reaction

trapping reactiveintermediate

reagent-freeconditions

,3-dehydro(aza)toluene

X

Nu

HNu H The PDDA proceeds rapidly, much more

quickly than the HDDA cyclization.

The PDDA enables to synthesizepyridine-containing products which areimpposible to obtain by the HDDA cyclization

highly substitutedbenzenoid product

Page 34: Chemistry of Dehydro-Diels-Alder Reaction

34

Page 35: Chemistry of Dehydro-Diels-Alder Reaction

35

O

MeH

N

O

O

H

PhN

O

O

MeHPhN

O

H

O

MeH

N

OH

PhN

O

O

OH

NO

OOH

N

OO

O

N

Me

OH

O

PhN

O

dr = 4:1

*

aromatic ene

Alder ene

Stereoselectivity of Aromatic Ene/Alder Ene Cascade

Niu, D.; Hoye, T. R. Nat. Chem. 2014, 6, 34.

Page 36: Chemistry of Dehydro-Diels-Alder Reaction

36

Competition between Aromatic ene and DA reaction

Niu, D.; Hoye, T. R. Nat. Chem. 2014, 6, 34.

Page 37: Chemistry of Dehydro-Diels-Alder Reaction

37

Mechanism of Radical Fragmentation

http://molecules.a.la9.jp/Anticancer.html

Page 38: Chemistry of Dehydro-Diels-Alder Reaction

38Hoye, T. R.; Baire, B.; Niu, D.; Willoughby, P. H.; Woods, B. P. Nature, 2012, 490, 208.

Geometry of Benzyne and Comparison of Energies

Comparison of computed free energy changes

Geomety of benzyne

Page 39: Chemistry of Dehydro-Diels-Alder Reaction

39Marell, D. J.; Furan, L. R.; Woods, B. P.; Lei, X.; Bendelsmith, A. J.; Cramer, C. J.; Hoye, T. R.; Kuwata, K. T. J. Org. Chem.2015, 80, 11744.

O

H

O

H

O

O H

H

Comparison of Energies at B3LYP-D3BJ Level

Page 40: Chemistry of Dehydro-Diels-Alder Reaction

40

Dimerization of Phenylpropynoic Acid in 1898

Michael, A.; Bucher, J. E. Chem. Zentrblt 1898, 731.

Page 41: Chemistry of Dehydro-Diels-Alder Reaction

41

Substrate Synthesis by Ueda

Miyawaki, K.; Suzuki, R.; Kawano, T.; Ueda, I. Tetrahedron Lett. 1997, 38, 3943.